Analysis of Ecological Networks: Linear Inverse Modeling and Information Theory Tools †
Abstract
:1. Introduction
2. The Constraints, the Polytope of Solutions and the Probabilistic Framework
2.1. The Constraints
2.2. The Polytope of Solutions
2.3. The Probabilistic Framework
3. The Goal Functions
3.1. Classical ENA
3.2. Goal Function Involving a Reference
3.3. Rényi Goal Functions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MBE | Mass-Balance Equations |
Probabilistic density function | |
ENA | Ecological Network Analysis |
LIM | Linear Inverse Modeling |
MCMC | Monte Carlo Markov Chain |
References
- Fontaine, C.; Guimarães, P.R., Jr.; Kéfi, S.; Loeuille, N.; Memmott, J.; van Der Putten, W.H.; Van Veen, F.J.; Thébault, E. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 2011, 14, 1170–1181. [Google Scholar] [CrossRef]
- Belgrano, A.; Scharler, U.M.; Dunne, J.; Ulanowicz, R.E. (Eds.) Aquatic Food Webs: An Ecosystem Approach; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Jørgensen, S.E.; Fath, B.D. Fundamentals of Ecological Modelling: Applications in Environmental Management and Research; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Langlet, D.; Rayfuse, R. The Ecosystem Approach in Ocean Planning and Governance: Perspectives from Europe and Beyond; Brill: Leiden, The Netherlands, 2018; p. 492. [Google Scholar]
- Christensen, V.; Walters, C.J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Model. 2004, 172, 109–139. [Google Scholar] [CrossRef]
- Niquil, N.; Saint-Béat, B.; Johnson, G.A.; Soetaert, K.; Van Oevelen, D.; Bacher, C.; Vézina, A.F. Inverse modeling in modern ecology and application to coastal ecosystems. In Treatise on Estuarine and Coastal Science; Academic Press: Waltham, MA, USA, 2011; pp. 115–133. [Google Scholar]
- Vézina, A.F.; Platt, T. Food web dynamics in the ocean. 1. Best-estimates of flow networks using inverse methods. Mar. Ecol. Prog. Ser. 1988, 42, 269–287. [Google Scholar] [CrossRef]
- Kones, J.K.; Soetaert, K.; van Oevelen, D.; Owino, J.O.; Mavuti, K. Gaining insight into food webs reconstructed by the inverse method. J. Mar. Syst. 2006, 60, 153–166. [Google Scholar] [CrossRef]
- Kones, J.K.; Soetaert, K.; van Oevelen, D.; Owino, J.O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Model. 2009, 220, 370–382. [Google Scholar] [CrossRef]
- Van Oevelen, D.; Van den Meersche, K.; Meysman, F.J.; Soetaert, K.; Middelburg, J.J.; Vézina, A.F. Quantifying food web flows using linear inverse models. Ecosystems 2010, 13, 32–45. [Google Scholar] [CrossRef]
- Grami, B.; Rasconi, S.; Niquil, N.; Jobard, M.; Saint-Béat, B.; Sime-Ngando, T. Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: A linear inverse modeling analysis. PLoS ONE 2011, 6, e23273. [Google Scholar] [CrossRef]
- Caputo, J.G.; Girardin, V.; Knippel, A.; Nguyen, M.H.; Niquil, N.; Noguès, Q. Analysis of trophic networks: An optimisation approach. J. Math. Biol. 2021, 83, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Niquil, N.; Asmus, H.; Bacher, C.; Asmus, R.; Baird, D. The effects of aggregation on the performance of the inverse method and indicators of network analysis. Ecol. Model. 2009, 220, 3448–3464. [Google Scholar] [CrossRef]
- Ulanowicz, R.E. Biodiversity, functional redundancy and system stability: Subtle connections. J. R. Soc. Interface 2018, 15, 20180367. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Le Guen, C.; Tecchio, S.; Dauvin, J.C.; De Roton, G.; Lobry, J.; Lepage, M.; Morin, J.; Lassalle, G.; Raoux, A.; Niquil, N. Assessing the ecological status of an estuarine ecosystem: Linking biodiversity and food-web indicators. Estuar. Coast. Shelf Sci. 2019, 228, 106339. [Google Scholar] [CrossRef]
- Christensen, V. Ecosystem maturity—Towards quantification. Ecol. Model. 1995, 77, 3–32. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley Online Books: Hoboken, NJ, USA, 2006. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 1955, 36, 533–536. [Google Scholar] [CrossRef]
- Hirata, H.; Ulanowicz, R.E. Large-scale systems perspective on ecological modelling and analysis. Ecol. Model. 1986, 31, 79–104. [Google Scholar] [CrossRef]
- Fath, B.D. Quantifying economic and ecological sustainability. Ocean. Coast. Manag. 2015, 108, 13–19. [Google Scholar] [CrossRef]
- Ulanowicz, R.E.; Norden, J.S. Symmetrical overhead in flow networks. Int. J. Syst. Sci. 1990, 21, 429–437. [Google Scholar] [CrossRef]
- Safi, G.; Giebels, D.; Arroyo, N.L.; Heymans, J.J.; Preciado, I.; Raoux, A.; Schückel, U.; Tecchio, S.; de Jonge, V.N.; Niquil, N. Vitamine ENA: A framework for the development of ecosystem-based indicators for decision makers. Ocean. Coast. Manag. 2019, 174, 116–130. [Google Scholar] [CrossRef]
- Fath, B.D.; Asmus, H.; Asmus, R.; Baird, D.; Borrett, S.R.; de Jonge, V.N.; Ludovisi, A.; Niquil, N.; Scharler, U.M.; Schückel, U.; et al. Ecological network analysis metrics: The need for an entire ecosystem approach in management and policy. Ocean. Coast. Manag. 2019, 174, 1–14. [Google Scholar] [CrossRef]
- Csiszár, I. I-divergence geometry of probability distributions and minimization problems. Ann. Probab. 1975, 3, 146–158. [Google Scholar] [CrossRef]
- Rényi, A. On the dimension and entropy of probability distributions. Acta Math. Acad. Sci. Hung. 1959, 10, 193–215. [Google Scholar] [CrossRef]
- Baird, D.; Asmus, H.; Asmus, R. Trophic dynamics of eight intertidal communities of the Sylt-Rømø Bight ecosystem, northern Wadden Sea. Mar. Ecol. Prog. Ser. 2007, 351, 25–41. [Google Scholar] [CrossRef]
- Saint-Béat, B.; Vézina, A.F.; Asmus, R.; Asmus, H.; Niquil, N. The mean function provides robustness to linear inverse modelling flow estimation in food webs: A comparison of functions derived from statistics and ecological theories. Ecol. Model. 2013, 258, 53–64. [Google Scholar] [CrossRef]
- Girardin, V.; Grente, T.; Niquil, N.; Regnault, P. Comparing and Updating R Packages using MCMC Algorithms for Linear Inverse Modeling of Metabolic Networks. HAL Preprint 2024, hal-04455831. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girardin, V.; Grente, T.; Niquil, N.; Regnault, P. Analysis of Ecological Networks: Linear Inverse Modeling and Information Theory Tools. Phys. Sci. Forum 2023, 9, 24. https://doi.org/10.3390/psf2023009024
Girardin V, Grente T, Niquil N, Regnault P. Analysis of Ecological Networks: Linear Inverse Modeling and Information Theory Tools. Physical Sciences Forum. 2023; 9(1):24. https://doi.org/10.3390/psf2023009024
Chicago/Turabian StyleGirardin, Valérie, Théo Grente, Nathalie Niquil, and Philippe Regnault. 2023. "Analysis of Ecological Networks: Linear Inverse Modeling and Information Theory Tools" Physical Sciences Forum 9, no. 1: 24. https://doi.org/10.3390/psf2023009024
APA StyleGirardin, V., Grente, T., Niquil, N., & Regnault, P. (2023). Analysis of Ecological Networks: Linear Inverse Modeling and Information Theory Tools. Physical Sciences Forum, 9(1), 24. https://doi.org/10.3390/psf2023009024