Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Juice Obtention
2.3. Cryoconcentration
2.4. Determination of Process Parameters of Cryoconcentration by Block Assisted by Centrifugation
2.5. Physicochemical Parameters
2.5.1. Titratable Acidity
2.5.2. pH
2.5.3. °Bx
2.5.4. Color
2.6. Reducing Sugars
2.7. Total Phenolic Content (TPC)
2.8. Total Flavonoids Content (TFC)
2.9. Betalains
2.10. 2,2′-Azinobis-3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Assay
2.11. Ferric Reducing Antioxidant Power (FRAP) Assay
2.12. Oxygen Radical Absorbance Capacity (ORAC)
2.13. Rheology
2.14. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chávez-Moreno, C.K.; Tecante, A.; Casas, A. The Opuntia (Cactaceae) and Dactylopius (Hemiptera: Dactylopiidae) in Mexico: A historical perspective of use, interaction and distribution. Biodivers. Conserv. 2009, 18, 3337–3341. [Google Scholar] [CrossRef]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Moßhammer, M.R.; Stintzing, F.C.; Carle, R. Cactus pear fruits (Opuntia spp.): A review of processing technologies and current uses. J. Prof. Assoc. Cactus Dev. 2006, 8, 1–25. [Google Scholar]
- Barba, F.J.; Putnik, P.; Kovačević, D.B.; Poojary, M.M.; Roohinejad, S.; Lorenzo, J.M.; Koubaa, M. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci. Technol. 2017, 67, 260–270. [Google Scholar] [CrossRef]
- Petzold, G.; Moreno, J.; Lastra, P.; Rojas, K.; Orellana, P. Block freeze concentration assisted by centrifugation applied to blueberry and pineapple juices. Innov. Food Sci. Emerg. Technol. 2015, 30, 192–197. [Google Scholar] [CrossRef]
- Márquez-Montes, C.A.; Gallegos-Infante, J.A.; Petzold-Maldonado, G.R.; Orellana-Palma, P.A.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Ochoa-Martínez, L.A. Centrifugal Cryoconcentration of Prickly Pear Juice: Effect on the Polyphenolic Content and their Antioxidant Activity. Lett. Appl. Nanobiosci. 2022, 12, 57. [Google Scholar] [CrossRef]
- Kataria, T.K.; Olvera-Cervantes, J.L.; Corona-Chávez, A.; Rojas-Laguna, R.; Sosa-Morales, M.E. Dielectric properties of guava, mamey sapote, prickly pears, and Nopal in the microwave range. Int. J. Food Prop. 2017, 20, 2944–2953. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Petzold, G.; Pierre, L.; Pensaben, J.M. Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration. Food Chem. Toxicol. 2017, 109, 1093–1102. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana. NOM-F-317-S-Determinación de pH en Alimentos. Available online: https://dof.gob.mx/nota_detalle.php?codigo=4704689&fecha=23/05/1978#gsc.tab=0 (accessed on 10 November 2024).
- NMX-F-103-Alimentos. Frutas y Derivados. Determinación de Grados Brix. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5095187&fecha=19/06/2009#gsc.tab=0 (accessed on 10 November 2024).
- Ferreira, R.M.; Amaral, R.A.; Silva, A.M.; Cardoso, S.M.; Saraiva, J.A. Effect of high-pressure and thermal pasteurization on microbial and physico-chemical properties of Opuntia ficus-indica juices. Beverages 2022, 8, 84. [Google Scholar] [CrossRef]
- Agbor, G.A.; Vinson, J.A.; Donnelly, P.E. Folin-Ciocalteau reagent for polyphenolic assay. Int. J. Food Sci. Nutr. Diet. 2014, 3, 147–156. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Schieber, A.; Carle, R. Evaluation of colour properties and chemical quality parameters of cactus juices. Eur. Food Res. Technol. 2003, 216, 303–311. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Swada, J.G.; Keeley, C.J.; Ghane, M.A.; Engeseth, N.J. Relationship between pulp structure breakdown and nutritional value of papaya (Carica papaya) and strawberry (Fragaria x ananassa) nectars using alternative thermal and non-thermal processing techniques. J. Sci. Food Agric. 2016, 96, 2514–2523. [Google Scholar] [CrossRef] [PubMed]
- Medina-Torres, L.; Calderas, F.; Minjares, R.; Femenia, A.; Sánchez-Olivares, G.; Gónzalez-Laredo, F.R.; Santiago-Adame, R.; Ramirez-Nuñez, D.M.; Rodríguez-Ramírez, J.; Manero, O. Structure preservation of Aloe vera (barbadensis Miller) mucilage in a spray drying process. LWT-Food Sci. Technol. 2016, 66, 93–100. [Google Scholar] [CrossRef]
- Aider, M.; de Halleux, D. Cryoconcentration technology in the bio-food industry: Principles and applications. LWT-Food Sci. Technol. 2009, 42, 679–685. [Google Scholar] [CrossRef]
- Petzold, G.; Aguilera, J.M. Ice morphology: Fundamentals and technological applications in foods. Food Biophys. 2009, 4, 378–396. [Google Scholar] [CrossRef]
- Rezzadori, K.; Arend, G.D.; Jaster, H.; Díaz-de-Cerio, E.; Verardo, V.; Segura-Carretero, A.; Petrus, J.C.C. Bioavailability of bioactive compounds of guava leaves (Psidium Guajava) aqueous extract concentrated by gravitational and microwave-assisted cryoconcentration. J. Food Process. Preserv. 2022, 46, e16241. [Google Scholar] [CrossRef]
- Meraz-Maldonado, N.; Valle-Guadarrama, S.; Hernández-Morales, J.; Anaya-Rosales, S.; Rodríguez-Maciel, J.C.; Leyva-Ruelas, G. Quality of three sizes of prickly pear cactus stems (Opuntia ficus indica L. Atlixco). Afr. J. Agric. Res. 2012, 7, 4512–4520. [Google Scholar] [CrossRef]
- Orellana-Palma, P.; Zúñiga, R.N.; Takhar, P.S.; Gianelli, M.P.; Petzold, G. Effects of centrifugal block freeze crystallization on quality properties in pineapple juice. Chem. Eng. Technol. 2020, 43, 355–364. [Google Scholar] [CrossRef]
- Aparicio-Fernández, X.; Loza-Cornejo, S.; Torres Bernal, M.G.; Velázquez Placencia, N.J.; Arreola-Nava, H.J. Características físicoquímicas de frutos de variedades silvestres de Opuntia de dos regiones semiáridas de Jalisco, México. Polibotánica 2017, 43, 219–244. [Google Scholar] [CrossRef]
- Méndez, L.P.; Flores, F.T.; Martín, J.D.; Rodríguez EM, R.; Romero, C.D. Physicochemical characterization of cactus pads from Opuntia dillenii and Opuntia ficus indica. Food Chem. 2015, 188, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Monroy-Gutiérrez, T.; Martínez-Damián, M.; Barrientos-Priego, A.F.; Gallegos-Vázquez, C.; Rodríguez-Pérez, J.E.; Colinas-León, M.; Teresa, B. Evaluación de algunas características físicas y químicas de frutos de xocotuna, tuna y xoconostle en poscosecha. Rev. Mex. Cienc. Agrícolas 2017, 8, 189–197. [Google Scholar]
- Cruz-Cansino, N.S.; Ramírez-Moreno, E.; León-Rivera, J.E.; Delgado-Olivares, L.; Alanís-García, E.; Ariza-Ortega, J.A.; Jaramillo-Bustos, D.P. Shelf life, physicochemical, microbiological and antioxidant properties of purple cactus pear (Opuntia ficus indica) juice after thermoultrasound treatment. Ultrason. Sonochem. 2015, 27, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Santoscoy, R.A.; Gutierrez-Uribe, J.A.; Serna-Saldívar, S.O. Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum. Nutr. 2009, 64, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I. Stabilization of betalains: A review. Food Chem. 2016, 197, 1280–1285. [Google Scholar] [CrossRef]
- Zenteno-Ramirez, G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Monreal-Montes, M.; García, J.M.; Serratosa, M.P.; Rendon-Huerta, J.A. Juices of prickly pear fruits (Opuntia spp.) as functional foods. Ital. J. Food Sci. 2018, 30, 614–627. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A. Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 2006, 96, 131–136. [Google Scholar] [CrossRef]
- Kugler, F.; Stintzing, F.C.; Carle, R. Evaluation of the antioxidant capacity of betalainic fruits and vegetables. J. Appl. Bot. Food Qual. 2012, 81, 69–76. [Google Scholar]
- Boutakiout, A.; Elothmani, D.; Hanine, H.; Mahrouz, M.; Le Meurlay, D.; Hmid, I.; Ennahli, S. Effects of different harvesting seasons on antioxidant activity and phenolic content of prickly pear cladode juice. J. Saudi Soc. Agric. Sci. 2018, 17, 471–480. [Google Scholar] [CrossRef]
- Alves, F.A.L.; Andrade, A.P.D.; Bruno, R.D.L.A.; Silva, M.G.D.V.; Souza, M.D.F.V.D.; Santos, D.C.D. Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci. Technol. 2017, 37, 536–543. [Google Scholar] [CrossRef]
Sample | Solute Yield (Y), (Kg Solute × kg Solute Initial−1) | Efficiency (η), (%) |
---|---|---|
Cryoconcentrated green prickly pear juice | 0.18 ± 0.02 a | 51.0 ± 7.0 a |
Cryoconcentrated red prickly pear juice | 0.42 ± 0.03 b | 55.0 ± 7.0 a |
Green Uncryoconcentrated | Green Cryoconcentrated | Red Uncryoconcentrated | Red Cryoconcentrated | |
---|---|---|---|---|
Titritable acidity | 0.05 ± 0.01 b | 0.07 ± 0.01 c | 0.03 ± 0.01 a | 0.04 ± 0.03 b |
pH | 5.40 ± 0.01 b | 5.1 ± 0.04 a | 5.00 ± 0.04 a | 4.90 ± 0.04 a |
°Bx | 14.9 ± 0.20 a | 23.4 ± 0.50 c | 13.9 ± 0.10 b | 23.0 ± 1.10 c |
Reducing sugars (mg glucose × L−1) | 4166 ± 183 a | 18,195 ± 353 c | 10,135 ± 147 b | 21,217 ± 350 d |
Total phenolic content (TPC) mg GAE × L−1 | 764 ± 46 a | 1426 ± 136 b | 737 ± 26 a | 1843 ± 153 b |
Total flavonoid content mg CE × L−1 (TFC) | 230 ± 27 a | 437 ± 16 b | 383 ± 34 b | 759 ± 17 c |
Betanin mg BE × L−1 | 3.63 ± 0.30 a | 3.43 ± 0.10 a | 53 ± 1 b | 802 ± 19 c |
Indicaxanthin mg IE × L−1 | 3.40 ± 0.30 a | 3.30 ± 0.10 a | 36 ± 1 b | 454 ± 19 c |
Sample Juice (Opuntia ficus-indica) | ABTS (µM Trolox × L−1) | FRAP (µM Trolox × L−1) | ORAC (µM Trolox × L−1) |
---|---|---|---|
Green uncryoconcentrated | 5587 ± 348 a | 5963 ± 588 a | 18,437 ± 345 a |
Red uncryoconcentrated | 6657 ± 415 a | 7963 ± 696 b | 19,818 ± 21 b |
Green cryoconcentrated | 4817 ± 433 a | 7544 ± 768 b | 43,265 ± 4299 c |
Red cryoconcentrated | 11,357 ± 860 b | 13,655 ± 1074 c | 49,099 ± 1147 c |
Variable | TPC | TFC | Betanin | Indicaxanthin | ABTS | FRAP | ORAC |
---|---|---|---|---|---|---|---|
TPC | 1.000 | ||||||
TFC | −0.643 | 1.000 | |||||
Betanin | 0.405 | 0.357 | 1.000 | ||||
Indicaxanthin | 0.476 | 0.262 | 0.976 * | 1.000 | |||
ABTS | 0.405 | 0.357 | 0.637 | 0.976 * | 1.000 | ||
FRAP | 0.666 | −0.071 | 0.833 * | 0.881 * | 0.833 * | 1.000 | |
ORAC | 0.881 * | −0.524 | 0.548 | 0.643 | 0.548 | 0.881 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Montes, C.A.; Gallegos-Infante, J.A.; Petzold-Maldonado, G.R.; Orellana-Palma, P.A.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Moreno-Jiménez, M.R. Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice. AppliedChem 2025, 5, 4. https://doi.org/10.3390/appliedchem5010004
Márquez-Montes CA, Gallegos-Infante JA, Petzold-Maldonado GR, Orellana-Palma PA, González-Laredo RF, Rocha-Guzmán NE, Moreno-Jiménez MR. Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice. AppliedChem. 2025; 5(1):4. https://doi.org/10.3390/appliedchem5010004
Chicago/Turabian StyleMárquez-Montes, Carlos Alberto, José Alberto Gallegos-Infante, Guillermo Rodrigo Petzold-Maldonado, Patricio Antonio Orellana-Palma, Rubén Francisco González-Laredo, Nuria Elizabeth Rocha-Guzmán, and Martha Rocío Moreno-Jiménez. 2025. "Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice" AppliedChem 5, no. 1: 4. https://doi.org/10.3390/appliedchem5010004
APA StyleMárquez-Montes, C. A., Gallegos-Infante, J. A., Petzold-Maldonado, G. R., Orellana-Palma, P. A., González-Laredo, R. F., Rocha-Guzmán, N. E., & Moreno-Jiménez, M. R. (2025). Improved Antioxidant Capacity by Block Cryoconcentration of Opuntia ficus-indica L. Mill (Green and Red) Juice. AppliedChem, 5(1), 4. https://doi.org/10.3390/appliedchem5010004