The Serotonergic System and Its Role in Thermoregulation
Abstract
1. Overview of Serotonin and Its Functions
2. Neuroanatomy and Neurochemistry of Serotonergic Pathways
2.1. Serotonin Pathways in the Brain
2.2. Interactions with Other Neurotransmitters
3. Serotonin Metabolic Pathways
The Effects of Serotonin on Metabolism
4. Types of Serotonin Receptors
Family | Potential | Type | Mechanism of Action |
---|---|---|---|
5-HT1 | Inhibitory | Gi/Go protein-coupled | AC inhibition—decreasing intracellular concentration of cAMP |
5-HT2 | Excitatory | Gq/11—protein-coupled | PLC activation—increasing intracellular concentration of IP3 and DAG |
5-HT3 | Excitatory | Ligand—gated Na+/K+ channel | Depolarization of cell plasma membrane |
5-HT4 | Excitatory | Gs—protein-coupled | AC activation—increasing intracellular concentration of cAMP |
5-HT5 | Inhibitory | Gi/Go protein-coupled | AC inhibition—decreasing intracellular concentration of cAMP |
5-HT6 | Excitatory | Gs—protein-coupled | AC activation—increasing intracellular concentration of cAMP |
5-HT7 | Excitatory | Gs—protein-coupled | AC activation—increasing intracellular concentration of cAMP |
4.1. 5-HT1 Receptors
4.2. 5-HT2 Receptors
4.3. 5-HT3 Receptors
4.4. 5-HT4 Receptors
4.5. 5-HT5 Receptors
4.6. 5-HT6 Receptors
4.7. 5-HT7 Receptors
5. Serotonin Pathways and Thermoregulation
5.1. Definition and Mechanisms of Thermoregulation
5.2. Experimental Evidence Concerning Involvement of Serotonergic System in Thermoregulation
6. Clinical and Therapeutic Implications of the Serotonergic System and Thermoregulation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAAD/AADC/DDC | aromatic acid decarboxylase/DOPA-decarboxylase |
AAV | adeno-associated virus |
AC | adenylate cyclase |
ACA | anterior cingulate area |
Acc | nucleus accumbens |
ACSF | artificial cerebrospinal fluid |
ACTH | adrenocorticotropic hormone |
ACh | acetylcholine |
ADHD | attention deficit and hyperactivity disorder |
AI | agranular insular area |
AP | action potential |
ASD | autism spectrum disorder |
ATP | adenosine-5′-triphosphate |
BAT | brown adipose tissue |
BOLD | blood oxygenation level-dependent [fMRI] |
cAMP | 3′,5′-cyclic adenosine monophosphate |
CEA | central amygdala |
c-Fos | protooncogene discovered in rat fibroblasts as product of the transforming gene of FBJ MSV (Finkel–Biskis–Jinkins murine osteogenic sarcoma virus), part of Fos family of transcription factors |
CNS | central nervous system |
CRH | corticotropin-releasing hormone |
DAG | diacylglycerol |
5,7-DHT | 5,7-dihydroxytryptamine |
DMT | N,N-dimethyltryptamine |
DOB | dimethoxybromoamphetamine |
DOI | 1-2,5-dimethoxy-iodophenyl-2-aminopropane |
DOM | 2,5-dimethoxy-4-methylamphetamine |
DRN | dorsal raphe nucleus |
EGFP | enhanced green fluorescent protein |
fMRI | functional magnetic resonance imaging |
GABA | γ-aminobutyric acid |
GLP-1 | glucagon-like peptide-1 |
GRAB | G-protein-coupled activation-based [sensor] |
GPCR | G protein-coupled receptor |
Gi/Go | α subunit of inhibitory G protein |
Gq/11 | Gq/11 G protein family |
Gs | stimulatory G protein |
5-HIAA | 5-hydroxyindoleacetic acid |
5-HTP | 5-hydroxy-tryptophan |
5-HT | 5-hydroxy-tryptamine (serotonin) |
5-HT[1 to 7][A to F] | serotonin receptor with specified family number [1–7] and type [A–F] |
5-HTR | serotonin receptor |
IML | intermediolateral cell column |
IP3 | inositol 1,4,5-trisphosphate |
Kir | inward rectifier K+ channel |
L-DOPA | levo-3,4-dihydroxyphenylalanine |
LH | lateral habenula |
LHA | lateral hypothalamic area |
LHb | lateral habenular nucleus |
LPB | lateral parabrachial nucleus |
LSD | lysergic acid diethylamide (lysergide) |
MAOI | monoamine oxidase inhibitor |
MAPK | mitogen-activated protein kinase |
MC4-R | melanocortin-4 receptor |
mCPBG | m-chlorophenylbiguanide |
mCPP | meta-chlorophenylpiperazine |
2ME | 2-methyl-5-HT |
MDMA | 3,4-methylenedioxymethamphetamine |
MDPV | Methylenedioxypyrovalerone (monkey dust) |
mGluR | metabotropic glutamate receptor |
MPEP | 2-methyl-6-(phenylethynyl)-pyridine |
MTEP | 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine |
MTN | medial thalamic nuclei |
NO | nitric oxide |
NRM | nucleus raphe magnus |
NRPa | nucleus raphe pallidus anterior |
mRNA | messenger ribonucleic acid |
NMDAR | N-methyl-D-aspartate receptor |
OCD | obsessive-compulsive disorder |
OFCm | medial orbitofrontal cortex |
8-OH-DPAT | 8-hydroxy-2-(di-n-propylamino)-tetralin |
PAL | globus pallidus |
PBS | phosphate-buffered saline |
PKA | protein kinase A |
PMAT | plasma membrane monoamine transporter |
PNS | peripheral nervous system |
PO/POA | preoptic area |
PPARγ2 | peroxisome proliferator-activated receptor |
Pir | piriform cortex |
S1 | primary somatosensory cortical area |
SERT | serotonin transporter |
SNRI | serotonin and norepinephrine reuptake inhibitor |
SSRI | selective serotonin reuptake inhibitor |
STRv | ventral striatum |
TASK | TWIK-related acid-sensitive K+ channel |
TCA | tricyclic antidepressant |
TPH | tryptophan hydroxylase |
TRAAK | TWIK-related arachidonic acid-stimulated K+ channel |
TRPV | transient receptor potential ion channel, vanilloid subgroup |
TWIK | two-pore domain weak inward rectifier K+ channel |
VMAT2 | vesicular monoamine transporter 2 |
VSM | vascular smooth muscle |
VTA | ventral tegmental area |
ZI | zona incerta |
References
- Whitaker-Azmitia, P.M. The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology 1999, 21, 2S–8S. [Google Scholar] [CrossRef]
- Dahlström, A.; Fuxe, K. Evidence for the Existence of Monoamine-Containing Neurons in the Central Nervous System. I. Demonstration of Monoamines in the Cell Bodies of Brain Stem Neurons. Acta Physiol. Scand. Suppl. 1964, 232, 231–255. [Google Scholar]
- Jacobs, B.L.; Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992, 72, 165–229. [Google Scholar] [CrossRef]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef]
- Sharma, V.K.; Loh, Y.P. The discovery, structure, and function of 5-HTR1E serotonin receptor. Cell Commun. Signal. 2023, 21, 235. [Google Scholar] [CrossRef]
- Pourhamzeh, M.; Moravej, F.G.; Arabi, M.; Shahriari, E.; Mehrabi, S.; Ward, R.; Ahadi, R.; Joghataei, M.T. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol. Neurobiol. 2022, 42, 1671–1692. [Google Scholar] [CrossRef]
- Buhot, M.C. Serotonin receptors in cognitive behaviors. Curr. Opin. Neurobiol. 1997, 7, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Rojas, P.S.; Fiedler, J.L. What Do We Really Know About 5-HT(1A) Receptor Signaling in Neuronal Cells? Front. Cell. Neurosci. 2016, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, F. The Role of Serotonin in Animal Personality. Available online: https://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A1108010&dswid=-7306 (accessed on 4 July 2025).
- Lucki, I. The spectrum of behaviors influenced by serotonin. Biol. Psychiatry 1998, 44, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Quah, S.K.L.; McIver, L.; Roberts, A.C.; Santangelo, A.M. Trait Anxiety Mediated by Amygdala Serotonin Transporter in the Common Marmoset. J. Neurosci. 2020, 40, 4739–4749. [Google Scholar] [CrossRef]
- Balakrishna, P.; George, S.; Hatoum, H.; Mukherjee, S. Serotonin Pathway in Cancer. Int. J. Mol. Sci. 2021, 22, 1268. [Google Scholar] [CrossRef]
- Chen, L.; Huang, S.; Wu, X.; He, W.; Song, M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin. Transl. Med. 2024, 14, e1750. [Google Scholar] [CrossRef]
- Carlsson, A. Perspectives on the discovery of central monoaminergic neurotransmission. Annu. Rev. Neurosci. 1987, 10, 19–40. [Google Scholar] [CrossRef]
- Mulligan, K.A.; Törk, I. Serotoninergic innervation of the cat cerebral cortex. J. Comp. Neurol. 1988, 270, 86–110. [Google Scholar] [CrossRef]
- Hornung, J.P.; Fritschy, J.M.; Törk, I. Distribution of two morphologically distinct subsets of serotoninergic axons in the cerebral cortex of the marmoset. J. Comp. Neurol. 1990, 297, 165–181. [Google Scholar] [CrossRef]
- Hamada, H.T.; Abe, Y.; Takata, N.; Taira, M.; Tanaka, K.F.; Doya, K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat. Commun. 2024, 15, 4152. [Google Scholar] [CrossRef]
- Guyenet, P.G.; Young, B.S. Projections of nucleus paragigantocellularis lateralis to locus coeruleus and other structures in rat. Brain Res. 1987, 406, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Gershon, M.D.; Dreyfus, C.F.; Pickel, V.M.; Joh, T.H.; Reis, D.J. Serotonergic neurons in the peripheral nervous system: Identification in gut by immunohistochemical localization of tryptophan hydroxylase. Proc. Natl. Acad. Sci. USA 1977, 74, 3086–3089. [Google Scholar] [PubMed]
- Zhang, H.; Leitner, D.R.; Hasegawa, Y.; Waldor, M.K. Peripheral serotonergic neurons regulate gut motility and anxiety-like behavior. Curr. Biol. 2024, 34, R133–R134. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, K.; Nakai, S.; Tanaka, M.; Kanosue, K. Neuronal circuitries involved in thermoregulation. Auton. Neurosci. 2000, 85, 18–25. [Google Scholar] [CrossRef]
- Nakamura, K.; Morrison, S.F. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R127–R136. [Google Scholar] [CrossRef]
- Pollak Dorocic, I.; Fürth, D.; Xuan, Y.; Johansson, Y.; Pozzi, L.; Silberberg, G.; Carlén, M.; Meletis, K. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 2014, 83, 663–678. [Google Scholar] [CrossRef]
- Raison, C.L.; Hale, M.W.; Williams, L.E.; Wager, T.D.; Lowry, C.A. Somatic influences on subjective well-being and affective disorders: The convergence of thermosensory and central serotonergic systems. Front. Psychol. 2014, 5, 1580. [Google Scholar] [CrossRef] [PubMed]
- Rorden, C. Neuroanatomy Atlas: Coronal Slices. Available online: https://people.cas.sc.edu/rorden/anatomy/na_coro.html (accessed on 10 April 2025).
- Quentin, E.; Belmer, A.; Maroteaux, L. Somato-Dendritic Regulation of Raphe Serotonin Neurons; A Key to Antidepressant Action. Front. Neurosci. 2018, 12, 982. [Google Scholar] [CrossRef]
- Gianni, G.; Pasqualetti, M. Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem. Neurosci. 2023, 14, 4093–4104. [Google Scholar] [CrossRef]
- Azmitia, E.C. Serotonin neurons, neuroplasticity, and homeostasis of neural tissue. Neuropsychopharmacology 1999, 21, 33S–45S. [Google Scholar] [CrossRef]
- Bowker, R.M.; Westlund, K.N.; Sullivan, M.C.; Wilber, J.F.; Coulter, J.D. Descending serotonergic, peptidergic and cholinergic pathways from the raphe nuclei: A multiple transmitter complex. Brain Res. 1983, 288, 33–48. [Google Scholar] [CrossRef]
- Miceli, M.O.; Post, C.A.; van der Kooy, D. Catecholamine and serotonin colocalization in projection neurons of the area postrema. Brain Res. 1987, 412, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Nanopoulos, D.; Belin, M.F.; Maitre, M.; Vincendon, G.; Pujol, J.F. Immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis. Possible existence of neurons containing serotonin and GABA. Brain Res. 1982, 232, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Chilmonczyk, Z.; Bojarski, A.J.; Pilc, A.; Sylte, I. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands. Int. J. Mol. Sci. 2015, 16, 18474–18506. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhang, S.; Qi, J.; Wang, H.; Cachope, R.; Mejias-Aponte, C.A.; Gomez, J.A.; Mateo-Semidey, G.E.; Beaudoin, G.M.J.; Paladini, C.A.; et al. Dorsal Raphe Dual Serotonin-Glutamate Neurons Drive Reward by Establishing Excitatory Synapses on VTA Mesoaccumbens Dopamine Neurons. Cell Rep. 2019, 26, 1128-1142.e7. [Google Scholar] [CrossRef]
- Ortega, J.E.; Mendiguren, A.; Pineda, J.; Meana, J.J. Regulation of central noradrenergic activity by 5-HT(3) receptors located in the locus coeruleus of the rat. Neuropharmacology 2012, 62, 2472–2479. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pastor, B.; Ortega, J.E.; Meana, J.J. Involvement of serotonin 5-HT3 receptors in the modulation of noradrenergic transmission by serotonin reuptake inhibitors: A microdialysis study in rat brain. Psychopharmacology 2013, 229, 331–344. [Google Scholar] [CrossRef]
- Gobert, A.; Millan, M.J. Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 1999, 38, 315–317. [Google Scholar] [CrossRef]
- Done, C.J.; Sharp, T. Biochemical evidence for the regulation of central noradrenergic activity by 5-HT1A and 5-HT2 receptors: Microdialysis studies in the awake and anaesthetized rat. Neuropharmacology 1994, 33, 411–421. [Google Scholar] [CrossRef]
- Sprouse, J.S.; Aghajanian, G.K. (−)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur. J. Pharmacol. 1986, 128, 295–298. [Google Scholar] [CrossRef]
- Consolo, S.; Ramponi, S.; Ladinsky, H.; Baldi, G. A critical role for D1 receptors in the 5-HT1A-mediated facilitation of in vivo acetylcholine release in rat frontal cortex. Brain Res. 1996, 707, 320–323. [Google Scholar] [CrossRef]
- Izumi, J.; Washizuka, M.; Miura, N.; Hiraga, Y.; Ikeda, Y. Hippocampal serotonin 5-HT1A receptor enhances acetylcholine release in conscious rats. J. Neurochem. 1994, 62, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Cardozo Pinto, D.F.; Pomrenze, M.B.; Guo, M.Y.; Touponse, G.C.; Chen, A.P.F.; Bentzley, B.S.; Eshel, N.; Malenka, R.C. Opponent control of reinforcement by striatal dopamine and serotonin. Nature 2025, 639, 143–152. [Google Scholar] [CrossRef]
- Sun, F.; Zhou, J.; Dai, B.; Qian, T.; Zeng, J.; Li, X.; Zhuo, Y.; Zhang, Y.; Wang, Y.; Qian, C.; et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 2020, 17, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Salvan, P.; Fonseca, M.; Winkler, A.M.; Beauchamp, A.; Lerch, J.P.; Johansen-Berg, H. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat. Neurosci. 2023, 26, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.Y.; Amoroso, M.W.; Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. elife 2015, 4, 06346. [Google Scholar] [CrossRef]
- Fischer, A.G.; Ullsperger, M. An Update on the Role of Serotonin and its Interplay with Dopamine for Reward. Front. Hum. Neurosci. 2017, 11, 484. [Google Scholar] [CrossRef]
- Izquierdo, A.; Carlos, K.; Ostrander, S.; Rodriguez, D.; McCall-Craddolph, A.; Yagnik, G.; Zhou, F. Impaired reward learning and intact motivation after serotonin depletion in rats. Behav. Brain Res. 2012, 233, 494–499. [Google Scholar] [CrossRef]
- Brown, H.D.; Amodeo, D.A.; Sweeney, J.A.; Ragozzino, M.E. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning. J. Psychopharmacol. 2012, 26, 1443–1455. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, M.Z.; Li, Q.; Deng, J.; Mu, D.; Sun, Y.G. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus. Cell Rep. 2017, 18, 3018–3032. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewcz, C.A.; Mazzone, C.M.; D’Agostino, G.; Halladay, L.R.; Hardaway, J.A.; DiBerto, J.F.; Navarro, M.; Burnham, N.; Cristiano, C.; Dorrier, C.E.; et al. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature 2016, 537, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, T.; Kramer, K.; Werten, S.; Rupp, B.; Hoffmeister, D. Characterization of the Gateway Decarboxylase for Psilocybin Biosynthesis. Chembiochem 2022, 23, e202200551. [Google Scholar] [CrossRef]
- Torrens-Spence, M.P.; Liu, C.T.; Pluskal, T.; Chung, Y.K.; Weng, J.K. Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom. ACS Chem. Biol. 2018, 13, 3343–3353. [Google Scholar] [CrossRef]
- Moon, J.H.; Oh, C.M.; Kim, H. Serotonin in the regulation of systemic energy metabolism. J. Diabetes Investig. 2022, 13, 1639–1645. [Google Scholar] [CrossRef]
- Paulmann, N.; Grohmann, M.; Voigt, J.P.; Bert, B.; Vowinckel, J.; Bader, M.; Skelin, M.; Jevsek, M.; Fink, H.; Rupnik, M.; et al. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 2009, 7, e1000229. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.E.; Brubaker, P.L. Glucagon-Like Peptide 1 Secretion by the L-Cell. Diabetes 2006, 55, S70–S77. [Google Scholar] [CrossRef]
- Crane, J.D.; Palanivel, R.; Mottillo, E.P.; Bujak, A.L.; Wang, H.; Ford, R.J.; Collins, A.; Blümer, R.M.; Fullerton, M.D.; Yabut, J.M.; et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 2015, 21, 166–172. [Google Scholar] [CrossRef]
- Zhou, M.; Engel, K.; Wang, J. Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochem. Pharmacol. 2007, 73, 147–154. [Google Scholar] [CrossRef]
- Fritsch, M.; Richter, S. The formation of the nervous system during larval development in Triops cancriformis (Bosc) (crustacea, Branchiopoda): An immunohistochemical survey. J. Morphol. 2010, 271, 1457–1481. [Google Scholar] [CrossRef]
- Hanswijk, S.I.; Spoelder, M.; Shan, L.; Verheij, M.M.M.; Muilwijk, O.G.; Li, W.; Liu, C.; Kolk, S.M.; Homberg, J.R. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int. J. Mol. Sci. 2020, 21, 5850. [Google Scholar] [CrossRef]
- Kesić, M.; Baković, P.; Horvatiček, M.; Proust, B.L.J.; Štefulj, J.; Čičin-Šain, L. Constitutionally high serotonin tone favors obesity: Study on rat sublines with altered serotonin homeostasis. Front. Neurosci. 2020, 14, 219. [Google Scholar] [CrossRef]
- Kesić, M.; Baković, P.; Farkaš, V.; Bagarić, R.; Kolarić, D.; Štefulj, J.; Čičin-Šain, L. Constitutive Serotonin Tone as a Modulator of Brown Adipose Tissue Thermogenesis: A Rat Study. Life 2023, 13, 1436. [Google Scholar] [CrossRef]
- Jagannathan, L.; Socks, E.; Balasubramanian, P.; McGowan, R.; Herdt, T.M.; Kianian, R.; MohanKumar, S.M.J.; MohanKumar, P.S. Oleic acid stimulates monoamine efflux through PPAR-α: Differential effects in diet-induced obesity. Life Sci. 2020, 255, 117867. [Google Scholar] [CrossRef]
- Lummis, S.C. 5-HT(3) receptors. J. Biol. Chem. 2012, 287, 40239–40245. [Google Scholar] [CrossRef] [PubMed]
- McCorvy, J.D.; Roth, B.L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther. 2015, 150, 129–142. [Google Scholar] [CrossRef]
- Volk, B.; Nagy, B.J.; Vas, S.; Kostyalik, D.; Simig, G.; Bagdy, G. Medicinal chemistry of 5-HT5A receptor ligands: A receptor subtype with unique therapeutical potential. Curr. Top. Med. Chem. 2010, 10, 554–578. [Google Scholar] [CrossRef] [PubMed]
- Bacqué-Cazenave, J.; Bharatiya, R.; Barrière, G.; Delbecque, J.-P.; Bouguiyoud, N.; Giovanni, G.D.; Cattaert, D.; De Deurwaerdère, P. Molecular Sciences Serotonin in Animal Cognition and Behavior. Int. J. Mol. Sci. 2020, 21, 1649. [Google Scholar] [CrossRef]
- Vleugels, R.; Verlinden, H.; Broeck, J.V. Serotonin, serotonin receptors and their actions in insects. Neurotransmitter 2015, 2, 314. [Google Scholar] [CrossRef]
- Frolova, V.S.; Nikishina, Y.O.; Shmukler, Y.B.; Nikishin, D.A. Serotonin Signaling in Mouse Preimplantation Development: Insights from Transcriptomic and Structural-Functional Analyses. Int. J. Mol. Sci. 2024, 25, 12954. [Google Scholar] [CrossRef] [PubMed]
- Peroutka, S.J.; Snyder, S.H. Multiple serotonin receptors: Differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol. Pharmacol. 1979, 16, 687–699. [Google Scholar] [CrossRef]
- Albert, P.R.; Zhou, Q.Y.; Van Tol, H.H.; Bunzow, J.R.; Civelli, O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J. Biol. Chem. 1990, 265, 5825–5832. [Google Scholar] [CrossRef]
- Albert, P.R.; Vahid-Ansari, F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019, 161, 34–45. [Google Scholar] [CrossRef]
- Voronova, I.P. 5-HT Receptors and Temperature Homeostasis. Biomolecules 2021, 11, 1914. [Google Scholar] [CrossRef]
- Celada, P.; Puig, M.V.; Artigas, F. Serotonin modulation of cortical neurons and networks. Front. Integr. Neurosci. 2013, 7, 25. [Google Scholar] [CrossRef]
- Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in Major Depressive Disorder. Eur. Neuropsychopharmacol. 2016, 26, 397–410. [Google Scholar] [CrossRef]
- Jensen, N.H.; Cremers, T.I.; Sotty, F. Therapeutic potential of 5-HT2C receptor ligands. Sci. World J. 2010, 10, 1870–1885. [Google Scholar] [CrossRef]
- Moravčíková, L.; Csatlósová, K.; Ďurišová, B.; Ondáčová, K.; Pavlovičová, M.; Lacinová, L.; Dremencov, E. Role of serotonin-2A receptors in pathophysiology and treatment of depression. In 5-HT2A Receptors in the Central Nervous System; Guiard, B.P., Di Giovanni, G., Eds.; Humana Press: Cham, Switzerland, 2018; pp. 205–230. [Google Scholar]
- Nagatomo, T.; Rashid, M.; Abul Muntasir, H.; Komiyama, T. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system. Pharmacol. Ther. 2004, 104, 59–81. [Google Scholar] [CrossRef] [PubMed]
- Valentine, M.S.; Bender, A.M.; Shay, S.; Paffenroth, K.C.; Gladson, S.; Dickerson, J.W.; Watson, K.J.; Kapolka, N.J.; Boutaud, O.; Rook, J.M.; et al. Development of a Peripherally Restricted 5-HT(2B) Partial Agonist for Treatment of Pulmonary Arterial Hypertension. JACC Basic Transl. Sci. 2023, 8, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Mochizuki, S.; Takemoto, Y.; Akuzawa, S. Molecular cloning of human 5-hydroxytryptamine3 receptor: Heterogeneity in distribution and function among species. Mol. Pharmacol. 1995, 48, 407–416. [Google Scholar] [CrossRef]
- Bétry, C.; Etiévant, A.; Oosterhof, C.; Ebert, B.; Sanchez, C.; Haddjeri, N. Role of 5-HT3 Receptors in the Antidepressant Response. Pharmaceuticals 2011, 4, 603–629. [Google Scholar] [CrossRef]
- Lummis, S.C.; Beene, D.L.; Lee, L.W.; Lester, H.A.; Broadhurst, R.W.; Dougherty, D.A. Cis-trans isomerization at a proline opens the pore of a neurotransmitter-gated ion channel. Nature 2005, 438, 248–252. [Google Scholar] [CrossRef]
- Thompson, A.J.; Lummis, S.C. The 5-HT3 receptor as a therapeutic target. Expert. Opin. Ther. Targets 2007, 11, 527–540. [Google Scholar] [CrossRef]
- Basak, S.; Gicheru, Y.; Samanta, A.; Molugu, S.K.; Huang, W.; Fuente, M.; Hughes, T.; Taylor, D.J.; Nieman, M.T.; Moiseenkova-Bell, V.; et al. Cryo-EM structure of 5-HT(3A) receptor in its resting conformation. Nat. Commun. 2018, 9, 514. [Google Scholar] [CrossRef]
- Yuan, S.; Filipek, S.; Vogel, H. A Gating Mechanism of the Serotonin 5-HT3 Receptor. Structure 2016, 24, 816–825. [Google Scholar] [CrossRef]
- Kitayama, E.; Kimura, M.; Ouchi, T.; Furusawa, M.; Shibukawa, Y. Functional Expression of IP, 5-HT(4), D(1), A(2A), and VIP Receptors in Human Odontoblast Cell Line. Biomolecules 2023, 13, 879. [Google Scholar] [CrossRef]
- Azam, S.; Haque, M.E.; Jakaria, M.; Jo, S.-H.; Kim, I.-S.; Choi, D.-K. G-Protein-Coupled Receptors in CNS: A Potential Therapeutic Target for Intervention in Neurodegenerative Disorders and Associated Cognitive Deficits. Cells 2020, 9, 506. [Google Scholar] [CrossRef]
- Matthes, H.; Boschert, U.; Amlaiky, N.; Grailhe, R.; Plassat, J.L.; Muscatelli, F.; Mattei, M.G.; Hen, R. Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: Cloning, functional expression, and chromosomal localization. Mol. Pharmacol. 1993, 43, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.R. 5-ht5A receptors as a therapeutic target. Pharmacol. Ther. 2006, 111, 707–714. [Google Scholar] [CrossRef]
- Nelson, D.L. 5-HT5 receptors. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Keith, I.M.; Beckman, M.J.; Brownfield, M.S.; Vidruk, E.H.; Bisgard, G.E. 5-HT5a receptors in the carotid body chemoreception pathway of rat. Neurosci. Lett. 2000, 278, 9–12. [Google Scholar] [CrossRef]
- Capuzzi, E.; Caldiroli, A.; Ciscato, V.; Russo, S.; Buoli, M. Experimental Serotonergic Agents for the Treatment of Schizophrenia. J. Exp. Pharmacol. 2021, 13, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Corbett, D.F.; Heightman, T.D.; Moss, S.F.; Bromidge, S.M.; Coggon, S.A.; Longley, M.J.; Roa, A.M.; Williams, J.A.; Thomas, D.R. Discovery of a potent and selective 5-ht5A receptor antagonist by high-throughput chemistry. Bioorg Med. Chem. Lett. 2005, 15, 4014–4018. [Google Scholar] [CrossRef]
- Cyrano, E.; Popik, P. Assessing the effects of 5-HT(2A) and 5-HT(5A) receptor antagonists on DOI-induced head-twitch response in male rats using marker-less deep learning algorithms. Pharmacol. Rep. 2025, 77, 135–144. [Google Scholar] [CrossRef]
- Gwynne, W.D.; Shakeel, M.S.; Girgis-Gabardo, A.; Kim, K.H.; Ford, E.; Dvorkin-Gheva, A.; Aarts, C.; Isaac, M.; Al-Awar, R.; Hassell, J.A. Antagonists of the serotonin receptor 5A target human breast tumor initiating cells. BMC Cancer 2020, 20, 724. [Google Scholar] [CrossRef]
- Thomas, D.R.; Soffin, E.M.; Roberts, C.; Kew, J.N.; de la Flor, R.M.; Dawson, L.A.; Fry, V.A.; Coggon, S.A.; Faedo, S.; Hayes, P.D.; et al. SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4’-{[(2-phenylethyl)amino]methyl}-4-biphenylyl)methyl]propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: Evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain. Neuropharmacology 2006, 51, 566–577. [Google Scholar] [PubMed]
- Yamazaki, M.; Okabe, M.; Yamamoto, N.; Yarimizu, J.; Harada, K. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats. J. Pharmacol. Sci. 2015, 127, 362–369. [Google Scholar] [CrossRef]
- Jamu, I.M.; Okamoto, H. Recent advances in understanding adverse effects associated with drugs targeting the serotonin receptor, 5-HT GPCR. Front. Glob. Womens Health 2022, 3, 1012463. [Google Scholar] [CrossRef]
- Oh, C.M.; Park, S.; Kim, H. Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes Metab. J. 2016, 40, 89–98. [Google Scholar] [CrossRef]
- Pithadia, A.B.; Jain, S.M. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials. J. Clin. Med. Res. 2009, 1, 72–80. [Google Scholar] [CrossRef]
- Sargent, B.J.; Henderson, A.J. Targeting 5-HT receptors for the treatment of obesity. Curr. Opin. Pharmacol. 2011, 11, 52–58. [Google Scholar] [CrossRef]
- Yun, H.M.; Rhim, H. 5-HT 6 receptor ligands, EMD386088 and SB258585, differentially regulate 5-HT 6 receptor-independent events. Toxicol. Vitr. 2011, 25, 2035–2040. [Google Scholar] [CrossRef]
- Terry, A.V., Jr.; Buccafusco, J.J.; Wilson, C. Cognitive dysfunction in neuropsychiatric disorders: Selected serotonin receptor subtypes as therapeutic targets. Behav. Brain Res. 2008, 195, 30–38. [Google Scholar] [CrossRef]
- Chagraoui, A.; Thibaut, F.; De Deurwaerdère, P. 5-HT6 receptors: Contemporary views on their neurobiological and pharmacological relevance in neuropsychiatric disorders. Dialogues Clin. Neurosci. 2025, 27, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.M.; Park, K.R.; Kim, E.C.; Kim, S.; Hong, J.T. Serotonin 6 receptor controls Alzheimer’s disease and depression. Oncotarget 2015, 6, 26716–26728. [Google Scholar] [CrossRef] [PubMed]
- Hirst, W.D.; Stean, T.O.; Rogers, D.C.; Sunter, D.; Pugh, P.; Moss, S.F.; Bromidge, S.M.; Riley, G.; Smith, D.R.; Bartlett, S.; et al. SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur. J. Pharmacol. 2006, 553, 109–119. [Google Scholar] [CrossRef]
- Pittala, V.; Pittala, D. Latest advances towards the discovery of 5-HT(7) receptor ligands. Mini Rev. Med. Chem. 2011, 11, 1108–1121. [Google Scholar] [CrossRef]
- Quintero-Villegas, A.; Valdes-Ferrer, S.I. Central nervous system effects of 5-HT(7) receptors: A potential target for neurodegenerative diseases. Mol. Med. 2022, 28, 70. [Google Scholar] [CrossRef]
- Mitchell, K.; Rosenbaum, L. What Is a Normal Body Temperature? Available online: https://www.webmd.com/first-aid/normal-body-temperature (accessed on 4 August 2025).
- Morrison, S.F. Regulation of body temperature. In Medical Physiology, 3rd ed.; Boron, W.F., Boulpaep, E.L., Eds.; Elsevier: Philadelphia, PA, USA, 2017; pp. 1193–1203. [Google Scholar]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef] [PubMed]
- Petroianu, G.A. Hyperthermia and Serotonin: The Quest for a “Better Cyproheptadine”. Int. J. Mol. Sci. 2022, 23, 3365. [Google Scholar] [CrossRef]
- Chapman, C.F.; Liu, Y.; Sonek, G.J.; Tromberg, B.J. The use of exogenous fluorescent probes for temperature measurements in single living cells. Photochem. Photobiol. 1995, 62, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Zohar, O.; Ikeda, M.; Shinagawa, H.; Inoue, H.; Nakamura, H.; Elbaum, D.; Alkon, D.L.; Yoshioka, T. Thermal imaging of receptor-activated heat production in single cells. Biophys. J. 1998, 74, 82–89. [Google Scholar] [CrossRef]
- Okabe, K.; Uchiyama, S. Intracellular thermometry uncovers spontaneous thermogenesis and associated thermal signaling. Commun. Biol. 2021, 4, 1377. [Google Scholar] [CrossRef]
- Aronsohn, E.; Sachs, J. Die Beziehungen des Gehirns zur Körperwärme und zum Fieber. Arch. Für Die Gesamte Physiol. Des Menschen Und Der Tiere 1885, 37, 232–301. [Google Scholar] [CrossRef]
- Richet, C. De l’influence des lesions du cerveau sur la temperature. Acad. Des Sci. 1884, 98, 295. [Google Scholar]
- Kahn, R.H. Über die erwärmung des carotidenblutes. Arch. Anat. Physiol. (Physiol. Abstr. Suppl. Band) 1904, 1904, 81–134. [Google Scholar]
- Moorhouse, V.H.K. Effect of increased temperature of the carotid blood. Am. J. Physiol. 1911, 28, 223–234. [Google Scholar] [CrossRef]
- Barbour, H.G. Die wirkung unmittelbarer erwärmung und abkühlung der wärmezentra auf die körpertemperatur. Arch. Exp. Path Pharmakother. 1912, 70, 1–26. [Google Scholar] [CrossRef]
- Magoun, H.W.; Harrison, F.; Brobeck, J.R.; Ranson, S.W. Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol. 1938, 1, 101. [Google Scholar] [CrossRef]
- Jessen, C. Independent clamps of peripheral and central temperatures and their effects on heat production in the goat. J. Physiol. 1981, 311, 11–22. [Google Scholar] [CrossRef]
- Sakurada, S.; Shido, O.; Fujikake, K.; Nagasaka, T. Relationship between body core and peripheral temperatures at the onset of thermoregulatory responses in rats. Jpn. J. Physiol. 1993, 43, 659–667. [Google Scholar] [CrossRef]
- Boulant, J.A.; Dean, J.B. Temperature receptors in the central nervous system. Annu. Rev. Physiol. 1986, 48, 639–654. [Google Scholar] [CrossRef]
- Buijs, T.J.; McNaughton, P.A. The Role of Cold-Sensitive Ion Channels in Peripheral Thermosensation. Front. Cell. Neurosci. 2020, 14, 262. [Google Scholar] [CrossRef]
- Cesare, P.; Moriondo, A.; Vellani, V.; McNaughton, P.A. Ion channels gated by heat. Proc. Natl. Acad. Sci. USA 1999, 96, 7658–7663. [Google Scholar] [CrossRef]
- Siemens, J.; Kamm, G.B. Cellular populations and thermosensing mechanisms of the hypothalamic thermoregulatory center. Pflug. Arch. 2018, 470, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Voets, T.; Droogmans, G.; Wissenbach, U.; Janssens, A.; Flockerzi, V.; Nilius, B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 2004, 430, 748–754. [Google Scholar] [CrossRef]
- Craig, A.D.; Krout, K.; Andrew, D. Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J. Neurophysiol. 2001, 86, 1459–1480. [Google Scholar] [CrossRef]
- Hunt, S.P.; Mantyh, P.W. The molecular dynamics of pain control. Nat. Rev. Neurosci. 2001, 2, 83–91. [Google Scholar] [CrossRef]
- Drevets, W.C.; Price, J.L.; Furey, M.L. Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Struct. Funct. 2008, 213, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Hulvershorn, L.A.; Karne, H.; Gunn, A.D.; Hartwick, S.L.; Wang, Y.; Hummer, T.A.; Anand, A. Neural activation during facial emotion processing in unmedicated bipolar depression, euthymia, and mania. Biol. Psychiatry 2012, 71, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, H.P.; Martin, A.; Kaufman, J.; Leung, H.C.; Skudlarski, P.; Lacadie, C.; Fulbright, R.K.; Gore, J.C.; Charney, D.S.; Krystal, J.H.; et al. Frontostriatal abnormalities in adolescents with bipolar disorder: Preliminary observations from functional MRI. Am. J. Psychiatry 2003, 160, 1345–1347. [Google Scholar] [CrossRef]
- Marchand, W.R.; Yurgelun-Todd, D. Striatal structure and function in mood disorders: A comprehensive review. Bipolar Disord. 2010, 12, 764–785. [Google Scholar] [CrossRef]
- Victor, T.A.; Furey, M.L.; Fromm, S.J.; Öhman, A.; Drevets, W.C. Changes in the neural correlates of implicit emotional face processing during antidepressant treatment in major depressive disorder. Int. J. Neuropsychopharmacol. 2013, 16, 2195–2208. [Google Scholar] [CrossRef]
- Boulant, J.A. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 2000, 31 (Suppl. 5), S157–S161. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, M. The central and reflex mechanism of panting. J. Physiol. 1933, 77, 319–336. [Google Scholar] [CrossRef]
- Hasama, B. Pharmakologische und physiologische studien über die scheisszentren; über den einfluss der direkten mechanisch elektrischen reizung auf die schweiss-sowie wärmezentren. Arch. Exp. Pathol. 1929, 146, 129. [Google Scholar] [CrossRef]
- Wechselberger, M.; Wright, C.L.; Bishop, G.A.; Boulant, J.A. Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R518–R529. [Google Scholar] [CrossRef]
- Guatteo, E.; Chung, K.K.; Bowala, T.K.; Bernardi, G.; Mercuri, N.B.; Lipski, J. Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: Involvement of transient receptor potential channels. J. Neurophysiol. 2005, 94, 3069–3080. [Google Scholar] [CrossRef]
- Avery, D.H.; Wildschiødtz, G.; Rafaelsen, O.J. Nocturnal temperature in affective disorder. J. Affect. Disord. 1982, 4, 61–71. [Google Scholar] [CrossRef]
- Elsenga, S.; Van den Hoofdakker, R.H. Body core temperature and depression during total sleep deprivation in depressives. Biol. Psychiatry 1988, 24, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Wehr, T.A. Sleep loss: A preventable cause of mania and other excited states. J. Clin. Psychiatry 1989, 50 (Suppl. 8–16). discussion 45–47. [Google Scholar]
- Lund, R.; Kammerloher, A.; Dirlich, G. Body temperature in endogenously depressed patients during depression and remission. In Circadian Rhythms in Psychiatry; Wehr, T.A., Goodwin, F.K., Eds.; Boxwood Press: Pacific Grove, CA, USA, 1983; pp. 77–88. [Google Scholar]
- von Zerssen, D.; Barthelmes, H.; Dirlich, G.; Doerr, P.; Emrich, H.M.; von Lindern, L.; Lund, R.; Pirke, K.M. Circadian rhythms in endogenous depression. Psychiatry Res. 1985, 16, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Wehr, T.A.; Rosenthal, N.E.; Bartko, J.J.; Oren, D.A.; Luetke, C.; Murphy, D.L. Serotonin and thermoregulation. Physiologic and pharmacologic aspects of control revealed by intravenous m-CPP in normal human subjects. Neuropsychopharmacology 1995, 13, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Bligh, J. The central neurology of mammalian thermoregulation. Neuroscience 1979, 4, 1213–1216. [Google Scholar] [CrossRef]
- Fozard, J.R. Neuronal 5-HT receptors in the periphery. Neuropharmacology 1984, 23, 1473–1486. [Google Scholar] [CrossRef]
- Amin, A.H.; Crawford, T.B.; Gaddum, J.H. The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol. 1954, 126, 596–618. [Google Scholar] [CrossRef]
- Vogt, M. The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. 1954, 123, 451–481. [Google Scholar] [CrossRef]
- von Euler, C.P. Physiology and pharmacology of temperature regulation. Pharmacol. Rev. 1961, 13, 361–398. [Google Scholar] [CrossRef]
- Feldberg, W.; Myers, R.D. Effects on Temperature of Amines Injected into the Cerebral Ventricles. A New Concept of Temperature Regulation. J. Physiol. 1964, 173, 226–231. [Google Scholar] [CrossRef]
- Feldberg, W.; Myers, R.D. Appearance of 5-hydroxytryptamine and an unidentified pharmacologically active lipid acid in effluent from perfused cerebral ventricles. J. Physiol. 1966, 184, 837–855. [Google Scholar] [CrossRef]
- Holmes, S.W. The spontaneous release of prostaglandins into the cerebral ventricles of the dog and the effect of external factors on this release. Br. J. Pharmacol. 1970, 38, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Bernheim, H.A.; Kluger, M.J. Endogenous pyrogen-like substance produced by reptiles. J. Physiol. 1977, 267, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Bligh, J.; Cottle, W.H.; Maskrey, M. Influence of ambient temperature on the thermoregulatory responses to 5-hydroxytryptamine, noradrenaline and acetylcholine injected into the lateral cerebral ventricles of sheep, goats and rabbits. J. Physiol. 1971, 212, 377–392. [Google Scholar] [CrossRef]
- Findlay, J.D.; Thompson, G.E. The effect of intraventricular injections of noradrenaline, 5-hydroxytryptamine, acetylcholine and tranylcypromine on the ox (Bos taurus) at different environmental temperatures. J. Physiol. 1968, 194, 809–816. [Google Scholar] [CrossRef]
- Hellon, R.F. Monoamines, pyrogens and cations: Their actions on central control of bodytemperature. Pharmacol. Rev. 1974, 26, 289–321. [Google Scholar] [CrossRef] [PubMed]
- Gaddum, J.H. Antagonism between lysergic acid diethylamide and 5-hydroxytryptamine. J. Physiol. 1953, 121, 15p. [Google Scholar]
- Glatfelter, G.C.; Pottie, E.; Partilla, J.S.; Stove, C.P.; Baumann, M.H. Comparative Pharmacological Effects of Lisuride and Lysergic Acid Diethylamide Revisited. ACS Pharmacol. Transl. Sci. 2024, 7, 641–653. [Google Scholar] [CrossRef]
- Middlemiss, D.N.; Fozard, J.R. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmacol. 1983, 90, 151–153. [Google Scholar] [CrossRef]
- Nelson, D.L.; Pedigo, N.W.; Yamamura, H.I. Multiple 3H-5-hydroxytryptamine binding sites in rat brain. J Physiol 1981, 77, 369–372. [Google Scholar]
- Peroutka, S.J. Selective labeling of 5-HT1A and 5-HT1B binding sites in bovine brain. Brain Res. 1985, 344, 167–171. [Google Scholar] [CrossRef]
- Gudelsky, G.A.; Koenig, J.I.; Meltzer, H.Y. Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology 1986, 25, 1307–1313. [Google Scholar] [CrossRef]
- Pawłowski, L. Amitriptyline and femoxetine, but not clomipramine or citalopram, antagonize hyperthermia induced by directly acting 5-hydroxytryptamine-like drugs in heat adapted rats. J. Pharm. Pharmacol. 1984, 36, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Gudelsky, G.A.; Koenig, J.I.; Meltzer, H.Y. Altered responses to serotonergic agents in Fawn-Hooded rats. Pharmacol. Biochem. Behav. 1985, 22, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Hjorth, S. Hypothermia in the rat induced by the potent serotoninergic agent 8-OH-DPAT. J. Neural Transm. 1985, 61, 131–135. [Google Scholar] [CrossRef]
- Kłodzińska, A.; Chojnacka-Wójcik, E. Hyperthermia induced by m-trifluoromethylphenylpiperazine (TFMPP) or m-chlorophenylpiperazine (m-CPP) in heat-adapted rats. Psychopharmacology 1992, 109, 466–472. [Google Scholar] [CrossRef]
- Mazzola-Pomietto, P.; Aulakh, C.S.; Tolliver, T.; Murphy, D.L. Functional subsensitivity of 5-HT2A and 5-HT2C receptors mediating hyperthermia following acute and chronic treatment with 5-HT2A/2C receptor antagonists. Psychopharmacology 1997, 130, 144–151. [Google Scholar] [PubMed]
- Wozniak, K.M.; Aulakh, C.S.; Hill, J.L.; Murphy, D.L. Hyperthermia induced by m-CPP in the rat and its modification by antidepressant treatments. Psychopharmacology 1989, 97, 269–274. [Google Scholar] [CrossRef]
- Jørgensen, H.; Kjaer, A.; Knigge, U.; Møller, M.; Warberg, J. Serotonin stimulates hypothalamic mRNA expression and local release of neurohypophysial peptides. J. Neuroendocrinol. 2003, 15, 564–571. [Google Scholar] [CrossRef]
- Jørgensen, H.S. Studies on the neuroendocrine role of serotonin. Dan. Med. Bull. 2007, 54, 266–288. [Google Scholar]
- Natarajan, R.; Northrop, N.A.; Yamamoto, B.K. Protracted effects of chronic stress on serotonin-dependent thermoregulation. Stress. 2015, 18, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Hicks, C.; Ramos, L.; Reekie, T.; Misagh, G.H.; Narlawar, R.; Kassiou, M.; McGregor, I.S. Body temperature and cardiac changes induced by peripherally administered oxytocin, vasopressin and the non-peptide oxytocin receptor agonist WAY 267,464: A biotelemetry study in rats. Br. J. Pharmacol. 2014, 171, 2868–2887. [Google Scholar] [CrossRef] [PubMed]
- Mailloux, A.; Benstaali, C.; Bogdan, A.; Auzéby, A.; Touitou, Y. Body temperature and locomotor activity as marker rhythms of aging of the circadian system in rodents. Exp. Gerontol. 1999, 34, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Hale, M.W.; Dady, K.F.; Evans, A.K.; Lowry, C.A. Evidence for in vivo thermosensitivity of serotonergic neurons in the rat dorsal raphe nucleus and raphe pallidus nucleus implicated in thermoregulatory cooling. Exp. Neurol. 2011, 227, 264–278. [Google Scholar] [CrossRef]
- Kelly, K.J.; Donner, N.C.; Hale, M.W.; Lowry, C.A. Swim stress activates serotonergic and nonserotonergic neurons in specific subdivisions of the rat dorsal raphe nucleus in a temperature-dependent manner. Neuroscience 2011, 197, 251–268. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, M.A.; Valentino, R.J.; Waterhouse, B.D. Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Res. 2003, 963, 57–71. [Google Scholar] [CrossRef]
- Olivier, J.D.; Cools, A.R.; Olivier, B.; Homberg, J.R.; Cuppen, E.; Ellenbroek, B.A. Stress-induced hyperthermia and basal body temperature are mediated by different 5-HT(1A) receptor populations: A study in SERT knockout rats. Eur. J. Pharmacol. 2008, 590, 190–197. [Google Scholar] [CrossRef]
- Mazzola-Pomietto, P.; Aulakh, C.S.; Murphy, D.L. Temperature, food intake, and locomotor activity effects of a 5-HT3 receptor agonist and two 5-HT3 receptor antagonists in rats. Psychopharmacology 1995, 121, 488–493. [Google Scholar] [CrossRef]
- Millan, M.J. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: Novel concepts, new drugs. Neurotherapeutics 2009, 6, 53–77. [Google Scholar] [CrossRef]
- Roth, B.L.; Hanizavareh, S.M.; Blum, A.E. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology 2004, 174, 17–24. [Google Scholar] [CrossRef]
- Inan, F.; Brunt, T.M.; Contrucci, R.R.; Hondebrink, L.; Franssen, E.J.F. Novel Phenethylamines and Their Potential Interactions with Prescription Drugs: A Systematic Critical Review. Ther. Drug Monit. 2020, 42, 271–281. [Google Scholar] [CrossRef]
- Schiff, P.L. Ergot and its alkaloids. Am. J. Pharm. Educ. 2006, 70, 98. [Google Scholar] [CrossRef]
- Feldberg, W.; Myers, R.D. A New Concept of Temperature Regulation by Amines in the Hypothalamus. Nature 1963, 200, 1325. [Google Scholar] [CrossRef]
- Shin, M.; Carpenter, J.S.; Park, S.H.; Janiszewski, C.; Tonini, E.; McKenna, S.; Hindmarsh, G.; Iorfino, F.; Nichles, A.; Zmicerevska, N.; et al. Twenty-four-hour Skin Temperature Rhythms in Young People with Emerging Mood Disorders: Relationships with Illness Subtypes and Clinical Stage. J. Biol. Rhythm. 2025, 40, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Souetre, E.; Pringuey, D.; Salvati, E.; Robert, P. [Circadian rhythms and depression]. Ann. Med. Psychol. 1985, 143, 845–870. [Google Scholar]
- Souetre, E.; Pringuey, D.; Salvati, E.; Robert, P.; Darcourt, G. [Circadian rhythms of the central temperature and blood cortisol in endogenous depression]. Encephale 1985, 11, 185–198. [Google Scholar]
- von Zerssen, D.; Dirlich, G.; Doerr, P.; Emrich, H.M.; Lund, R.; Ploog, D. Are biological rhythms disturbed in depression? Acta Psychiatr. Belg. 1985, 85, 624–635. [Google Scholar] [PubMed]
- Janssen, C.W.; Lowry, C.A.; Mehl, M.R.; Allen, J.J.; Kelly, K.L.; Gartner, D.E.; Medrano, A.; Begay, T.K.; Rentscher, K.; White, J.J.; et al. Whole-Body Hyperthermia for the Treatment of Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2016, 73, 789–795. [Google Scholar] [CrossRef]
- Raison, C.L.; Sanacora, G.; Woolley, J.; Heinzerling, K.; Dunlop, B.W.; Brown, R.T.; Kakar, R.; Hassman, M.; Trivedi, R.P.; Robison, R.; et al. Single-Dose Psilocybin Treatment for Major Depressive Disorder: A Randomized Clinical Trial. JAMA 2023, 330, 843–853. [Google Scholar] [CrossRef]
- Matsui, F.; Hecht, P.; Yoshimoto, K.; Watanabe, Y.; Morimoto, M.; Fritsche, K.; Will, M.; Beversdorf, D. DHA Mitigates Autistic Behaviors Accompanied by Dopaminergic Change in a Gene/Prenatal Stress Mouse Model. Neuroscience 2018, 371, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Hulsken, S.; Märtin, A.; Mohajeri, M.H.; Homberg, J.R. Food-derived serotonergic modulators: Effects on mood and cognition. Nutr. Res. Rev. 2013, 26, 223–234. [Google Scholar] [CrossRef]
- Anderson, I.M. Selective serotonin reuptake inhibitors versus tricyclic antidepressants: A meta-analysis of efficacy and tolerability. J. Affect. Disord. 2000, 58, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Boyer, E.W.; Shannon, M. The serotonin syndrome. N. Engl. J. Med. 2005, 352, 1112–1120. [Google Scholar] [CrossRef]
- Ivachtchenko, A.V.; Lavrovsky, Y.; Ivanenkov, Y.A. AVN-211, Novel and Highly Selective 5-HT6 Receptor Small Molecule Antagonist, for the Treatment of Alzheimer’s Disease. Mol. Pharm. 2016, 13, 945–963. [Google Scholar] [CrossRef]
- Cantillon, M.; Ings, R.; Bhat, L. Initial Clinical Experience of RP5063 Following Single Doses in Normal Healthy Volunteers and Multiple Doses in Patients with Stable Schizophrenia. Clin. Transl. Sci. 2018, 11, 387–396. [Google Scholar] [CrossRef]
- Kane, J.M.; Kinon, B.J.; Forray, C.; Such, P.; Mittoux, A.; Lemming, O.M.; Hertel, P.; Howes, O.D. Efficacy and safety of Lu AF35700 in treatment-resistant schizophrenia: A randomized, active-controlled trial with open-label extension. Schizophr. Res. 2022, 248, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Riga, M.S.; Paz, V.; Didriksen, M.; Celada, P.; Artigas, F. Lu AF35700 reverses the phencyclidine-induced disruption of thalamo-cortical activity by blocking dopamine D(1) and D(2) receptors. Eur. J. Pharmacol. 2023, 953, 175802. [Google Scholar] [CrossRef]
- Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018, 23, 2087. [Google Scholar] [CrossRef] [PubMed]
- Ledo, J.H.; Azevedo, E.P.; Beckman, D.; Ribeiro, F.C.; Santos, L.E.; Razolli, D.S.; Kincheski, G.C.; Melo, H.M.; Bellio, M.; Teixeira, A.L.; et al. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer’s Amyloid-β Oligomers in Mice. J. Neurosci. 2016, 36, 12106–12116. [Google Scholar] [CrossRef] [PubMed]
- Afshar, S.; Shahidi, S.; Rohani, A.H.; Soleimani Asl, S.; Komaki, A. Protective effects of 5-HT(1A) receptor antagonist and 5-HT(2A) receptor agonist on the biochemical and histological features in a rat model of Alzheimer’s disease. J. Chem. Neuroanat. 2019, 96, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, C.; Lv, J.; Zhu, X.; Jiang, X.; Lu, W.; Lu, Y.; Tang, Z.; Wang, J.; Shen, X. Antiallergic drug desloratadine as a selective antagonist of 5HT(2A) receptor ameliorates pathology of Alzheimer’s disease model mice by improving microglial dysfunction. Aging Cell 2021, 20, e13286. [Google Scholar] [CrossRef]
- Xing, C.; Chen, H.; Bi, W.; Lei, T.; Hang, Z.; Du, H. Targeting 5-HT Is a Potential Therapeutic Strategy for Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 13446. [Google Scholar] [CrossRef]
- Cosford, N.D.; Tehrani, L.; Roppe, J.; Schweiger, E.; Smith, N.D.; Anderson, J.; Bristow, L.; Brodkin, J.; Jiang, X.; McDonald, I.; et al. 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]-pyridine: A potent and highly selective metabotropic glutamate subtype 5 receptor antagonist with anxiolytic activity. J. Med. Chem. 2003, 46, 204–206. [Google Scholar] [CrossRef]
- Lea, P.M.t.; Movsesyan, V.A.; Faden, A.I. Neuroprotective activity of the mGluR5 antagonists MPEP and MTEP against acute excitotoxicity differs and does not reflect actions at mGluR5 receptors. Br. J. Pharmacol. 2005, 145, 527–534. [Google Scholar] [CrossRef]
- Dravolina, O.A.; Danysz, W.; Bespalov, A.Y. Effects of group I metabotropic glutamate receptor antagonists on the behavioral sensitization to motor effects of cocaine in rats. Psychopharmacology 2006, 187, 397–404. [Google Scholar] [CrossRef]
- Gass, J.T.; Osborne, M.P.; Watson, N.L.; Brown, J.L.; Olive, M.F. mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology 2009, 34, 820–833. [Google Scholar] [CrossRef]
- Kotlinska, J.; Bochenski, M. The influence of various glutamate receptors antagonists on anxiety-like effect of ethanol withdrawal in a plus-maze test in rats. Eur. J. Pharmacol. 2008, 598, 57–63. [Google Scholar] [CrossRef]
- Palmatier, M.I.; Liu, X.; Donny, E.C.; Caggiula, A.R.; Sved, A.F. Metabotropic glutamate 5 receptor (mGluR5) antagonists decrease nicotine seeking, but do not affect the reinforcement enhancing effects of nicotine. Neuropsychopharmacology 2008, 33, 2139–2147. [Google Scholar] [CrossRef]
- Kwon, D.K.; Kwatra, M.; Wang, J.; Ko, H.S. Levodopa-Induced Dyskinesia in Parkinson’s Disease: Pathogenesis and Emerging Treatment Strategies. Cells 2022, 11, 3736. [Google Scholar] [CrossRef]
- Meloni, M.; Puligheddu, M.; Sanna, F.; Cannas, A.; Farris, R.; Tronci, E.; Figorilli, M.; Defazio, G.; Carta, M. Efficacy and safety of 5-Hydroxytryptophan on levodopa-induced motor complications in Parkinson’s disease: A preliminary finding. J. Neurol. Sci. 2020, 415, 116869. [Google Scholar] [CrossRef]
- Cortes-Altamirano, J.L.; Reyes-Long, S.; Bandala, C.; Morraz-Varela, A.; Bonilla-Jaime, H.; Alfaro-Rodriguez, A. Neuropathic Pain in Parkinson’s Disease. Neurol. India 2022, 70, 1879–1886. [Google Scholar] [CrossRef]
- Li, C.J.; Zhang, L.G.; Liu, L.B.; An, M.Q.; Dong, L.G.; Gu, H.Y.; Dai, Y.P.; Wang, F.; Mao, C.J.; Liu, C.F. Inhibition of Spinal 5-HT3 Receptor and Spinal Dorsal Horn Neuronal Excitability Alleviates Hyperalgesia in a Rat Model of Parkinson’s Disease. Mol. Neurobiol. 2022, 59, 7253–7264. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Yao, X.X.; Gao, S.H.; Li, R.; Li, B.J.; Yang, W.; Cui, R.J. Role of 5-HT receptors in neuropathic pain: Potential therapeutic implications. Pharmacol. Res. 2020, 159, 104949. [Google Scholar] [CrossRef] [PubMed]
- Dentel, C.; Palamiuc, L.; Henriques, A.; Lannes, B.; Spreux-Varoquaux, O.; Gutknecht, L.; René, F.; Echaniz-Laguna, A.; Gonzalez de Aguilar, J.L.; Lesch, K.P.; et al. Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: A link to spasticity. Brain 2013, 136, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, L.; Spreux-Varoquaux, O.; Bensimon, G.; Jullien, P.; Lacomblez, L.; Salachas, F.; Bruneteau, G.; Pradat, P.F.; Loeffler, J.P.; Meininger, V. Platelet serotonin level predicts survival in amyotrophic lateral sclerosis. PLoS ONE 2010, 5, e13346. [Google Scholar] [CrossRef]
- Arnoux, A.; Ayme-Dietrich, E.; Dieterle, S.; Goy, M.A.; Schann, S.; Frauli, M.; Monassier, L.; Dupuis, L. Evaluation of a 5-HT(2B) receptor agonist in a murine model of amyotrophic lateral sclerosis. Sci. Rep. 2021, 11, 23582. [Google Scholar] [CrossRef]
- El Oussini, H.; Bayer, H.; Scekic-Zahirovic, J.; Vercruysse, P.; Sinniger, J.; Dirrig-Grosch, S.; Dieterlé, S.; Echaniz-Laguna, A.; Larmet, Y.; Müller, K.; et al. Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathol. 2016, 131, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Roppongi, T.; Togo, T.; Nakamura, S.; Asami, T.; Yoshimi, A.; Shiozaki, K.; Kato, D.; Kawanishi, C.; Hirayasu, Y. Perospirone in treatment of Huntington’s disease: A first case report. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Sviridova, A.; Rogovskii, V.; Kudrin, V.; Pashenkov, M.; Boyko, A.; Melnikov, M. The role of 5-HT(2B)-receptors in fluoxetine-mediated modulation of Th17- and Th1-cells in multiple sclerosis. J. Neuroimmunol. 2021, 356, 577608. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, F.; Guillard, C.; Mollet, L.; Auzou, P.; Gosset, D.; Madouri, F.; Valéry, A.; Menuet, A.; Ozsancak, C.; Pallix-Guyot, M.; et al. T Lymphocyte Serotonin 5-HT(7) Receptor Is Dysregulated in Natalizumab-Treated Multiple Sclerosis Patients. Biomedicines 2022, 10, 2418. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negoiţă, A.-I.; Amuzescu, B.; Mihăilescu, D.F.; Bordea, C. The Serotonergic System and Its Role in Thermoregulation. Physiologia 2025, 5, 37. https://doi.org/10.3390/physiologia5040037
Negoiţă A-I, Amuzescu B, Mihăilescu DF, Bordea C. The Serotonergic System and Its Role in Thermoregulation. Physiologia. 2025; 5(4):37. https://doi.org/10.3390/physiologia5040037
Chicago/Turabian StyleNegoiţă, Andrei-Ionuţ, Bogdan Amuzescu, Dan Florin Mihăilescu, and Cristina Bordea. 2025. "The Serotonergic System and Its Role in Thermoregulation" Physiologia 5, no. 4: 37. https://doi.org/10.3390/physiologia5040037
APA StyleNegoiţă, A.-I., Amuzescu, B., Mihăilescu, D. F., & Bordea, C. (2025). The Serotonergic System and Its Role in Thermoregulation. Physiologia, 5(4), 37. https://doi.org/10.3390/physiologia5040037