Position in Models of Quantum Mechanics with a Minimal Length †
Abstract
:1. Introduction
2. Quasi-Position Representation
3. Examples
3.1. Particle in a Box
3.2. Potential Barrier
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1994, 10, 145–165. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 5. [Google Scholar] [CrossRef] [Green Version]
- Amati, D.; Ciafaloni, M.; Veneziano, G. Can spacetime be probed below the string size? Phys. Lett. B 1989, 216, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.J.; Mende, P.F. String theory beyond the Planck scale. Nucl. Phys. B 1988, 303, 407–454. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1994, 442, 593–619. [Google Scholar] [CrossRef] [Green Version]
- Mead, C.A. Possible Connection Between Gravitation and Fundamental Length. Phys. Rev. 1964, 135, B849–B862. [Google Scholar] [CrossRef]
- Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 1993, 304, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Phys. Lett. B 1999, 452, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Scardigli, F.; Casadio, R. Gravitational tests of the generalized uncertainty principle. Eur. Phys. J. C 2015, 75, 425. [Google Scholar] [CrossRef] [Green Version]
- Casadio, R.; Scardigli, F. Generalized Uncertainty Principle, Classical Mechanics, and General Relativity. Phys. Lett. B 2020, 807, 135558. [Google Scholar] [CrossRef]
- Mignemi, S. Classical and quantum mechanics of the nonrelativistic Snyder model in curved space. Class. Quantum Gravity 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Pramanik, S.; Ghosh, S. GUP-based and Snyder Non-Commutative Algebras, Relativistic Particle models and Deformed Symmetries: A Unified Approach. Int. J. Mod. Phys. A 2013, 28, 1350131. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, S.; Ghosh, S.; Pal, P. Conformal invariance in noncommutative geometry and mutually interacting Snyder particles. Phys. Rev. D 2014, 90, 105027. [Google Scholar] [CrossRef] [Green Version]
- Chashchina, O.I.; Sen, A.; Silagadze, Z.K. On deformations of classical mechanics due to Planck-scale physics. Int. J. Mod. Phys. D 2020, 29, 2050070. [Google Scholar] [CrossRef]
- Maggiore, M. The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 1993, 319, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.F.; Das, S.; Vagenas, E.C. Proposal for testing quantum gravity in the lab. Phys. Rev. D 2011, 84, 044013. [Google Scholar] [CrossRef] [Green Version]
- Bosso, P. Generalized Uncertainty Principle and Quantum Gravity Phenomenology. Ph.D. Thesis, University of Lethbridge, Lethbridge, AB, Canada, 2017. [Google Scholar]
- Bosso, P. On the quasi-position representation in theories with a minimal length. Class. Quant. Grav. 2021, 38, 075021. [Google Scholar] [CrossRef]
- Ong, Y.C. Generalized Uncertainty Principle, Black Holes, and White Dwarfs: A Tale of Two Infinities. JCAP 2018, 2018, 015. [Google Scholar] [CrossRef] [Green Version]
- Blasone, M.; Lambiase, G.; Luciano, G.G.; Petruzziello, L.; Scardigli, F. Heuristic derivation of Casimir effect in minimal length theories. Int. J. Mod. Phys. D 2020, 29, 2050011. [Google Scholar] [CrossRef]
- Jizba, P.; Kleinert, H.; Scardigli, F. Uncertainty Relation on World Crystal and its Applications to Micro Black Holes. Phys. Rev. D 2010, 81, 084030. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosso, P. Position in Models of Quantum Mechanics with a Minimal Length. Phys. Sci. Forum 2021, 2, 35. https://doi.org/10.3390/ECU2021-09275
Bosso P. Position in Models of Quantum Mechanics with a Minimal Length. Physical Sciences Forum. 2021; 2(1):35. https://doi.org/10.3390/ECU2021-09275
Chicago/Turabian StyleBosso, Pasquale. 2021. "Position in Models of Quantum Mechanics with a Minimal Length" Physical Sciences Forum 2, no. 1: 35. https://doi.org/10.3390/ECU2021-09275
APA StyleBosso, P. (2021). Position in Models of Quantum Mechanics with a Minimal Length. Physical Sciences Forum, 2(1), 35. https://doi.org/10.3390/ECU2021-09275