Cathemerality and Insensitivity to Predatory Fish Cues in Pond Isopods (Caecidotea communis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Collection and Cue Preparation
2.2. Study Design
2.3. Evaluating the Efficacy of Our Experimental Design
2.4. Data Analysis
3. Results
4. Discussion
4.1. Individuals of Caecidotea Communis Display Cathemerality
4.2. Circadian Rhythms and Inducible Alterations in Movement Rate Might Not Be Adaptive
4.3. Our Experimental Design Can Induce Behavioral Responses
4.4. Other Responses May Be More Adaptive
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lafuente, E.; Lürig, M.D.; Rövekamp, M.; Matthews, B.; Buser, C.; Vorburger, C.; Räsänen, K. Building on 150 years of knowledge: The freshwater isopod Asellus aquaticus as an integrative eco-evolutionary model system. Front. Ecol. Evol. 2021, 9, 748212. [Google Scholar] [CrossRef]
- Vandekerkhove, J.; Namiotko, T.; Hallmann, E.; Martens, K. Predation by macroinvertebrates on Heterocypris incongruens (Ostracoda) in temporary ponds: Impacts and responses. Fundam. Appl. Limnol. 2012, 181, 39–47. [Google Scholar] [CrossRef]
- Saunders, B.D. Behavioral Response of the Amphipod Gammarus fasciatus and the Isopod Asellus communis to Fish (Lepomis macrochirus) and Dragonfly (Gomphidae) Predators. Master’s Thesis, The College of William and Mary, Williamsburg, VA, USA, 1981. [Google Scholar] [CrossRef]
- Bengtsson, G. Energetic costs of amino acids exudation in the interactions between the predator Gammarus pulex L. and the prey Asellus aquaticus L. J. Chem. Ecol. 1982, 8, 1271–1281. [Google Scholar] [CrossRef]
- Cushing, C.E.; Allan, J.D. Streams: Their Ecology and Life; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Williams, D.D.; Moore, K.A. The role of semiochemicals in benthic community relationships of the lotic amphipod Gammarus pseudolimnaeus: A laboratory analysis. Oikos 1985, 44, 280–286. [Google Scholar] [CrossRef]
- Wudkevich, K.; Wisenden, B.D.; Chivers, D.P.; Smith, R.J.F. Reactions of Gammarus lacustris to chemical stimuli from natural predators and injured conspecifics. J. Chem. Ecol. 1997, 23, 1163–1173. [Google Scholar] [CrossRef]
- Long, E.C.; Iyengar, E.V. Effects of chemical cues from two piscine predators, natal predator regime, and time since cue introduction, on the movements of aquatic isopods (Caecidotea communis). Hydrobiologia 2022, 849, 1–12. [Google Scholar] [CrossRef]
- Holomuzki, J.R.; Short, T.M. Ontogenetic shifts in habitat use and activity in a stream-dwelling isopod. Ecography 1990, 13, 300–307. [Google Scholar] [CrossRef]
- Warburg, M.R. Behavioral adaptations of terrestrial isopods. Am. Zool. 1968, 8, 545–559. [Google Scholar] [CrossRef]
- Hansson, L.-A.; Becares, E.; Fernández-Aláez, M.; Fernández-Aláez, C.; Kairesalo, T.; Miracle, M.R.; Romo, S.; Stephen, D.; Vakkilainen, K.; van de Bund, W.; et al. Relaxed circadian rhythm in zooplankton along a latitudinal gradient. Oikos 2007, 116, 585–591. [Google Scholar] [CrossRef]
- Kronfeld-Schor, N.; Dayan, T. Partitioning of time as an ecological resource. Ann. Rev. Ecol. Evol. Syst. 2003, 34, 153–181. [Google Scholar] [CrossRef]
- Zaret, T.M.; Suffern, J.S. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 1976, 21, 804–813. [Google Scholar] [CrossRef]
- Gergs, A.; Hoeltzenbein, N.I.; Ratte, H.T. Diurnal and nocturnal functional response of juvenile Notonecta maculata considered as a consequence of shifting predation behaviour. Behav. Process. 2010, 85, 151–156. [Google Scholar] [CrossRef]
- Bolton, D.; Mayer-Pinto, M.; Clark, G.F.; Dafforn, K.A.; Brassil, W.A.; Becker, A.; Johnston, E.L. Coastal urban lighting has ecological consequences for multiple trophic levels under the sea. Sci. Total Environ. 2017, 576, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yerushalmi, S.; Green, R.M. Evidence for the adaptive significance of circadian rhythms. Ecol. Lett. 2009, 12, 970–981. [Google Scholar] [CrossRef]
- Rubenstein, D.R.; Alcock, J. Animal Behavior, 11th ed.; Sinauer Associates: New York, NY, USA, 2019. [Google Scholar]
- Aréchiga, H.; Fernández-Quiróz, F.; Fernández de Miguel, F.; Rodríguez-Sosa, L. The circadian system of crustaceans. Chronobiol. Int. 1993, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Buskey, E.J. Factors affecting feeding selectivity of visual predators on the copepod Acartia tonsa: Locomotion, visibility and escape responses. Hydrobiologia 1994, 292/293, 447–453. [Google Scholar] [CrossRef]
- Ringelberg, J. Diel Vertical Migration of Zooplankton in Lakes and Oceans: Causal Explanations and Adaptive Significances; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Yokomizo, T.; Takahashi, Y. Plasticity of circadian and circatidal rhythms in activity and transcriptomic dynamics in a freshwater snail. Heredity 2024, 132, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.M.; Genco, M.C.; Marlow, E.D.; Benton, J.L.; Beltz, B.S.; Sandeman, D.C. Brain photoreceptor pathways contributing to circadian rhythmicity in crayfish. Chronobiol. Int. 2009, 26, 1136–1168. [Google Scholar] [CrossRef]
- Johnson, S.L.; Covich, A.P. The importance of night-time observations for determining habitat preferences of stream biota. Regul. River 2000, 16, 91–99. [Google Scholar] [CrossRef]
- Holt, C.S.; Waters, T.F. Effect of light intensity on the drift of stream invertebrates. Ecology 1967, 48, 225–234. [Google Scholar] [CrossRef]
- Moon, H.P. An investigation of the movements of fresh-water invertebrate faunas. J. Anim. Ecol. 1940, 9, 76–83. [Google Scholar] [CrossRef]
- Pennak, R.W. Fresh-Water Invertebrates of the United States, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1978. [Google Scholar]
- Wright, J.C.; Peña-Peralta, M. Diel variation in ammonia excretion, glutamine levels, and hydration status in two species of terrestrial isopods. J. Comp. Physiol. B 2005, 175, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Broly, P.; Deneubourg, J.-L. Behavioural contagion explains group cohesion in a social crustacean. PLoS Comput. Biol. 2015, 11, e1004290. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.T.F.; Larimer, J.L. Circadian wheel-running behavior in the isopod, Armadillidium vulgare. J. Exp. Zool. 1979, 209, 73–80. [Google Scholar] [CrossRef]
- Williams, J. The endogenous locomotor activity rhythm of four supralittoral peracarid crustaceans. J. Mar. Biolog. Assoc. UK 1983, 63, 481–492. [Google Scholar] [CrossRef]
- Quilter, C.G.; Lewis, R.D. Clock control of foraging in the isopod Scyphax ornatus Dana. N. Z. J. Zool. 1989, 16, 373–382. [Google Scholar] [CrossRef]
- Refinetti, R. Circadian rhythm of locomotor activity in the pill bug, Armadillidium vulgare (Isopoda). Crustaceana 2000, 73, 575–583. [Google Scholar] [CrossRef]
- Ammar, K.N.; Morgan, E. Preliminary observations on the natural variation in the endogenous rhythm of the desert isopod Hemilepistus reaumurii. Eur. J. Soil Biol. 2005, 41, 63–68. [Google Scholar] [CrossRef]
- Cheeseman, J.F.; Fewster, R.M.; Walker, M.M. Circadian and circatidal clocks control the mechanism of semilunar foraging behaviour. Sci. Rep. 2017, 7, 3780. [Google Scholar] [CrossRef]
- Duarte, C.; Quintanilla-Ahumada, D.; Anguita, C.; Manriquez, P.H.; Widdicombe, S.; Pulgar, J.; Silva-Rodriquez, E.A.; Miranda, C.; Manriquez, K.; Quijon, P.A. Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod. Environ. Pollut. 2019, 248, 565–573. [Google Scholar] [CrossRef]
- Armitage, K.B. Chromatophore behavior in the isopod Ligia occidentalis Dana, 1853. Crustaceana 1960, 1, 193–207. [Google Scholar] [CrossRef]
- Willmer, P.G.; Baylis, M.; Simpson, C.L. The roles of colour change and behaviour in the hygrothermal balance of a littoral isopod, Ligia oceanica. Oecologia 1989, 78, 349–356. [Google Scholar] [CrossRef]
- DeBoom, C.S.; Wahl, D.H. Piscivore enhancement effects on food webs depend on planktivore body size and species composition in replicated whole lake experiments. Hydrobiologia 2014, 736, 31–49. [Google Scholar] [CrossRef]
- Ferrari, M.C.O.; Messier, F.; Chivers, D.P. Can prey exhibit threat-sensitive generalization of predator recognition? Extending the predator recognition continuum hypothesis. Proc. Biol. Sci. 2008, 275, 1811–1816. [Google Scholar] [CrossRef]
- Brown, G.E.; Macnaughton, C.J.; Elvidge, C.K.; Ramnarine, I.; Godin, J.J. Provenance and threat-sensitive predator avoidance patterns in wild-caught Trinidadian guppies. Behav. Ecol. Sociobiol. 2009, 63, 699–706. [Google Scholar] [CrossRef]
- Anderson, N. Depressant effect of moonlight on activity of aquatic insects. Nature 1966, 209, 319–320. [Google Scholar] [CrossRef]
- Marshall, N.J.; Cronin, T.W.; Frank, T.M. Visual adaptations in crustaceans: Chromatic, developmental, and temporal aspects. In Sensory Processing in Aquatic Environments; Collin, S.P., Marshall, N.J., Eds.; Springer: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Frank, T.M.; Johnsen, S.; Cronin, T.W. Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans. J. Exp. Biol. 2012, 215, 3344–3353. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.R.; Peckarsky, B.L.; Taylor, B.W. Rapid size-specific changes in the drift of Baetis bicaudatus (Ephemeroptera) caused by alterations in fish odour concentration. Oecologia 1999, 118, 256–264. [Google Scholar] [CrossRef]
- Cordelières, F.P. Manual Tracking. 2005. Available online: https://imagej.nih.gov/ij/plugins/track/ManualTrackingplugin.pdf (accessed on 29 April 2020).
- Ferreira, T.; Rasband, W.S. ImageJ User Guide—IJ 1.46. 2010–2012. Available online: https://imagej.nih.gov// (accessed on 29 April 2020).
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Iyengar, E.V.; Hoffman, A.R.; Russell, J.C. Benthic pond macroinvertebrates coexist with nearby potentially predatory fish. Biol. Bull. 2024, 246, 11–21. [Google Scholar] [CrossRef]
- Short, T.M.; Holomuzki, J.R. Indirect effects of fish on foraging behaviour and leaf processing by the isopod Lirceus fontinalis. Freshw. Biol. 1992, 27, 91–97. [Google Scholar] [CrossRef]
- Tattersall, I. The concept of cathemerality: History and definition. Folia Primatol. 2006, 77, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Alanärä, A.; Brännäs, E. Diurnal and nocturnal feeding activity in Arctic char (Salvelinus alpinus) and rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 1997, 54, 2894–2900. [Google Scholar] [CrossRef]
- Metcalfe, N.B.; Steele, G.I. Changing nutritional status causes a shift in the balance of nocturnal to diurnal activity in European minnows. Funct. Ecol. 2001, 15, 304–309. [Google Scholar] [CrossRef]
- Fox, R.J.; Bellwood, D.R. Unconstrained by the clock? Plasticity of diel activity rhythm in a tropical reef fish, Siganus lineatus. Funct. Ecol. 2011, 25, 1096–1105. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Gaston, K.J. Cathemerality: A key temporal niche. Biol. Rev. Camb. Philos. Soc. 2024, 99, 329–347. [Google Scholar] [CrossRef]
- MNDNR: Minnesota Department of Natural Resources. How to Catch a Sunfish. 2024. Available online: https://www.dnr.state.mn.us/gofishing/how-catch-sunfish.html (accessed on 23 December 2024).
- Courtillet, A. Tailored Tackle: The Best Time to Fish for Bluegill and Sunfish. 2021. Available online: https://tailoredtackle.com/the-best-time-to-fish-for-bluegill/ (accessed on 23 December 2024).
- Colquhoun, I.C. Anti-predator strategies of cathemeral primates: Dealing with predators of the day and the night. In Primate Anti-Predator Strategies. Developments in Primatology: Progress and Prospects; Gursky, S.L., Nekaris, K.A.I., Eds.; Springer: Boston, MA, USA, 2007. [Google Scholar]
- van Schaik, C.P.; Griffiths, M. Activity periods of Indonesian rain forest mammals. Biotropica 1996, 28, 105–112. [Google Scholar] [CrossRef]
- Welch, H.E. Relationships between assimiliation efficiencies and growth efficiencies for aquatic consumers. Ecology 1968, 49, 755–759. [Google Scholar] [CrossRef]
- Reid, D.G.; Naylor, E. Are there separate circatidal and circadian clocks in the shore crab Carcinus maenas? Mar. Ecol. Prog. Ser. 1989, 52, 1–6. [Google Scholar] [CrossRef]
- Hay, A.M. Foraging Behaviour of the Ruffe (Gymnocephalus cernuus) and Predator Avoidance by the Freshwater Isopod Asellus aquaticus: Implications for Predator-Prey Interactions. Ph.D. Thesis, Division of Environmental and Evolutionary Biology, University of Glasgow, Glasgow, Scotland, 1999. ProQuest Number: 13818650. [Google Scholar]
- Holomuzki, J.R.; Hoyle, J.D. Effect of predatory fish presence on habitat use and diel movement of the stream amphipod, Gammarus minus. Freshw. Biol. 1990, 24, 509–517. [Google Scholar] [CrossRef]
- Brochu, M.-P.; Aubin-Horth, N. Shedding light on the circadian clock of the threespine stickleback. J. Exp. Biol. 2021, 224, jeb242970. [Google Scholar] [CrossRef] [PubMed]
- Greiner, B. Adaptations for nocturnal vision in insect apposition eyes. Int. Rev. Cytol. 2006, 250, 1–46. [Google Scholar]
- Runck, C.; Blinn, D.W. Role of Belostoma bakeri (Heteroptera) in the trophic ecology of a fishless desert spring. Limnol. Oceanogr. 1994, 39, 1800–1812. [Google Scholar] [CrossRef]
- Gilbert, J.J.; Hampton, S.E. Diel vertical migrations of zooplankton in a shallow, fishless pond: A possible avoidance-response cascade induced by notonectids. Freshw. Biol. 2001, 46, 611–621. [Google Scholar] [CrossRef]
- Inoda, T.; Inoda, Y.; Rullan, J.K. Larvae of the water scavenger beetle, Hydrophilus acuminatus (Coleoptera: Hydrophilidae) are specialist predators of snails. Eur. J. Entomol. 2015, 112, 145–150. [Google Scholar] [CrossRef]
- Blinn, D.W.; Pinney, C.; Sanderson, M.W. Nocturnal planktonic behavior of Ranatra montezuma Polhemus (Nepidae: Hemiptera) in Montezuma Well, Arizona. J. Kans. Entomol. 1982, 55, 481–484. [Google Scholar]
- Blinn, D.W.; Runck, C.; Davies, R.W. The impact of prey behaviour and prey density on the foraging ecology of Ranatra montezuma (Heteroptera): A serological examination. Can. J. Zool. 1993, 71, 387–391. [Google Scholar] [CrossRef]
- Gunn, D.L. The humidity reactions of the wood-louse, Porcellio scaber (Latreille). J. Exp. Biol. 1937, 14, 178–186. [Google Scholar] [CrossRef]
- Gorban, A.N.; Çabukoǧlu, N. Basic model of purposeful kinesis. Ecol. Complex. 2018, 33, 75–83. [Google Scholar] [CrossRef]
- Loose, C.J.; Dawidowicz, P. Trade-offs in diel vertical migration by zooplankton: The costs of predator avoidance. Ecology 1994, 75, 2255–2263. [Google Scholar] [CrossRef]
- De Meester, L.; Dawidowicz, P.; Van Gool, E.; Loose, C.J. Ecology and evolution of predator-induced behavior of zooplankton: Depth selection behavior and diel vertical migration. In The Ecology and Evolution of Inducible Defenses; Tollrian, R., Harvell, C.D., Eds.; Princeton University Press: Princeton, NJ, USA, 1999; pp. 160–176. [Google Scholar]
Time of Day | Fish Cue? | N | Omitted | Isopod Length (mm) Average + SE |
---|---|---|---|---|
Morning | No | 19 | 1 | 6.25 + 0.28 |
Yes | 16 | 0 | 5.97 + 0.32 | |
Afternoon | No | 18 | 1 | 6.91 + 0.29 |
Yes | 17 | 2 | 7.43 + 0.34 | |
Night | No | 14 | 1 | 6.56 + 0.27 |
Yes | 16 | 1 | 6.71 + 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, E.C.; Iyengar, E.V. Cathemerality and Insensitivity to Predatory Fish Cues in Pond Isopods (Caecidotea communis). Hydrobiology 2025, 4, 11. https://doi.org/10.3390/hydrobiology4020011
Long EC, Iyengar EV. Cathemerality and Insensitivity to Predatory Fish Cues in Pond Isopods (Caecidotea communis). Hydrobiology. 2025; 4(2):11. https://doi.org/10.3390/hydrobiology4020011
Chicago/Turabian StyleLong, Elizabeth C., and Erika V. Iyengar. 2025. "Cathemerality and Insensitivity to Predatory Fish Cues in Pond Isopods (Caecidotea communis)" Hydrobiology 4, no. 2: 11. https://doi.org/10.3390/hydrobiology4020011
APA StyleLong, E. C., & Iyengar, E. V. (2025). Cathemerality and Insensitivity to Predatory Fish Cues in Pond Isopods (Caecidotea communis). Hydrobiology, 4(2), 11. https://doi.org/10.3390/hydrobiology4020011