Curvature Change in Laser-Assisted Bending of Inconel 718 †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Investigation
2.2. Numerical Simulations
2.3. Material Constitutive Model
2.4. Beam Curvature
3. Results and Discussion
- Pure thermal loading (laser bending with laser power 550 W; curvature ).
- Pure mechanical loading (F= 3.04 N; curvature ).
- Thermo-mechanical bending, i.e., mechanical loading (F = 3.04 N) followed by laser heating (laser power 550 W; curvature ).
- Complete unloading after thermo-mechanical bending (cooling, removal of mechanical loads; final curvature ).
- Calculated curvature of the beam loaded only mechanically differs by no more than 0.5% from the well-known solution of the classical Bernoulli–Euler beam theory , where is the bending moment, is the Young’s modulus, is the moment of inertia of the beam cross-section. The difference may be attributed mainly due to: (1) the effect of shear stresses, which is not considered in the Bernoulli–Euler theory, and (2) the limited accuracy of numerical simulation and numerical derivation calculations.
- For all considered heat load cases (laser power 450, 500 and 550 W), the curvature , calculated after thermo-mechanical processing, but still under mechanical loading, for the zero value of the bending moment has a value close to the pure thermal bending curvature value . The dependence of curvature on the applied laser power, for the considered processing conditions, is presented in Figure 6a.
- Similarly, for all considered heat load cases, the final curvature , calculated after thermo-mechanical processing and complete unloading, for the zero value of the bending moment has a value close to the pure thermal bending curvature value .
- The dependence of curvature on the bending moment may be described by the following phenomenological relation:
- The effect of unloading may be estimated as the opposite to the effect of elastic loading:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geiger, M. Synergy of laser material processing and metal forming. CIRP Ann. 1994, 43, 563–570. [Google Scholar] [CrossRef]
- Lauwers, B.; Klocke, F.; Klink, A.; Tekkaya, A.E.; Neugebauer, R.; Mcintosh, D. Hybrid processes in manufacturing. CIRP Ann. 2014, 63, 561–583. [Google Scholar] [CrossRef]
- Kratky, A. Laser assisted forming techniques. In Proceedings of the XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, Gmunden, Austria, 4 September 2006; pp. 1–11. [Google Scholar] [CrossRef]
- Martin, R.; Kohler, G. Automatisiertes Justieren in der Feinwerktechnik. Patent DE2918100, 13 November 1980. [Google Scholar]
- Masubuchi, K.; Cook, W.J.; Deacon, D.L.; Haidemenopoulos, G.; Johnson, R.C.; McCarthy, R.W. Laser Forming of Steel Plates for Ship Construction. In Phase I Report under Purchase Order PL-67103 (MIT OSP No. 94827) to Todd Pacific Shipyards Corporation from MIT; Department of Ocean Engineering, Massachusetts Institute of Technology: Cambridge, MA, USA, 1985. [Google Scholar]
- Widłaszewski, J. The effects of design parameters on the laser-induced in-plane deformation of two-bridge actuators. Int. J. Mach. Tools Manuf. 2014, 80–81, 30–38. [Google Scholar] [CrossRef]
- Widłaszewski, J. Mechanism of bi-direction laser bending for microsystems. In Proceedings of the 3rd Polish Congress of Mechanics and 21st International Conference on Computer Methods in Mechanics, Gdańsk, Poland, 8–11 September 2015; Volume 2, pp. 819–820. [Google Scholar]
- Hu, Z.; Labudovic, M.; Wang, H.; Kovacevic, R. Computer simulation and experimental investigation of sheet metal bending using laser beam scanning. Int. J. Mach. Tools Manuf. 2001, 41, 589–607. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, S.; Zhao, G.; Luan, Y. Finite element modeling of laser bending of pre-loaded sheet metals. J. Mater. Process. Technol. 2003, 142, 400–407. [Google Scholar] [CrossRef]
- Yao, Z.; Shen, H.; Shi, Y.; Hu, J. Numerical study on laser forming of metal plates with pre-loads. Comput. Mater. Sci. 2007, 40, 27–32. [Google Scholar] [CrossRef]
- Roohi, A.H.; Gollo, M.H.; Moslemi, N.H. External force-assisted laser forming process for gaining high bending angles. J. Manuf. Process. 2012, 14, 269–276. [Google Scholar] [CrossRef]
- Kant, R.; Joshi, S.; Dixit, U. Research issues in the laser sheet bending process. In Materials Forming and Machining; Woodhead Publishing: Sawston, UK, 2016; pp. 73–97. [Google Scholar] [CrossRef]
- Ponticelli, G.; Guarino, S.; Giannini, O. A fuzzy logic-based model in laser-assisted bending springback control. Int. J. Adv. Manuf. Technol. 2018, 95, 3887–3898. [Google Scholar] [CrossRef]
- Gisario, A.; Barletta, M.; Conti, C.; Guarino, S. Springback control in sheet metal bending by laser-assisted bending: Experimental analysis, empirical and neural network modelling. Opt. Lasers Eng. 2011, 49, 1372–1383. [Google Scholar] [CrossRef]
- Gisario, A.; Barletta, M.; Venettacci, S.; Veniali, F. Laser-assisted bending of sharp angles with small fillet radius on stainless steel sheets: Analysis of experimental set-up and processing parameters. Laser Manuf. Mater. Process. 2015, 2, 57–73. [Google Scholar] [CrossRef]
- Mucha, Z.; Widłaszewski, J.; Kurp, P.; Mulczyk, K. Mechanically assisted laser forming of thin beams. In Proceedings of the XIth Symposium on Laser Technology, Jastarnia, Poland, 27–30 September 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Widłaszewski, J.; Nowak, M.; Nowak, Z.; Kurp, P. Laser-assisted forming of thin-walled profiles. Met. Form. 2017, 28, 183–198. [Google Scholar]
- Nowak, Z.; Nowak, M.; Widłaszewski, J.; Kurp, P. Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate. AIP Conf. Proc. 2018, 1922, 140068. [Google Scholar] [CrossRef]
- Simulia. ABAQUS/Standard User’s Manual: Version 2016; Dassault Systemes: Providence, RI, USA, 2015. [Google Scholar]
- Johnson, G.; Cook, W. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Widłaszewski, J.; Nowak, Z.; Kurp, P. Effect of Pre-Stress on Laser-Induced Thermoplastic Deformation of Inconel 718 Beams. Materials 2021, 14, 1847. [Google Scholar] [CrossRef] [PubMed]
- Toponogov, V.A. Differential Geometry of Curves and Surfaces; A Concise Guide; Birkhäuser: Boston, MA, USA, 2006. [Google Scholar]
- Timoshenko, S. Strength of Materials. Part I; D. Van Nostrand Company, Inc.: New York, NY, USA, 1951. [Google Scholar]
- Widłaszewski, J. Laser micro bending mechanism for high-precision adjustment in mechatronic systems. In Proceedings of the 7th European Conference on Structural Control, Warsaw, Poland, 10–13 July 2022; Book of Abstracts and Selected Papers. Holnicki-Szulc, J., Wagg, D., Jankowski, Ł., Eds.; Institute of Fundamental Technological Research: Warsaw, Poland, 2022; pp. 262–269, ISBN 978-83-65550-37-8. Available online: http://eacs2022.ippt.pan.pl/EACS%202022%20-%20Book.pdf (accessed on 29 July 2022).
Ni | Nb | Cr | Mo | Mn | Si | Ti | Al | Co | Fe |
---|---|---|---|---|---|---|---|---|---|
52.9 | 4.83 | 19.83 | 3.12 | 0.29 | 0.14 | 1.04 | 0.60 | 0.05 | Balance |
A (MPa) | B (MPa) | CJC | m | n |
---|---|---|---|---|
450 | 2100.95 | 0.02 | 1.5 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widłaszewski, J.; Nowak, M.; Nowak, Z.; Kurp, P. Curvature Change in Laser-Assisted Bending of Inconel 718. Phys. Sci. Forum 2022, 4, 26. https://doi.org/10.3390/psf2022004026
Widłaszewski J, Nowak M, Nowak Z, Kurp P. Curvature Change in Laser-Assisted Bending of Inconel 718. Physical Sciences Forum. 2022; 4(1):26. https://doi.org/10.3390/psf2022004026
Chicago/Turabian StyleWidłaszewski, Jacek, Marcin Nowak, Zdzisław Nowak, and Piotr Kurp. 2022. "Curvature Change in Laser-Assisted Bending of Inconel 718" Physical Sciences Forum 4, no. 1: 26. https://doi.org/10.3390/psf2022004026
APA StyleWidłaszewski, J., Nowak, M., Nowak, Z., & Kurp, P. (2022). Curvature Change in Laser-Assisted Bending of Inconel 718. Physical Sciences Forum, 4(1), 26. https://doi.org/10.3390/psf2022004026