Exploring Olive Pit Powder as a Filler for Enhanced Thermal Insulation in Epoxy Mortars to Increase Sustainability in Building Construction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fillers
2.2. Epoxy Resin, Hardener, and Reactive Diluent
2.3. Mix Proportions
2.4. Specimen Preparation
2.5. Characterization of OPP
2.5.1. Proximate Composition
2.5.2. Particle Size Distribution
2.5.3. SEM
2.5.4. TG-MS-EGA
2.6. Properties of the Epoxy Mortars
2.6.1. Flexural and compressive strength
2.6.2. Thermal Conductivity
3. Results and Discussion
3.1. Olive Pit Powder
3.1.1. Proximate Composition of Olive Pit Powder
3.1.2. Particle Size Distribution
3.1.3. SEM Analysis
3.1.4. TG-MS-EGA
3.2. Epoxy Resin Mortar
3.2.1. SEM Analysis
3.2.2. Density
3.2.3. Flexural and Compressive Strengths
3.2.4. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prolongo, S.G.; Del Rosario, G.; Ureña, A. Comparative Study on the Adhesive Properties of Different Epoxy Resins. Int. J. Adhes. Adhes. 2006, 26, 125–132. [Google Scholar] [CrossRef]
- Shamsuddoha, M.; Islam, M.M.; Aravinthan, T.; Manalo, A.; Lau, K. Characterisation of Mechanical and Thermal Properties of Epoxy Grouts for Composite Repair of Steel Pipelines. Mater. Des. 1980-2015 2013, 52, 315–327. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, W.; Zhang, J.; Zhou, J. Epoxy-Based Grouting Materials with Super-Low Viscosities and Improved Toughness. Constr. Build. Mater. 2021, 267, 121104. [Google Scholar] [CrossRef]
- Zhou, Q.; Hao, J.P.; Lv, P.; Men, J.J. Study on a New Adhesive of Concrete Cracks Repairing. Adv. Mater. Res. 2010, 168–170, 1308–1312. [Google Scholar]
- Anagnostopoulos, C.A. Laboratory Study of an Injected Granular Soil with Polymer Grouts. Tunn. Undergr. Space Technol. 2005, 20, 525–533. [Google Scholar] [CrossRef]
- Yemam, D.M.; Kim, B.-J.; Moon, J.-Y.; Yi, C. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler. Materials 2017, 10, 246. [Google Scholar] [CrossRef]
- Lakhiar, M.T.; Bai, Y.; Wong, L.S.; Paul, S.C.; Anggraini, V.; Kong, S.Y. Mechanical and Durability Properties of Epoxy Mortar Incorporating Coal Bottom Ash as Filler. Constr. Build. Mater. 2022, 315, 125677. [Google Scholar] [CrossRef]
- Dębska, B.; Lichołai, L. The Selected Mechanical Properties of Epoxy Mortar Containing PET Waste. Constr. Build. Mater. 2015, 94, 579–588. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Shasavandi, A.; Jalali, S. Eco-Efficient Concrete Using Industrial Wastes: A Review. Mater. Sci. Forum 2012, 730–732, 581–586. [Google Scholar]
- Zhang, S.; Shinwari, R.; Zhao, S.; Dagestani, A.A. Energy Transition, Geopolitical Risk, and Natural Resources Extraction: A Novel Perspective of Energy Transition and Resources Extraction. Resour. Policy 2023, 83, 103608. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Yu, T.; Zhang, X.; Liu, L.; Zhang, P. Resource Extraction, Environmental Pollution and Economic Development: Evidence from Prefecture-Level Cities in China. Resour. Policy 2021, 74, 102330. [Google Scholar] [CrossRef]
- Bărbuţă, M.; Harja, M.; Baran, I. Comparison of Mechanical Properties for Polymer Concrete with Different Types of Filler. J. Mater. Civ. Eng. 2009, 22, 696–701. [Google Scholar] [CrossRef]
- Reis, J.M.L. Fracture and Flexural Assessment of Red Mud in Epoxy Polymer Mortars. Mater. Struct. 2015, 48, 3929–3936. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, H.; Singh, S. Performance Evaluation-PET Resin Composite Composed of Red Mud, Fly Ash and Silica Fume. Constr. Build. Mater. 2019, 214, 527–538. [Google Scholar] [CrossRef]
- Onaizi, A.M.; Tang, W.; Amran, M.; Liu, Y.; Sajjad, U.; Alhassan, M. Towards Increased Adoption of Furnace Bottom Ash as Sustainable Building Materials: Characterization, Standardization, and Applications. J. Build. Eng. 2024, 82, 108274. [Google Scholar] [CrossRef]
- Lokuge, W.; Aravinthan, T. Effect of Fly Ash on the Behaviour of Polymer Concrete with Different Types of Resin. Mater. Des. 2013, 51, 175–181. [Google Scholar] [CrossRef]
- Yeon, J. Deformability of Bisphenol A-Type Epoxy Resin-Based Polymer Concrete with Different Hardeners and Fillers. Appl. Sci. 2020, 10, 1336. [Google Scholar] [CrossRef]
- Khalid, N.H.A.; Hussin, M.W.; Mirza, J.; Ariffin, N.F.; Ismail, M.A.; Lee, H.-S.; Mohamed, A.; Jaya, R.P. Palm Oil Fuel Ash as Potential Green Micro-Filler in Polymer Concrete. Constr. Build. Mater. 2016, 102, 950–960. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Bertacchini, L.; Marchetti, A.; Mariani, M.; Pastorelli, S.; Silvestri, M.; Tassi, L. Rosaceae Nut-Shells as Sustainable Aggregate for Potential Use in Non-Structural Lightweight Concrete. Waste 2023, 1, 549–568. [Google Scholar] [CrossRef]
- Wu, F.; Yu, Q.; Liu, C. Durability of Thermal Insulating Bio-Based Lightweight Concrete: Understanding of Heat Treatment on Bio-Aggregates. Constr. Build. Mater. 2021, 269, 121800. [Google Scholar] [CrossRef]
- Qiao, Y.; Li, Q.; Li, Q.; Yang, K.; Bai, C.; Zhang, L.; Yao, Z.; Wang, P.; Zheng, T.; Zhang, X.; et al. Improving Thermal Insulation Properties of Lightweight Epoxy Resin Matrix Composites with Millimeter-Sized Hollow Glass Microspheres/Epoxy Hollow Spheres. Energy Build. 2022, 277, 112546. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Rismanchi, B.; Ng, H.M.; Hasan, M.H.; Metselaar, H.S.C.; Muraza, O.; Aditiya, H.B. A Review on Insulation Materials for Energy Conservation in Buildings. Renew. Sustain. Energy Rev. 2017, 73, 1352–1365. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative Analysis of Building Insulation Material Properties and Performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Jelle, B.P. Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities. Energy Build. 2011, 43, 2549–2563. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Lin, K.; Di, H.; Yang, R. Modeling and Simulation on the Thermal Performance of Shape-Stabilized Phase Change Material Floor Used in Passive Solar Buildings. Energy Build. 2005, 37, 1084–1091. [Google Scholar] [CrossRef]
- Hammid, A.T.; Jebur, Y.M.; Lafta, H.A.; Parwata, I.W.; Patra, I.; Arenas, L.A.B. The Arrangement of Phase Change Materials inside a Building Wall and Its Energy Performance. Sustain. Energy Technol. Assess. 2023, 57, 103158. [Google Scholar] [CrossRef]
- Bergmann Becker, P.F.; Effting, C.; Schackow, A. Lightweight Thermal Insulating Coating Mortars with Aerogel, EPS, and Vermiculite for Energy Conservation in Buildings. Cem. Concr. Compos. 2022, 125, 104283. [Google Scholar] [CrossRef]
- EN 13888-1:2022; Grouts for Ceramic Tiles—Requirements Evaluation of Conformity, Classification and Designation. European Committee for Standardization: Brussels, Belgium, 2022.
- ISO 13007; Ceramic Tiles, Grouts and Adhesives; Part 3: Terms, Definitions and Specifications for Grouts. International Organization for Standardization: Geneva, Switzerland, 2010.
- ASTM D5334-08; Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. ASTM International: West Conshohocken, PA, USA, 2014.
- D’Eusanio, V.; Morelli, L.; Marchetti, A.; Tassi, L. Aroma Profile of Grapevine Chips after Roasting: A Comparative Study of Sorbara and Spergola Cultivars for More Sustainable Oenological Production. Separations 2023, 10, 532. [Google Scholar] [CrossRef]
- Sonwani, E.; Bansal, U.; Alroobaea, R.; Baqasah, A.M.; Hedabou, M. An Artificial Intelligence Approach Toward Food Spoilage Detection and Analysis. Front. Public Health 2022, 9, 816226. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Malferrari, D.; Marchetti, A.; Roncaglia, F.; Tassi, L. Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement. Life 2023, 13, 326. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Genua, F.; Marchetti, A.; Morelli, L.; Tassi, L. Exploring the Mineral Composition of Grapevine Canes for Wood Chip Applications in Alcoholic Beverage Production to Enhance Viticulture Sustainability. Beverages 2023, 9, 60. [Google Scholar] [CrossRef]
- Abdullah, S.; Suzana, Y.; Ahmad, M.; Ramli, A.; Ismail, L. Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production. Int. J. Chem. Biol. Eng. 2010, 3, 750–754. [Google Scholar]
- Şen, D.; Gökmen, V. Kinetic Modeling of Maillard and Caramelization Reactions in Sucrose-Rich and Low Moisture Foods Applied for Roasted Nuts and Seeds. Food Chem. 2022, 395, 133583. [Google Scholar] [CrossRef] [PubMed]
- Weiss, I.M.; Muth, C.; Drumm, R.; Kirchner, H.O.K. Thermal Decomposition of the Amino Acids Glycine, Cysteine, Aspartic Acid, Asparagine, Glutamic Acid, Glutamine, Arginine and Histidine. BMC Biophys. 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.K.; Gu, S. The Mechanism for Thermal Decomposition of Cellulose and Its Main Products. Bioresour. Technol. 2009, 100, 6496–6504. [Google Scholar] [CrossRef] [PubMed]
- González Martínez, M.; Anca Couce, A.; Dupont, C.; da Silva Perez, D.; Thiéry, S.; Meyer, X.; Gourdon, C. Torrefaction of Cellulose, Hemicelluloses and Lignin Extracted from Woody and Agricultural Biomass in TGA-GC/MS: Linking Production Profiles of Volatile Species to Biomass Type and Macromolecular Composition. Ind. Crops Prod. 2022, 176, 114350. [Google Scholar] [CrossRef]
- Shapiro, A.J.; O’Dea, R.M.; Epps, T.H.I. Thermogravimetric Analysis as a High-Throughput Lignocellulosic Biomass Characterization Method. ACS Sustain. Chem. Eng. 2023, 11, 17216–17223. [Google Scholar] [CrossRef]
- Song, C.; Hu, H.; Zhu, S.; Wang, G.; Chen, G. Nonisothermal Catalytic Liquefaction of Corn Stalk in Subcritical and Supercritical Water. Energy Fuels 2004, 18, 90–96. [Google Scholar] [CrossRef]
- Carrier, M.; Loppinet-Serani, A.; Denux, D.; Lasnier, J.-M.; Ham-Pichavant, F.; Cansell, F.; Aymonier, C. Thermogravimetric Analysis as a New Method to Determine the Lignocellulosic Composition of Biomass. Biomass Bioenergy 2011, 35, 298–307. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, E.; Chen, A. Volatile Production from Pyrolysis of Cellulose, Hemicellulose and Lignin. J. Energy Inst. 2017, 90, 902–913. [Google Scholar] [CrossRef]
- Yeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. Comparative Studies on the Pyrolysis of Cellulose, Hemicellulose, and Lignin Based on Combined Kinetics. J. Energy Inst. 2019, 92, 27–37. [Google Scholar] [CrossRef]
- Ozeren Ozgul, E.; Ozkul, M.H. Effects of Epoxy, Hardener, and Diluent Types on the Hardened State Properties of Epoxy Mortars. Constr. Build. Mater. 2018, 187, 360–370. [Google Scholar] [CrossRef]
- EN 998-1; Specification for Mortar for Masonry—Part 1: Rendering and Plastering Mortar. European Committee for Standardization: Brussels, Belgium, 2018.
- Parracha, J.L.; Santos, A.R.; Lazera, R.; Flores-Colen, I.; Gomes, M.G.; Rodrigues, A.M. Performance of Lightweight Thermal Insulating Mortars Applied on Brick Substrate Specimens and Prototype Wall. Constr. Build. Mater. 2023, 364, 129954. [Google Scholar] [CrossRef]
- Soares, A.; De Fátima Júlio, M.; Flores-Colen, I.; Ilharco, L.M.; Brito, J.D. EN 998-1 Performance Requirements for Thermal Aerogel-Based Renders. Constr. Build. Mater. 2018, 179, 453–460. [Google Scholar] [CrossRef]
Density (g/mL) | Viscosity (cp.) | Epoxy Equivalent Weight (g/val) | Molecular Weight (g/mol) | |
---|---|---|---|---|
DGEBA | 1.16 | 16,600 | 195.1 | - |
TMDA | 0.88 | 6 | - | 158.4 |
RDMF | 0.87 | 10 | 289.5 | - |
Grouts | Epoxy Resin % | Hardener % | Reactive Diluent % | OPP % | Quartz Powder % |
---|---|---|---|---|---|
A | 18.5 | 7.4 | 10.4 | 63.7 | 0 |
B | 18.7 | 7.5 | 9.2 | 48.4 | 16.2 |
C | 19.0 | 7.6 | 8.0 | 32.7 | 32.7 |
D | 19.2 | 7.7 | 6.8 | 16.6 | 49.7 |
E | 19.5 | 7.8 | 5.5 | 0 | 67.2 |
Moisture (%) | 3.4 ± 0.6 |
Cellulose (%) | 36.0 ± 0.7 |
Hemicelluloses (%) | 26.3 ± 0.6 |
Lignin (%) | 24.6 ± 0.9 |
Protein (%) | 2.3 ± 0.5 |
Fat (%) | 5.0 ± 0.9 |
Ash (%) | 2.4 ± 0.7 |
C (%) | 51.7 ± 0.4 |
O (%) | 41.0 ± 0.5 |
N (%) | 0.37 ± 0.06 |
H (%) | 7.12 ± 0.19 |
S (%) | <0.1 |
Bulk density (g/cm3) | 0.508 ± 0.008 |
Region | Thermal Window | Thermally Activated Processes | Mass Loss (−Δm %) |
---|---|---|---|
I | Up to ~120 °C | Removal of moisture and VOCs. | −3.7 |
II | 120–210 | Removal of bound water, NH3 from free amino acids and protein denaturation, low-boiling VOCs, and loss of CO and CO2. | −0.3 |
III | 210–415 | Removal of reaction water, high-boiling VOCs and SVOCs, decarboxylation of acids with CO2 loss, and fat degradation. Main pyrolysis window, structural decay reactions of proteins, hemicellulose, and cellulose. | −67.5 |
IV | 415–700 | Removal of reaction water, CO2, and CO from slow pyrolysis of lignin fraction, vitrification of sample, volatilization of carbon microparticles, and thermal decomposition of biochar. | −8.5 |
V | 700–800 | Volatilization of carbon residues, probably C20–C40 fragments, in the presence of mineral ash. | −0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Eusanio, V.; Marchetti, A.; Pastorelli, S.; Silvestri, M.; Bertacchini, L.; Tassi, L. Exploring Olive Pit Powder as a Filler for Enhanced Thermal Insulation in Epoxy Mortars to Increase Sustainability in Building Construction. AppliedChem 2024, 4, 192-211. https://doi.org/10.3390/appliedchem4020013
D’Eusanio V, Marchetti A, Pastorelli S, Silvestri M, Bertacchini L, Tassi L. Exploring Olive Pit Powder as a Filler for Enhanced Thermal Insulation in Epoxy Mortars to Increase Sustainability in Building Construction. AppliedChem. 2024; 4(2):192-211. https://doi.org/10.3390/appliedchem4020013
Chicago/Turabian StyleD’Eusanio, Veronica, Andrea Marchetti, Stefano Pastorelli, Michele Silvestri, Lucia Bertacchini, and Lorenzo Tassi. 2024. "Exploring Olive Pit Powder as a Filler for Enhanced Thermal Insulation in Epoxy Mortars to Increase Sustainability in Building Construction" AppliedChem 4, no. 2: 192-211. https://doi.org/10.3390/appliedchem4020013
APA StyleD’Eusanio, V., Marchetti, A., Pastorelli, S., Silvestri, M., Bertacchini, L., & Tassi, L. (2024). Exploring Olive Pit Powder as a Filler for Enhanced Thermal Insulation in Epoxy Mortars to Increase Sustainability in Building Construction. AppliedChem, 4(2), 192-211. https://doi.org/10.3390/appliedchem4020013