New Perspectives for Multifrequency GW Astronomy: Strong Gravitational Lensing of GW †
Abstract
:1. Introduction
2. Method
2.1. DCO Merger Rate
2.2. Detector Sensitivity
2.3. Detection Rates for Unlensed Events
2.4. Detection Rates for Lensed Events
3. Results and Discussion
4. Conclusions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, P.B.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. (The LIGO Scientific Collaboration and the Virgo Collaboration) GWTC-1: A gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar]
- Abbott, P.B.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. (The LIGO Scientific Collaboration and the Virgo Collaboration) Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, P.B.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. (The LIGO Scientific Collaboration and the Virgo Collaboration) GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 061101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, P.B.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. (The LIGO Scientific Collaboration and the Virgo Collaboration) GW190425: Observation of a Compact Binary Coalescence with Total Mass ~3.4 M⊙. ApJL 2020, 892, L3. [Google Scholar] [CrossRef]
- Coulter, D.A.; Foley, R.J.; Kilpatrick, D.C.; Drout, M.R.; Piro, A.L.; Shappee, B.J.; Siebert, M.R.; Simon, J.D.; Ulloa, N.; Kasen, D.; et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 2017, 358, 1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GMB Detection of GRB 170817A. Astrophys. J. Lett. 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. Available online: https://arxiv.org/abs/1702.00786 (accessed on 23 February 2017).
- Kawamura, S.; Nakamura, T.; Ando, M.; Seto, N.; Akutsu, T.; Funaki, I.; Ioka, K.; Kanda, N.; Kawano, I.; Musha, M.; et al. Space gravitational-wave antennas DECIGO and B-DECIGO. Int. J. Mod. Phys. D 2019, 28, 1845001. [Google Scholar] [CrossRef]
- Seto, N.; Kawamura, S.; Nakamura, T. Possibility of Direct Measurement of the Acceleration of the Universe Using 0.1 Hz Band Laser Interferometer Gravitational Wave Antenna in Space. PRL 2001, 87, 221103. [Google Scholar] [CrossRef]
- Sato, S.; Kawamura, S.; Ando, M.; Nakamura, T.; Tsubono, K.; Araya, A.; Funaki, I.; Ioka, K.; Kanda, N.; Moriwaki, S.; et al. The status of DECIGO. J. Phys. Conf. Ser. 2017, 840, 012010. [Google Scholar] [CrossRef]
- Piórkowska, A.; Biesiada, M.; Zhu, Z.-H. Strong gravitational lensing of gravitational waves in Einstein Telescope. J. Cosm. Astropart. Phys. 2013, 10, 022. [Google Scholar] [CrossRef] [Green Version]
- Biesiada, M.; Ding, X.; Piórkowska, A.; Zhu, Z.-H. Strong gravitational lensing of gravitational waves from double compact binaries—Perspectives for the Einstein Telescope. J. Cosm. Astropart. Phys. 2014, 10, 080. [Google Scholar] [CrossRef] [Green Version]
- Piórkowska-Kurpas, A.; Hou, S.; Biesiada, M.; Ding, X.; Cao, S.; Fan, X.-L.; Kawamura, S.; Zhu, Z.-H. Inspiraling double compact object detection and lensing rate—Forecast for DECIGO and B-DECIGO. Astrophys. J. 2020, 908, 196. [Google Scholar] [CrossRef]
- Dominik, M.; Belczynski, K.; Fryer, C.; Holz, D.E.; Berti, E.; Bulik, T.; Mandel, I. O’Shaughnessy, R. Double Compact Objects II: Cosmological Merger Rates. Astrophys. J. 2013, 779, 72. [Google Scholar] [CrossRef]
- Abernathy, M.; Acernese, F.; Ajith, P.; Allen, B.; Amaro-Seoane, P.; Andersson, N.; Aoudia, S.; Astone, P.; Krishnan, B.; Barack, L.; et al. (European Gravitational Observatory), “Einstein Gravitational Wave Telescope: Conceptual Design Sudy”, Document Number ET-0106A-10. 2011. Available online: http://www.et-gw.eu/ (accessed on 9 September 2020).
- Yagi, K.; Seto, N. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys. Rev. D 2011, 83, 044011. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Ando, M.; Kinugawa, T.; Nakano, H.; Eda, K.; Sato, S.; Musha, M.; Akutsu, T.; Tanaka, T.; Seto, N.; et al. Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914- like binary black holes. Prog. Theor. Exp. Phys. 2016, 2016, 093E01. [Google Scholar] [CrossRef]
- Isoyama, S.; Nakano, H.; Nakamura, T. Multiband Gravitational-Wav Astronomy: Observing binary inspirals with a decihertz detector, B-DECIGO. Prog. Theor. Exp. Phys. 2018, 2018, 073E01. [Google Scholar] [CrossRef]
- Tylor, S.R.; Gair, J.R. Cosmology with the lights off: Standard sirens in the Einstein Telescope era. Phys. Rev. D 2012, 86, 023502. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Ehlers, J.; Falco, E.E. Gravitational Lenses; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Schneider, P.; Kochanek, C.; Wambsganss, J. Gravitational Lensing: Strong, Weak and Micro; Saas-Fee Advanced Course 33; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Koopmans, L.V.E.; Bolton, A.; Treu, T.; Czoske, O.; Auger, M.W.; Barnabe, M.; Vegetti, S.; Gavazzi, R.; Moustakas, L.A.; Burles, S. The structure and dynamics of massive early-type galaxies: On homology, isothermality and isotropy inside one effective radius. Astrophys. J. Lett. 2009, 703, L51. [Google Scholar] [CrossRef]
- Hou, S.; Fan, X.-L.; Liao, K.; Zhu, Z.-H. Gravitational Wave Interference via Gravitational Lensing: Measurements of Luminosity Distance, Lens Mass and Cosmologcal Parameters. Phys. Rev. D 2020, 101, 064011. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ding, X.; Biesiada, M.; Zhu, Z.-H. How does the Earth’s rotation affect predictions of gravitational wave strong lensing rates? Astrophys. J. 2014, 874, 139. [Google Scholar] [CrossRef]
- Oguri, M. Strong gravitational lensing of explosive transients. Rept. Prog. Phys. 2019, 82, 126901. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.; Biesiada, M.; Fan, X.-L. The wave nature of continous gravitational waves from microlensing. Astrophys. J. 2019, 875, 139. [Google Scholar] [CrossRef]
- Takahashi, R.; Nakamura, T. Wave effects in the gravitational lensing of gravitational waves from chirping binaries. Astrophys. J. 2003, 595, 1039–1051. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piórkowska-Kurpas, A. New Perspectives for Multifrequency GW Astronomy: Strong Gravitational Lensing of GW. Phys. Sci. Forum 2021, 2, 57. https://doi.org/10.3390/ECU2021-09272
Piórkowska-Kurpas A. New Perspectives for Multifrequency GW Astronomy: Strong Gravitational Lensing of GW. Physical Sciences Forum. 2021; 2(1):57. https://doi.org/10.3390/ECU2021-09272
Chicago/Turabian StylePiórkowska-Kurpas, Aleksandra. 2021. "New Perspectives for Multifrequency GW Astronomy: Strong Gravitational Lensing of GW" Physical Sciences Forum 2, no. 1: 57. https://doi.org/10.3390/ECU2021-09272
APA StylePiórkowska-Kurpas, A. (2021). New Perspectives for Multifrequency GW Astronomy: Strong Gravitational Lensing of GW. Physical Sciences Forum, 2(1), 57. https://doi.org/10.3390/ECU2021-09272