Streamlining Motor Competence Assessments via a Machine Learning Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Procedure
2.3. Data Collection
2.4. Experimental Setup
3. Results
4. Discussion
Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine learning from theory to algorithms: An overview. Journal of Physics: Conference Series, 1142, 012012. [Google Scholar] [CrossRef]
- Bandeira, P. F. R., Duncan, M., Pessoa, M. L., Soares, Í., Da Silva, L., Mota, J., & Martins, C. (2020). TGMD-2 short version: Evidence of validity and associations with sex, age, and BMI in preschool children. Journal of Motor Learning and Development, 8(3), 528–543. [Google Scholar] [CrossRef]
- Bardid, F., De Meester, A., Tallir, I., Cardon, G., Lenoir, M., & Haerens, L. (2016). Configurations of actual and perceived motor competence among children: Associations with motivation for sports and global self-worth. Human Movement Science, 50, 1–9. [Google Scholar] [CrossRef]
- Bardid, F., Vannozzi, G., Logan, S. W., Hardy, L. L., & Barnett, L. M. (2019). A hitchhiker’s guide to assessing young people’s motor competence: Deciding what method to use. Journal of Science and Medicine in Sport, 22(3), 311–318. [Google Scholar] [CrossRef]
- Barnett, L. M., Hinkley, T., Okely, A. D., & Salmon, J. (2013). Child, family and environmental correlates of children’s motor skill proficiency. Journal of Science and Medicine in Sport, 16(4), 332–336. [Google Scholar] [CrossRef] [PubMed]
- Barnett, L. M., Morgan, P. J., Van Beurden, E., & Beard, J. R. (2008). Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: A longitudinal assessment. International Journal of Behavioral Nutrition and Physical Activity, 5(1), 40. [Google Scholar] [CrossRef]
- Barnett, L. M., Ridgers, N. D., Zask, A., & Salmon, J. (2015). Face validity and reliability of a pictorial instrument for assessing fundamental movement skill perceived competence in young children. Journal of Science and Medicine in Sport, 18(1), 98–102. [Google Scholar] [CrossRef]
- Barnett, L. M., Stodden, D., Cohen, K. E., Smith, J. J., Lubans, D. R., Lenoir, M., Iivonen, S., Miller, A. D., Laukkanen, A., Dudley, D., Lander, N. J., Brown, H., & Morgan, P. J. (2016). Fundamental movement skills: An important focus. Journal of Teaching in Physical Education, 35(3), 219–225. [Google Scholar] [CrossRef]
- Behan, S., Belton, S., Peers, C., O’Connor, N. E., & Issartel, J. (2019). Moving well-being well: Investigating the maturation of fundamental movement skill proficiency across sex in Irish children aged five to twelve. Journal of Sports Sciences, 37(22), 2604–2612. [Google Scholar] [CrossRef]
- Bolger, L. E., Bolger, L. A., O’ Neill, C., Coughlan, E., O’Brien, W., Lacey, S., & Burns, C. (2018). Age and sex differences in fundamental movement skills among a cohort of Irish school children. Journal of Motor Learning and Development, 6(1), 81–100. [Google Scholar] [CrossRef]
- Britton, Ú., Onibonoje, O., Belton, S., Behan, S., Peers, C., Issartel, J., & Roantree, M. (2023). Moving well-being well: Using machine learning to explore the relationship between physical literacy and well-being in children. Applied Psychology: Health and Well-Being, 15(3), 1110–1129. [Google Scholar] [CrossRef] [PubMed]
- Carmona, P., Dwekat, A., & Mardawi, Z. (2022). No more black boxes! Explaining the predictions of a machine learning XGBoost classifier algorithm in business failure. Research in International Business and Finance, 61, 101649. [Google Scholar] [CrossRef]
- Chen, Z., Zhu, W., Ulrich, D. A., & Qin, M. (2024). Have the fundamental movement skills of U.S. children changed? Research Quarterly for Exercise and Sport, 95(2), 431–440. [Google Scholar] [CrossRef]
- Cools, W., De Martelaer, K., Samaey, C., & Andries, C. (2009). Movement skill assessment of typically developing preschool children: A review of seven movement skill assessment tools. Journal of Sports Science & Medicine, 8(2), 154. [Google Scholar]
- den Uil, A. R., Busch, V., Janssen, M., & Scholte, R. H. J. (2025). Unraveling the dynamics between motor skill competence, physical activity, perceived motor competence, health-related fitness, and weight status in children: A spiral of (dis) engagement? Journal of Motor Learning and Development, 1–23. [Google Scholar] [CrossRef]
- Diao, Y., Dong, C., Barnett, L. M., Estevan, I., Li, J., & Ji, L. (2018). Validity and reliability of a pictorial instrument for assessing fundamental movement skill perceived competence in Chinese children. Journal of Motor Learning and Development, 6(s2), S223–S238. [Google Scholar] [CrossRef]
- Duncan, M. J., Eyre, E. L. J., Clarke, N., Hamid, A., & Jing, Y. (2024). Importance of fundamental movement skills to predict technical skills in youth grassroots soccer: A machine learning approach. International Journal of Sports Science & Coaching, 19(3), 1042–1049. [Google Scholar] [CrossRef]
- Duncan, M. J., Martins, C., Ribeiro Bandeira, P. F., Issartel, J., Peers, C., Belton, S., O’Connor, N. E., & Behan, S. (2022). TGMD-3 short version: Evidence of validity and associations with sex in Irish children. Journal of Sports Sciences, 40(2), 138–145. [Google Scholar] [CrossRef]
- Duncan, M. J., Roscoe, C. M., Noon, M., Clark, C. C., O’Brien, W., & Eyre, E. L. (2020). Run, jump, throw and catch: How proficient are children attending English schools at the fundamental motor skills identified as key within the school curriculum? European Physical Education Review, 26(4), 814–826. [Google Scholar] [CrossRef]
- Eime, R. M., Young, J. A., Harvey, J. T., Charity, M. J., & Payne, W. R. (2013). A systematic review of the psychological and social benefits of participation in sport for children and adolescents: Informing development of a conceptual model of health through sport. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 98. [Google Scholar] [CrossRef]
- Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., Macko, R., Marquez, D. X., Petruzzello, S. J., & Powell, K. E. (2019). Physical activity, cognition, and brain outcomes: A review of the 2018 physical activity guidelines. Medicine & Science in Sports & Exercise, 51(6), 1242–1251. [Google Scholar] [CrossRef]
- Estevan, I., & Barnett, L. M. (2018). Considerations related to the definition, measurement and analysis of perceived motor competence. Sports Medicine, 48(12), 2685–2694. [Google Scholar] [CrossRef] [PubMed]
- Estevan, I., De Meester, A., & Barnett, L. M. (2023). Advancing the understanding in the association between actual/perceived motor competence and health-related factors among children and adolescents. Psychology of Sport and Exercise, 67, 102420. [Google Scholar] [CrossRef] [PubMed]
- Goodway, J. D., Ozmun, J. C., & Gallahue, D. L. (2010). Motor development in young children. In Handbook of research on the education of young children. Routledge. [Google Scholar] [CrossRef]
- Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2020). Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. The Lancet Child & Adolescent Health, 4(1), 23–35. [Google Scholar] [CrossRef]
- Hardy, L. L., Barnett, L., Espinel, P., & Okely, A. D. (2013). Thirteen-year trends in child and adolescent fundamental movement skills: 1997–2010. Medicine & Science in Sports & Exercise, 45(10), 1965–1970. [Google Scholar] [CrossRef]
- Hesketh, K. R., Lakshman, R., & Van Sluijs, E. M. F. (2017). Barriers and facilitators to young children’s physical activity and sedentary behaviour: A systematic review and synthesis of qualitative literature. Obesity Reviews, 18(9), 987–1017. [Google Scholar] [CrossRef]
- Hulteen, R. M., Morgan, P. J., Barnett, L. M., Stodden, D. F., & Lubans, D. R. (2018). Development of foundational movement skills: A conceptual model for physical activity across the lifespan. Sports Medicine, 48, 1533–1540. [Google Scholar] [CrossRef]
- Johnson, T. M., Ridgers, N. D., Hulteen, R. M., Mellecker, R. R., & Barnett, L. M. (2016). Does playing a sports active video game improve young children’s ball skill competence? Journal of Science and Medicine in Sport, 19(5), 432–436. [Google Scholar] [CrossRef]
- Katzmarzyk, P. T., Powell, K. E., Jakicic, J. M., Troiano, R. P., Piercy, K., & Tennant, B. (2019). Sedentary behavior and health: Update from the 2018 physical activity guidelines advisory committee. Medicine & Science in Sports & Exercise, 51(6), 1227–1241. [Google Scholar] [CrossRef]
- Krawczyk, B., Galar, M., Jeleń, Ł., & Herrera, F. (2016). Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy. Applied Soft Computing, 38, 714–726. [Google Scholar] [CrossRef]
- Lima, R. A., Pfeiffer, K., Larsen, L. R., Bugge, A., Moller, N. C., Anderson, L. B., & Stodden, D. F. (2017). Physical activity and motor competence present a positive reciprocal longitudinal relationship across childhood and early adolescence. Journal of Physical Activity and Health, 14(6), 440–447. [Google Scholar] [CrossRef] [PubMed]
- Logan, S. W., Ross, S. M., Chee, K., Stodden, D. F., & Robinson, L. E. (2018). Fundamental motor skills: A systematic review of terminology. Journal of Sports Sciences, 36(7), 781–796. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R., Rawashdeh, J., & Abdullah, M. (2020, April 7–9). Machine learning with oversampling and undersampling techniques: Overview study and experimental results. 2020 11th International Conference on Information and Communication Systems (ICICS) (pp. 243–248), Irbid, Jordan. [Google Scholar] [CrossRef]
- Newell, K. M. (2020). What are fundamental motor skills and what is fundamental about them? Journal of Motor Learning and Development, 8(2), 280–314. [Google Scholar] [CrossRef]
- Niemistö, D., Barnett, L. M., Laukkanen, A., Tolvanen, A., & Sääkslahti, A. (2023). Perceived motor competence in early childhood predicts perceived and actual motor competence in middle childhood. Scandinavian Journal of Medicine & Science in Sports, 33(10), 2025–2038. [Google Scholar] [CrossRef]
- Peers, C., Issartel, J., Behan, S., O’Connor, N., & Belton, S. (2020). Movement competence: Association with physical self-efficacy and physical activity. Human Movement Science, 70, 102582. [Google Scholar] [CrossRef]
- Robinson, L. E., Stodden, D. F., Barnett, L. M., Lopes, V. P., Logan, S. W., Rodrigues, L. P., & D’Hondt, E. (2015). Motor competence and its effect on positive developmental trajectories of health. Sports Medicine, 45, 1273–1284. [Google Scholar] [CrossRef]
- Seefeldt, V. (1980). Developmental motor patterns: Implications for elementary school physical education. Psychology of Motor Behavior and Sport, 36(6), 314–323. [Google Scholar]
- Shi, Z., Chu, Y., Zhang, Y., Wang, Y., & Wei, D.-Q. (2021). Prediction of blood-brain barrier permeability of compounds by fusing resampling strategies and eXtreme gradient boosting. IEEE Access, 9, 9557–9566. [Google Scholar] [CrossRef]
- Stodden, D. F., Goodway, J. D., Langendorfer, S. J., Roberton, M. A., Rudisill, M. E., Garcia, C., & Garcia, L. E. (2008). A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest, 60(2), 290–306. [Google Scholar] [CrossRef]
- Stodden, D. F., Langendorfer, S., & Roberton, M. A. (2009). The association between motor skill competence and physical fitness in young adults. Research Quarterly for Exercise and Sport, 80(2), 223–229. [Google Scholar] [CrossRef]
- Tamplain, P., Webster, E. K., Brian, A., & Valentini, N. C. (2020). Assessment of motor development in childhood: Contemporary issues, considerations, and future directions. Journal of Motor Learning and Development, 8(2), 391–409. [Google Scholar] [CrossRef]
- Ulrich, D. A. (2000). Test of gross motor development: Examiner’s manual (2nd ed.). Pro-Ed. [Google Scholar]
- Ulrich, D. A. (2013). The test of gross motor development-3 (TGMD-3): Administration, scoring, and international norms. Spor Bilimleri Dergisi, 24(2), 27–33. [Google Scholar]
- Valentini, N. C., Rudisill, M. E., Bandeira, P. F. R., & Hastie, P. A. (2018). The development of a short form of the Test of Gross Motor Development-2 in Brazilian children: Validity and reliability. Child Care, Health and Development, 44(5), 759–765. [Google Scholar] [CrossRef]
- Walkley, J., Holland, B. V., Treloar, R., & O’Connor, J. (1996). Fundamental motor skills: A manual for classroom teachers. Victoria Department of Education. [Google Scholar]
- Woods, C., Ng, K., Britton, U., McClelland, J. F., O’Keeffe, B., Sheikhi, A., McFlynn, P., Murphy, M., Goss, H., Behan, S., Philpott, C., Lester, D., Adamakis, M., Costa, J., Coppinger, T., Connolly, S., Belton, S., & O’Brien, W. (2023). Children’s sport participation and physical activity study 2022 (Version 1). University of Limerick. [Google Scholar] [CrossRef]
- Yaqoob, A., Musheer Aziz, R., & Verma, N. K. (2023). Applications and techniques of machine learning in cancer classification: A systematic review. Human-Centric Intelligent Systems, 3(4), 588–615. [Google Scholar] [CrossRef]
- Yoon, J. (2021). Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach. Computational Economics, 57(1), 247–265. [Google Scholar] [CrossRef]
- Zheng, Y., Ye, W., Korivi, M., Liu, Y., & Hong, F. (2022). Gender differences in fundamental motor skills proficiency in children aged 3–6 years: A systematic review and meta-analysis. International Journal of Environmental Research and Public Health, 19(14), 8318. [Google Scholar] [CrossRef] [PubMed]
Feature Category | Feature Description | Count (Perceived & Actual Features Combined) |
---|---|---|
Locomotor-Skill | Actual MC—How capable children are to run, jump, skip etc. Full marking criteria are available in TGMD-3 (Ulrich, 2013). Perceived MC—The child’s perception of their ability to run, jump, skip etc. Full marking criteria available in (PMSC) for Young Children (Barnett et al., 2015). | 16 |
Object-Control Skill | Actual MC—How capable children are at manipulating objects such as balls (i.e., kicking, catching, throwing). Full marking criteria available in TGMD-3 (Ulrich, 2013). Perceived MC—The child’s perception of their ability to kick, catch, throw etc. Full marking criteria available in (PMSC) for Young Children (Barnett et al., 2015). | 14 |
Dependent Variable | Gender Subset | Count |
---|---|---|
Run_MNM | Female Only | 969 |
Run_MNM | Male Only | 1107 |
Run_MNM | Gender Combined | 2076 |
Feature | Classifier | Sampling | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Catch MNM | XGB | SMOTE | 0.83 | 0.88 | 0.85 |
Run MNM | KNN | SMOTE | 0.89 | 0.79 | 0.83 |
Slide MNM | XGB | Unsampled | 0.79 | 0.87 | 0.83 |
Bounce MNM | XGB | Undersampled | 0.80 | 0.80 | 0.80 |
Hop MNM | XGB | SMOTE | 0.75 | 0.85 | 0.80 |
Kick MNM | DT | Oversampled | 0.74 | 0.66 | 0.70 |
HJ MNM | LR | SMOTE | 0.67 | 0.68 | 0.68 |
Skip MNM | DT | Unsampled | 0.66 | 0.64 | 0.65 |
Roll MNM | DT | Unsampled | 0.68 | 0.58 | 0.63 |
VJ MNM | DT | Unsampled | 0.68 | 0.53 | 0.60 |
Gallop MNM | XGB | Unsampled | 0.57 | 0.44 | 0.50 |
Throw MNM | XGB | SMOTE | 0.49 | 0.43 | 0.46 |
Feature | Classifier | Sampling | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Catch MNM | KNN | Unsampled | 0.85 | 0.88 | 0.87 |
Hop MNM | KNN | SMOTE | 0.93 | 0.78 | 0.85 |
Run MNM | XGB | Unsampled | 0.80 | 0.91 | 0.85 |
Slide MNM | XGB | Unsampled | 0.83 | 0.85 | 0.84 |
Kick MNM | DT | Unsampled | 1.00 | 0.62 | 0.77 |
Bounce MNM | XGB | Unsampled | 0.72 | 0.73 | 0.72 |
Gallop MNM | XGB | Unsampled | 1.00 | 0.57 | 0.72 |
HJ MNM | XGB | Undersampled | 0.71 | 0.69 | 0.70 |
Throw MNM | LR | Unsampled | 1.00 | 0.54 | 0.70 |
Skip MNM | XGB | SMOTE | 0.66 | 0.68 | 0.67 |
VJ MNM | XGB | SMOTE | 0.61 | 0.62 | 0.61 |
Roll MNM | GB | Oversampled | 0.56 | 0.55 | 0.56 |
Feature | Classifier | Sampling | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Bounce MNM | XGB | Unsampled | 0.84 | 0.89 | 0.86 |
Run MNM | KNN | Unsampled | 0.78 | 0.88 | 0.83 |
Catch MNM | KNN | SMOTE | 0.88 | 0.77 | 0.82 |
Slide MNM | KNN | Oversampled | 0.83 | 0.80 | 0.82 |
Kick MNM | KNN | SMOTE | 0.88 | 0.76 | 0.81 |
Hop MNM | KNN | SMOTE | 0.82 | 0.73 | 0.77 |
HJ MNM | XGB | Undersampled | 0.69 | 0.69 | 0.69 |
Skip MNM | XGB | SMOTE | 0.69 | 0.68 | 0.68 |
VJ MNM | DT | Unsampled | 0.75 | 0.58 | 0.66 |
Roll MNM | DT | SMOTE | 0.58 | 0.65 | 0.62 |
Throw MNM | DT | Unsampled | 0.71 | 0.50 | 0.59 |
Gallop MNM | KNN | Unsampled | 0.33 | 0.30 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Donaghue, C.; Scriney, M.; Belton, S.; Behan, S. Streamlining Motor Competence Assessments via a Machine Learning Approach. Youth 2025, 5, 68. https://doi.org/10.3390/youth5030068
O’Donaghue C, Scriney M, Belton S, Behan S. Streamlining Motor Competence Assessments via a Machine Learning Approach. Youth. 2025; 5(3):68. https://doi.org/10.3390/youth5030068
Chicago/Turabian StyleO’Donaghue, Colm, Michael Scriney, Sarahjane Belton, and Stephen Behan. 2025. "Streamlining Motor Competence Assessments via a Machine Learning Approach" Youth 5, no. 3: 68. https://doi.org/10.3390/youth5030068
APA StyleO’Donaghue, C., Scriney, M., Belton, S., & Behan, S. (2025). Streamlining Motor Competence Assessments via a Machine Learning Approach. Youth, 5(3), 68. https://doi.org/10.3390/youth5030068