Legendre Transformation and Information Geometry for the Maximum Entropy Theory of Ecology †
Abstract
:1. Introduction
2. Maximum Entropy
METE
3. Information Geometry
Information Geometry of METE
4. Discussion and Perspectives
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. On the Lambert W Function
References
- Jaynes, E.T. Information theory and statistical mechanics. I. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Jaynes, E.T. Gibbs vs Boltzmann entropies. Am. J. Phys. 1965, 33, 391–398. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J. Elementary Principles in Statistical Mechanics; Yale University Press: New Haven, CT, USA, 1902; reprinted by Ox Bow Press, Connecticut 1981. [Google Scholar]
- Shore, J.; Johnson, R. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Skilling, J. The Axioms of Maximum Entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering; Erickson, G.J., Smith, C.R., Eds.; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar] [CrossRef]
- Caticha, A. Relative Entropy and Inductive Inference. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2004; Volume 707, pp. 75–96. [Google Scholar] [CrossRef]
- Vanslette, K. Entropic Updating of Probabilities and Density Matrices. Entropy 2017, 19, 664. [Google Scholar] [CrossRef] [Green Version]
- Daum, F. The Fisher-Darmois-Koopman-Pitman theorem for random processes. In Proceedings of the 25th IEEE Conference on Decision and Control, Athens, Greece, 10–12 December 1986; pp. 1043–1044. [Google Scholar] [CrossRef]
- Caticha, A.; Giffin, A. Updating Probabilities. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2006; Volume 872, pp. 31–42. [Google Scholar] [CrossRef] [Green Version]
- Golan, A. Information and Entropy Econometrics—A Review and Synthesis. Found. Trends(R) Econom. 2008, 2, 1–145. [Google Scholar] [CrossRef]
- Bianconi, G. Entropy of network ensembles. Phys. Rev. E 2009, 79. [Google Scholar] [CrossRef] [Green Version]
- Caticha, A.; Golan, A. An entropic framework for modeling economies. Phys. A Stat. Mech. Its Appl. 2014, 408, 149–163. [Google Scholar] [CrossRef]
- Vicente, R.; Susemihl, A.; Jericó, J.P.; Caticha, N. Moral foundations in an interacting neural networks society: A statistical mechanics analysis. Phys. A Stat. Mech. Its Appl. 2014, 400, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Yong, N.; Ni, S.; Shen, S.; Ji, X. An understanding of human dynamics in urban subway traffic from the Maximum Entropy Principle. Phys. A Stat. Mech. Its Appl. 2016, 456, 222–227. [Google Scholar] [CrossRef]
- Delgado-Bonal, A.; Martín-Torres, J. Human vision is determined based on information theory. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Martino, A.; De Martino, D. An introduction to the maximum entropy approach and its application to inference problems in biology. Heliyon 2018, 4, e00596. [Google Scholar] [CrossRef] [Green Version]
- Cimini, G.; Squartini, T.; Saracco, F.; Garlaschelli, D.; Gabrielli, A.; Caldarelli, G. The statistical physics of real-world networks. Nat. Rev. Phys. 2019, 1, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Dixit, P.D.; Lyashenko, E.; Niepel, M.; Vitkup, D. Maximum Entropy Framework for Predictive Inference of Cell Population Heterogeneity and Responses in Signaling Networks. Cell Syst. 2020, 10, 204–212.e8. [Google Scholar] [CrossRef]
- Radicchi, F.; Krioukov, D.; Hartle, H.; Bianconi, G. Classical information theory of networks. J. Physics Complex. 2020, 1, 025001. [Google Scholar] [CrossRef]
- Caldarelli, G.; Nicola, R.D.; Vigna, F.D.; Petrocchi, M.; Saracco, F. The role of bot squads in the political propaganda on Twitter. Commun. Phys. 2020, 3. [Google Scholar] [CrossRef]
- Harte, J.; Zillio, T.; Conlisk, E.; Smith, A.B. Maximum entropy and the state-variable approach to macroecology. Ecology 2008, 89, 2700–2711. [Google Scholar] [CrossRef]
- Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Harte, J.; Newman, E.A. Maximum information entropy: A foundation for ecological theory. Trends Ecol. Evol. 2014, 29, 384–389. [Google Scholar] [CrossRef]
- Brummer, A.; Newman, E. Derivations of the Core Functions of the Maximum Entropy Theory of Ecology. Entropy 2019, 21, 712. [Google Scholar] [CrossRef] [Green Version]
- Newman, E.A.; Wilber, M.Q.; Kopper, K.E.; Moritz, M.A.; Falk, D.A.; McKenzie, D.; Harte, J. Disturbance macroecology: A comparative study of community structure metrics in a high-severity disturbance regime. Ecosphere 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; McGlinn, D.J.; White, E.P. A Strong Test of the Maximum Entropy Theory of Ecology. Am. Nat. 2015, 185, E70–E80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harte, J.; Umemura, K.; Brush, M. DynaMETE: A hybrid MaxEnt-plus-mechanism theory of dynamic macroecology. Ecol. Lett. 2021. [Google Scholar] [CrossRef]
- Jaynes, E.T. Where do we stand on maximum entropy? In The Maximum Entropy Principle; Levine, R.D., Tribus, M., Eds.; MIT Press: Cambridge, MA, USA, 1979. [Google Scholar] [CrossRef]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K.A. Principles of maximum entropy and maximum caliber in statistical physics. Reviews of Modern Physics 2013, 85, 1115–1141. [Google Scholar] [CrossRef] [Green Version]
- González, D.; Davis, S. The maximum caliber principle applied to continuous systems. J. Phys. Conf. Ser. 2016, 720, 012006. [Google Scholar] [CrossRef]
- Caticha, A. The basics of information geometry. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2015; Volume 1641, pp. 15–26. [Google Scholar] [CrossRef] [Green Version]
- Amari, S. Information Geometry and Its Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Ay, N.; Jost, J.; Lê, H.V.; Schwachhöfer, L. Information Geometry; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Nielsen, F. An Elementary Introduction to Information Geometry. Entropy 2020, 22, 1100. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. Theory of Statistical Estimation. Math. Proc. Camb. Philos. Soc. 1925, 22, 700–725. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81. [Google Scholar] [CrossRef]
- Cencov, N.N. Statistical decision rules and optimal inference. In Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1981; Volume 53. [Google Scholar]
- Hayashi, M.; Watanabe, S. Information geometry approach to parameter estimation in Markov chains. Ann. Stat. 2016, 44, 1495–1535. [Google Scholar] [CrossRef] [Green Version]
- Felice, D.; Cafaro, C.; Mancini, S. Information geometric methods for complexity. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 032101. [Google Scholar] [CrossRef]
- Ruppeiner, G. Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 1995, 67, 605. [Google Scholar] [CrossRef]
- Pessoa, P.; Costa, F.X.; Caticha, A. Entropic dynamics on Gibbs statistical manifolds. Entropy 2021, 23, 494. [Google Scholar] [CrossRef] [PubMed]
- Corless, R.M.; Jeffrey, D.J. The LambertW function. In The Princeton Companion to Applied Mathematics; Higham, N.J., Dennis, M.R., Glendinning, P., Martin, P.A., Santosa, F., Tanner, J., Eds.; Princeton University Press: Princeton, NJ, USA, 2016; Chapter III-17; pp. 151–155. [Google Scholar] [CrossRef]
- Lehtonen, J. The Lambert W function in ecological and evolutionary models. Methods Ecol. Evol. 2016, 7, 1110–1118. [Google Scholar] [CrossRef]
- Nielsen, F. Legendre Transformation and Information Geometry. Technical Report CIG-MEMO2. 2010. Available online: https://www2.sonycsl.co.jp/person/nielsen/Note-LegendreTransformation.pdf (accessed on 1 November 2021).
- Lambert, W. SciPy Documentation. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.lambertw.html (accessed on 20 March 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, P. Legendre Transformation and Information Geometry for the Maximum Entropy Theory of Ecology. Phys. Sci. Forum 2021, 3, 1. https://doi.org/10.3390/psf2021003001
Pessoa P. Legendre Transformation and Information Geometry for the Maximum Entropy Theory of Ecology. Physical Sciences Forum. 2021; 3(1):1. https://doi.org/10.3390/psf2021003001
Chicago/Turabian StylePessoa, Pedro. 2021. "Legendre Transformation and Information Geometry for the Maximum Entropy Theory of Ecology" Physical Sciences Forum 3, no. 1: 1. https://doi.org/10.3390/psf2021003001
APA StylePessoa, P. (2021). Legendre Transformation and Information Geometry for the Maximum Entropy Theory of Ecology. Physical Sciences Forum, 3(1), 1. https://doi.org/10.3390/psf2021003001