Modeling and Visualization of Clinical Texts to Enhance Meaningful and User-Friendly Information Retrieval †
Abstract
:1. Introduction
2. Background
Clinical Significance
3. Related Works
3.1. Topic Modeling
3.2. Data Visualization Modeling
3.3. Information Retrieval
4. Motivation
5. Problem Description
6. Proposed Technique
6.1. Overview of Our Approach
6.2. Design Requirements
- R1: Facilitate review of clinical text documents and make it easier for physicians to browse various types of information.
- R2: Visually present SOAP clinical notes sections in a cluster map, facilitating selective access of information.
- R3: Visually distinguish different semantic groups of information using different colors.
- R4: Group clinical texts with respect to SOAP documentation format.
- R5: Show relationships between different clusters of information.
6.3. SOAP Documentation Format
7. Method
7.1. Sampling Strategy and Selection of Participants
- Professional doctors who are actively utilizing any type of electronic health system and capturing patient health data using any type of EHR were sought to participate in the evaluation.
- Participants who did not match the aforementioned inclusion criteria were not allowed to participate in the study.
7.2. Dataset
- (1)
- Subjective—description of information such as symptoms, behaviors, and past medical information.
- (2)
- Objective—description of the doctor’s observations from physical examinations and previously ordered tests.
- (3)
- Assessment—description of the potential problem(s) and related synthesis of the information from subjective and objective sections.
- (4)
- Plan—description of how the problem will be addressed or description of further investigation.
7.3. Design Process
7.4. Text Classification
- Tokenization—a collection of patient clinical text documents is split into a set of sentences . Our objective is to classify these sentences into a predefined set of classes.
- Feature generation—after tokenization, a feature vector for our deep learning classifiers is required. We use word embedding to generate the required feature vectors for each sentence. Word embedding results in input features.
- Input layer—these feature vectors are then used as input into the embedding layer of the neural network, i.e., word embedding results are used as input features.
- Embedding layer output—the output generated from the embedding layers is fed into the next fully connected layer (dense layer) of the neural network.
- Output layer—a relevant class label (subjective, objective, assessment, and plan) is assigned to each sentence at the output layer.
7.5. Cluster Map Generation
8. Evaluation
9. Results
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maheshwari, R.; Moudgil, K.; Parekh, H.; Sawant, R. A Machine Learning Based Medical Data Analytics and Visualization Research Platform. In Proceedings of the 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, 1–3 March 2018; pp. 1–5. [Google Scholar] [CrossRef]
- López-Martínez, F.; Núñez-Valdez, E.R.; García-Díaz, V.; Bursac, Z. A Case Study for a Big Data and Machine Learning Platform to Improve Medical Decision Support in Population Health Management. Algorithms 2020, 13, 102. [Google Scholar] [CrossRef]
- Mustafa, A.; Rahimi Azghadi, M. Automated Machine Learning for Healthcare and Clinical Notes Analysis. Computers 2021, 10, 24. [Google Scholar] [CrossRef]
- Muralidhar, E.S.; Gowtham, T.S.; Jain, A.; Padmaveni, K. Development of Health Monitoring Application using Machine Learning on Android Platform. In Proceedings of the 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 1076–1085. [Google Scholar] [CrossRef]
- Chowdhury, A.; Rosenthal, J.; Waring, J.; Umeton, R. Applying Self-Supervised Learning to Medicine: Review of the State of the Art and Medical Implementations. Informatics 2021, 8, 59. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, N. Machine Learning based Medical Information Analysis, Estimations and Approximations over Present Health Research Domain. In Proceedings of the 2020 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 2–4 July 2020; pp. 704–708. [Google Scholar] [CrossRef]
- Massaro, A.; Maritati, V.; Savino, N.; Galiano, A. Neural Networks for Automated Smart Health Platforms oriented on Heart Predictive Diagnostic Big Data Systems. In Proceedings of the 2018 AEIT International Annual Conference, Bari, Italy, 3–5 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Massaro, A.; Ricci, G.; Selicato, S.; Raminelli, S.; Galiano, A. Decisional Support System with Artificial Intelligence oriented on Health Prediction using a Wearable Device and Big Data. In Proceedings of the 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 718–723. [Google Scholar] [CrossRef]
- Massaro, A.; Galiano, A.; Scarafile, D.; Vacca, A.; Frassanito, A.; Melaccio, A.; Solimando, A.; Ria, R.; Calamita, G.; Bonomo, M.; et al. Telemedicine DSS-AI Multi Level Platform for Monoclonal Gammopathy Assistance. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Tange, H.; Nagykaldi, Z.; De Maeseneer, J. Towards an Overarching Model for Electronic Medical-Record Systems, Including Problem-Oriented, Goal-Oriented, and Other Approaches. Eur. J. Gen. Pract. 2017, 23, 257–260. [Google Scholar] [CrossRef]
- Rostamzadeh, N.; Abdullah, S.S.; Sedig, K. Visual Analytics for Electronic Health Records: A Review. Informatics 2021, 8, 12. [Google Scholar] [CrossRef]
- Wanderer, J.P.; Nelson, S.E.; Ehrenfeld, J.M.; Monahan, S.; Park, S. Clinical Data Visualization: The Current State and Future Needs. J. Med. Syst. 2016, 40, 1–9. [Google Scholar] [CrossRef]
- Kuhn, T.; Basch, P.; Barr, M.; Yackel, T.; Medical Informatics Committee of the American College of Physicians. Clinical Documentation in the 21st Century: Executive Summary of a Policy Position Paper from the American College of Physicians. Ann. Intern. Med. 2015, 162, 301–303. [Google Scholar] [CrossRef]
- Grasso, C.T.; Joshi, A.; Siegel, E. Visualization of Pain Severity Events in Clinical Records Using Semantic Structures. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 321–324. [Google Scholar]
- Spasic, I.; Nenadic, G. Clinical Text Data in Machine Learning: Systematic Review. JMIR Med. Inform. 2020, 8, e17984. [Google Scholar] [CrossRef]
- Apostolova, E.; Channin, D.S.; Demner-Fushman, D.; Furst, J.; Lytinen, S.; Raicu, D. Automatic Segmentation of Clinical Texts. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 5905–5908. [Google Scholar]
- Baron, R.J. Doctors’ Stories: The Narrative Structure of Medical Knowledge. Literature and Medicine. Johns Hopkins Univ. Press 1992, 11, 321–324. [Google Scholar]
- Johnson, S.B.; Bakken, S.; Dine, D.; Hyun, S.; Mendonça, E.; Morrison, F.; Bright, T.; Van Vleck, T.; Wrenn, J.; Stetson, P. An Electronic Health Record Based on Structured Narrative. J. Am. Med. Inform. Assoc. 2008, 15, 54–64. [Google Scholar] [CrossRef]
- Osheroff, J.A.; Teich, J.M.; Middleton, B.; Steen, E.B.; Wright, A.; Detmer, D.E. A Roadmap for National Action on Clinical Decision Support. J. Am. Med. Inform. Assoc. 2007, 14, 141–145. [Google Scholar] [CrossRef]
- Rind, A.; Wang, T.D.; Aigner, W.; Miksch, S.; Wongsuphasawat, K.; Plaisant, C.; Shneiderman, B. Interactive Information Visualization to Explore and Query Electronic Health Records; Foundations and Trends® in Human–Computer Interaction; Now Publishers, Inc.: Delft, The Netherlands, 2013. [Google Scholar]
- Lesselroth, B.J.; Pieczkiewicz, D.S. Data Visualization Strategies for the Electronic Health Record; Nova Science Publishers: New York, NY, USA, 2011. [Google Scholar]
- De Oliveira, J.M.; da Costa, C.A.; Antunes, R.S. Data Structuring of Electronic Health Records: A Systematic Review. Health Technol. 2021, 11, 1219–1235. [Google Scholar] [CrossRef]
- Venkataraman, G.R.; Pineda, A.L.; Bear Don’t Walk, O.J., IV; Zehnder, A.M.; Ayyar, S.; Page, R.L.; Bustamante, C.D.; Rivas, M.A. FasTag: Automatic Text Classification of Unstructured Medical Narratives. PLoS ONE 2020, 15, e0234647. [Google Scholar] [CrossRef]
- Lin, W.; Ji, D.; Lu, Y. Disorder Recognition in Clinical Texts Using Multi-Label Structured SVM. BMC Bioinform. 2017, 18, 75. [Google Scholar] [CrossRef]
- Pivovarov, R.; Elhadad, N. Automated Methods for the Summarization of Electronic Health Records. J. Am. Med. Inform. Assoc. 2015, 22, 938–947. [Google Scholar] [CrossRef]
- Caban, J.J.; Gotz, D. Visual Analytics in Healthcare–Opportunities and Research Challenges. J. Am. Med. Inform. Assoc. 2015, 22, 260–262. [Google Scholar] [CrossRef]
- Chen, I.Y.; Agrawal, M.; Horng, S.; Sontag, D. Robustly Extracting Medical Knowledge from EHRs: A Case Study of Learning a Health Knowledge Graph. In Pacific Symposium on Biocomputing 2020; World Scientific: Hackensack, NJ, USA, 2019; pp. 19–30. [Google Scholar]
- Pomares-Quimbaya, A.; Kreuzthaler, M.; Schulz, S. Current Approaches to Identify Sections within Clinical Narratives from Electronic Health Records: A Systematic Review. BMC Med. Res. Methodol. 2019, 19, 155. [Google Scholar] [CrossRef]
- Safran, C.; Bloomrosen, M.; Hammond, W.E.; Labkoff, S.; Markel-Fox, S.; Tang, P.C.; Detmer, D.E. Toward a National Framework for the Secondary Use of Health Data: An American Medical Informatics Association White Paper. J. Am. Med. Inform. Assoc. 2007, 14, 1–9. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Wen, A.; Wang, L.; Hong, N.; Shen, F.; Bedrick, S.; Hersh, W.; Liu, H. Implementation of a Cohort Retrieval System for Clinical Data Repositories Using the Observational Medical Outcomes Partnership Common Data Model: Proof-of-Concept System Validation. JMIR Med. Inform. 2020, 8, e17376. [Google Scholar] [CrossRef]
- Murdoch, T.B.; Detsky, A.S. The Inevitable Application of Big Data to Health Care. JAMA 2013, 309, 1351–1352. [Google Scholar] [CrossRef]
- Jarabek, B.; Mink, P.; Winden, T.; Bork, L.; Elison, J.T.; Finley, G.; Giaquinto, R.; Hultman, G.M.; Lindemann, E.A.; McEwan, R.; et al. Discovery and Visualization of New Information from Clinical Reports in the EHR; AHRQ Grant Final Progress Report-Grant No.: R01HS022085; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2019. [Google Scholar]
- Lauster, C.D.; Srivastava, S.B. Fundamental Skills for Patient Care in Pharmacy Practice; Jones & Bartlett Publishers: Burlington, MA, USA, 2013. [Google Scholar]
- Silow-Carroll, S.; Edwards, J.N.; Rodin, D. Using Electronic Health Records to Improve Quality and Efficiency: The Experiences of Leading Hospitals. Issue Brief (Commonw. Fund) 2012, 17, 1–40. [Google Scholar] [PubMed]
- Semanik, M.G.; Kleinschmidt, P.C.; Wright, A.; Willett, D.L.; Dean, S.M.; Saleh, S.N.; Co, Z.; Sampene, E.; Buchanan, J.R. Impact of a Problem-Oriented View on Clinical Data Retrieval. J. Am. Med. Inform. Assoc. 2021, 28, 899–906. [Google Scholar] [CrossRef]
- Altuncu, M.T.; Mayer, E.; Yaliraki, S.N.; Barahona, M. From Free Text to Clusters of Content in Health Records: An Unsupervised Graph Partitioning Approach. Appl. Netw. Sci. 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Li, Y.; Lipsky Gorman, S.; Elhadad, N. Section Classification in Clinical Notes Using Supervised Hidden Markov Model. In Proceedings of the 1st ACM International Health Informatics Symposium, Arlington, VA, USA, 11–12 November 2010; pp. 744–750. [Google Scholar]
- Pollack, A.H.; Pratt, W. Association of Health Record Visualizations with Physicians’ Cognitive Load When Prioritizing Hospitalized Patients. JAMA Netw. Open 2020, 3, e1919301. [Google Scholar] [CrossRef] [PubMed]
- Rostamzadeh, N.; Abdullah, S.S.; Sedig, K. Data-Driven Activities Involving Electronic Health Records: An Activity and Task Analysis Framework for Interactive Visualization Tools. Multimodal Technol. Interact. 2020, 4, 7. [Google Scholar] [CrossRef]
- Sultanum, N.; Brudno, M.; Wigdor, D.; Chevalier, F. More Text Please! Understanding and Supporting the Use of Visualization for Clinical Text Overview. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 21–26 April 2018; pp. 1–13. [Google Scholar]
- Shah, A.D.; Martinez, C.; Hemingway, H. The Freetext Matching Algorithm: A Computer Program to Extract Diagnoses and Causes of Death from Unstructured Text in Electronic Health Records. BMC Med. Inform. Decis. Mak. 2012, 12, 88. [Google Scholar] [CrossRef]
- Deng, Y.; Denecke, K. Visualizing Unstructured Patient Data for Assessing Diagnostic and Therapeutic History. In e-Health–For Continuity of Care; IOS Press: Amsterdam, The Netherlands, 2014; Volume 205, pp. 1158–1162. [Google Scholar]
- Hillestad, R.; Bigelow, J.; Bower, A.; Girosi, F.; Meili, R.; Scoville, R.; Taylor, R. Can Electronic Medical Record Systems Transform Health Care? Potential Health Benefits, Savings, and Costs. Health Aff. 2005, 24, 1103–1117. [Google Scholar] [CrossRef]
- Nguyen, L.; Bellucci, E.; Nguyen, L.T. Electronic Health Records Implementation: An Evaluation of Information System Impact and Contingency Factors. Int. J. Med. Inform. 2014, 83, 779–796. [Google Scholar] [CrossRef]
- Pai, M.M.; Ganiga, R.; Pai, R.M.; Sinha, R.K. Standard Electronic Health Record (EHR) Framework for Indian Healthcare System. Health Serv. Outcomes Res. Methodol. 2021, 21, 339–362. [Google Scholar] [CrossRef]
- Kubben, P.; Dumontier, M.; Dekker, A. Fundamentals of Clinical Data Science; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Wang, Z.; Shah, A.D.; Tate, A.R.; Denaxas, S.; Shawe-Taylor, J.; Hemingway, H. Extracting Diagnoses and Investigation Results from Unstructured Text in Electronic Health Records by Semi-Supervised Machine Learning. PLoS ONE 2012, 7, e30412. [Google Scholar] [CrossRef]
- Liang, J.J.; Tsou, C.-H.; Poddar, A. A Novel System for Extractive Clinical Note Summarization Using EHR Data. In Proceedings of the 2nd Clinical Natural Language Processing Workshop, Minneapolis, MN, USA, 7 June 2019. [Google Scholar]
- Casey, J.A.; Schwartz, B.S.; Stewart, W.F.; Adler, N.E. Using Electronic Health Records for Population Health Research: A Review of Methods and Applications. Annu. Rev. Public Health 2016, 37, 61–81. [Google Scholar] [CrossRef]
- Jensen, P.B.; Jensen, L.J.; Brunak, S. Mining Electronic Health Records: Towards Better Research Applications and Clinical Care. Nat. Rev. Genet. 2012, 13, 395–405. [Google Scholar] [CrossRef]
- Ning, X.; Fan, Z.; Burgun, E.; Ren, Z.; Schleyer, T. Improving Information Retrieval from Electronic Health Records Using Dynamic and Multi-Collaborative Filtering. PLoS ONE 2021, 16, e0255467. [Google Scholar] [CrossRef]
- Kosara, R.; Miksch, S. Visualization Methods for Data Analysis and Planning in Medical Applications. Int. J. Med. Inform. 2002, 68, 141–153. [Google Scholar] [CrossRef]
- Kimia, A.A.; Savova, G.K.; Landschaft, A.; Harper, M.B. An Introduction to Natural Language Processing: How You Can Get More from Those Electronic Notes You Are Generating. Pediatric Emerg. Care 2015, 31, 536–541. [Google Scholar] [CrossRef]
- Chou, S.; Chang, W.; Cheng, C.-Y.; Jehng, J.-C.J.; Chang, C. An Information Retrieval System for Medical Records & Documents. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1474–1477. [Google Scholar]
- Colorafi, K.; Moua, L.; Shaw, M.R.; Ricker, D.; Postma, J.M. Assessing the Value of the Meaningful Use Clinical Summary for Patients and Families with Pediatric Asthma. J. Asthma 2018, 55, 1068–1076. [Google Scholar] [CrossRef]
- Rind, A.; Aigner, W.; Miksch, S.; Wiltner, S.; Pohl, M.; Turic, T.; Drexler, F. Visual exploration of time-oriented patient data for chronic diseases: Design study and evaluation. In Symposium of the Austrian HCI and Usability Engineering Group; Springer: Berlin/Heidelberg, Germany, 2011; pp. 301–320. [Google Scholar]
- Blei, D.M.; Ng, A.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Deerwester, S.C.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R.A. Indexing by Latent Semantic Analysis. J. Assoc. Inf. Sci. Technol. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- Hofmann, T. Probabilistic Latent Semantic Analysis. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, 30 July–1 August 1999. [Google Scholar]
- Duarte, D.; Puerari, I.; Bianco, G.D.; Lima, J.F. Exploratory Analysis of Electronic Health Records Using Topic Modeling. J. Inf. Data Manag. 2020, 11, 131–147. [Google Scholar]
- Chan, K.R.; Lou, X.; Karaletsos, T.; Crosbie, C.; Gardos, S.M.; Artz, D.; Rätsch, G. An Empirical Analysis of Topic Modeling for Mining Cancer Clinical Notes. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops, Dallas, TX, USA, 7–10 December 2013; pp. 56–63. [Google Scholar]
- Arnold, C.W.; El-Saden, S.M.; Bui, A.A.T.; Taira, R.K. Clinical Case-Based Retrieval Using Latent Topic Analysis. AMIA Annu. Symp. Proc. 2010, 2010, 26–30. [Google Scholar]
- Perotte, A.; Wood, F.; Elhadad, N.; Bartlett, N. Hierarchically Supervised Latent Dirichlet Allocation. In Advances in Neural Information Processing Systems 24; Curran Associates, Inc.: Red Hook, NY, USA, 2011; pp. 1–9. [Google Scholar]
- Coroiu, A.M.; Călin, A.D.; Nuţu, M. Topic Modeling in Medical Data Analysis. In Case Study Based on Medical Records Analysis. In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 19–21 September 2019; pp. 1–5. [Google Scholar]
- Liu, X.; Alharbi, M.; Best, J.; Chen, J.; Diehl, A.; Firat, E.E.; Rees, D.; Wang, Q.; Laramee, R.S. Visualization Resources: A Starting Point. In Proceedings of the 2021 25th International Conference Information Visualisation (IV), Sydney, Australia, 5–9 July 2021; pp. 160–169. [Google Scholar]
- Ledesma, A.; Bidargaddi, N.; Strobel, J.; Schrader, G.; Nieminen, H.; Korhonen, I.; Ermes, M. Health Timeline: An Insight-Based Study of a Timeline Visualization of Clinical Data. BMC Med. Inform. Decis. Mak. 2019, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Grobelnik, M.; Mladenic, D. Visualization of News Articles. Informatica 2004, 28, 375–380. [Google Scholar]
- Imai, T.; Nakamura, K.; Ohmameuda, T. Visualization of Similar News Articles with Network Analysis and Text Mining. In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 27–30 October 2015; pp. 151–152. [Google Scholar]
- Doshi, K.; Gokhale, S.; Mamtora, H.; Bide, P. Analytics and Visualization of Trends in News Articles. In Proceedings of the 2019 International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 20–21 December 2019; pp. 1–9. [Google Scholar]
- Roque, F.; Slaughter, L.; Tkatšenko, A. A Comparison of Several Key Information Visualization Systems for Secondary Use of Electronic Health Record Content. In Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents, Los Angeles, CA, USA, 5 June 2010; pp. 76–83. [Google Scholar]
- Powsner, S.M.; Tufte, E.R. Graphical Summary of Patient Status. Lancet 1994, 344, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Plaisant, C.; Milash, B.; Rose, A.; Widoff, S.; Shneiderman, B. LifeLines: Visualizing Personal Histories. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 13–18 April 1996; pp. 221–227. [Google Scholar]
- Wang, T.D.; Plaisant, C.; Shneiderman, B.; Spring, N.; Roseman, D.; Marchand, G.; Mukherjee, V.; Smith, M.S. Temporal Summaries: Supporting Temporal Categorical Searching, Aggregation and Comparison. IEEE Trans. Vis. Comput. Graph. 2009, 15, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.D.; Marciano, B.E.; Cimino, J.J. Visualizing the Data—Using Lifelines2 to Gain Insights from Data Drawn from a Clinical Data Repository. AMIA Jt. Summits Transl. Sci. Proc. 2013, 2013, 168–172. [Google Scholar]
- Goren-Bar, D.; Shahar, Y.; Galperin-Aizenberg, M.; Boaz, D.; Tahan, G. KNAVE II: The Definition and Implementation of an Intelligent Tool for Visualization and Exploration of Time-Oriented Clinical Data. In Proceedings of the Working Conference on Advanced Visual Interfaces, Gallipoli, Italy, 25–28 May 2004; pp. 171–174. [Google Scholar]
- Hallett, C. Multi-Modal Presentation of Medical Histories. In Proceedings of the 13th International Conference on Intelligent User Interfaces, Gran Canaria, Spain, 13–16 January 2008; pp. 80–89. [Google Scholar]
- Miksch, S.; Kosara, R.; Shahar, Y.; Johnson, P.D. AsbruView: Visualization of Time-Oriented, Skeletal Plans. In Proceedings of the Artificial Intelligence Planning Systems, Pittsburgh, PA, USA, 7–10 June 1998; pp. 11–18. [Google Scholar]
- Wongsuphasawat, K.; Guerra Gómez, J.A.; Plaisant, C.; Wang, T.D.; Taieb-Maimon, M.; Shneiderman, B. LifeFlow: Visualizing an Overview of Event Sequences. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 1747–1756. [Google Scholar]
- Meyer, T.E.; Monroe, M.; Plaisant, C.; Lan, R.; Wongsuphasawat, K.; Coster, T.S.; Gold, S.; Millstein, J.; Shneiderman, B. Visualizing Patterns of Drug Prescriptions with Eventflow: A Pilot Study of Asthma Medications in the Military Health System. In Proceedings of the Workshop on Visual Analytics in HealthCare, Washington, DC, USA, 16 November 2013; pp. 1–4. [Google Scholar]
- Kenei, J.K.; Opiyo, E.T.O.; Oboko, R.O. Visualizing Semantic Structure of a Clinical Text Document. Eur. J. Electr. Eng. Comput. Sci. 2020, 4, 6. [Google Scholar] [CrossRef]
- Sellars, B.B.; Sherrod, D.R.; Chappel-Aiken, L. Using Word Clouds to Analyze Qualitative Data in Clinical Settings. Nurs. Manag. 2018, 49, 51–53. [Google Scholar] [CrossRef]
- Rousseau, J.F.; Ip, I.K.; Raja, A.S.; Valtchinov, V.I.; Cochon, L.; Schuur, J.D.; Khorasani, R. Can Automated Retrieval of Data from Emergency Department Physician Notes Enhance the Imaging Order Entry Process? Appl. Clin. Inform. 2019, 10, 189–198. [Google Scholar] [CrossRef]
- Foldes, D. Using Tag Clouds as a Tool for Patients’ Medical History Visualization and Record Retrieval. Ph.D. Thesis, Concordia University, Montréal, QC, Canada, 2015. [Google Scholar]
- Llopis, F.; Ferrández, A.; Vicedo, J.L. Text Segmentation for Efficient Information Retrieval. In Proceedings of the Third International Conference, CICLing 2002, Mexico City, Mexico, 17–23 February 2002; Lecture Notes in Computer Science; Gelbukh, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2276, pp. 373–380. [Google Scholar]
- Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Edinger, T.; Demner-Fushman, D.; Cohen, A.M.; Bedrick, S.; Hersh, W.R. Evaluation of Clinical Text Segmentation to Facilitate Cohort Retrieval. AMIA Annu. Symp. Proc. 2017, 2017, 660–669. [Google Scholar]
- Ganesan, K.; Subotin, M. A General Supervised Approach to Segmentation of Clinical Texts. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014; pp. 33–40. [Google Scholar]
- Tepper, M.; Capurro, D.; Xia, F.; Vanderwende, L.; Yetisgen-Yildiz, M. Statistical Section Segmentation in Free-Text Clinical Records. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), Istanbul, Turkey, 23–25 May 2012; pp. 2001–2008. [Google Scholar]
- Mowery, D.L.; Wiebe, J.; Visweswaran, S.; Harkema, H.; Chapman, W.W. Building an Automated SOAP Classifier for Emergency Department Reports. J. Biomed. Inform. 2012, 45, 71–81. [Google Scholar] [CrossRef]
- Bashyam, V.; Hsu, W.; Watt, E.; Bui, A.A.T.; Kangarloo, H.; Taira, R.K. Problem-Centric Organization and Visualization of Patient Imaging and Clinical Data. Radiographics 2009, 29, 331–343. [Google Scholar] [CrossRef]
- Choi, Y.J.; Byun, J.; Berkovich, S. Cross-Search Technique and Its Visualization of Peer-to-Peer Distributed Clinical Documents. Trans. Eng. Comput. Technol. 2004, 3, 59–63. [Google Scholar]
- Fan, Z.; Burgun, E.; Schleyer, T.; Ning, X. Improving Information Retrieval from Electronic Health Records Using Dynamic and Multi-Collaborative Filtering. In Proceedings of the 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an, China, 10–13 June 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Furlow, B. Information Overload and Unsustainable Workloads in the Era of Electronic Health Records. Lancet Respir. Med. 2020, 8, 243–244. [Google Scholar] [CrossRef]
- Wei, X.; Eickhoff, C. Embedding Electronic Health Records for Clinical Information Retrieval. arXiv 2018, arXiv:1811.05402. [Google Scholar]
- Sheikhalishahi, S.; Miotto, R.; Dudley, J.T.; Lavelli, A.; Rinaldi, F.; Osmani, V. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR Med. Inform. 2019, 7, e12239. [Google Scholar] [CrossRef]
- Kuhn, L.; Eickhoff, C. Implicit Negative Feedback in Clinical Information Retrieval. arXiv 2016, arXiv:1607.03296. [Google Scholar] [CrossRef]
- Sheikhalishahi, S.; Miotto, R.; Dudley, J.T.; Lavelli, A.; Rinaldi, F.; Osmani, V. Information Extraction from Clinical Notes: A Systematic Review for Chronic Diseases (Preprint). JMIR Med. Inform. 2018. [Google Scholar]
- Tayefi, M.; Ngo, P.D.; Chomutare, T.; Dalianis, H.; Salvi, E.; Budrionis, A.; Godtliebsen, F. Challenges and Opportunities beyond Structured Data in Analysis of Electronic Health Records. Wiley Interdiscip. Rev. Comput. Stat. 2021, 13, e1549. [Google Scholar] [CrossRef]
- Ruan, W.; Appasani, N.; Kim, K.; Vincelli, J.; Kim, H.; Lee, W.-S. Pictorial Visualization of EMR Summary Interface and Medical Information Extraction of Clinical Notes. In Proceedings of the 2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), Ottawa, ON, Canada, 12–13 June 2018; pp. 1–6. [Google Scholar]
- Holzinger, A.; Schantl, J.; Schroettner, M.; Seifert, C.; Verspoor, K. Biomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges. In Interactive Knowledge Discovery and Data Mining in Biomedical Informatics; Lecture Notes in Computer Science 8401; Holzinger, A., Jurisica, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 271–300. [Google Scholar]
- Sultanum, N.; Singh, D.; Brudno, M.; Chevalier, F. Doccurate: A Curation-Based Approach for Clinical Text Visualization. IEEE Trans. Vis. Comput. Graph. 2019, 25, 142–151. [Google Scholar] [CrossRef]
- Peres, S.C.; Pham, T.; Phillips, R.G. Validation of the System Usability Scale (SUS). Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2013, 57, 192–196. [Google Scholar] [CrossRef]
- Brooke, J.B. SUS—A retrospective. J. Usability Stud. 2013, 8, 29–40. [Google Scholar]
- Brooke, J. Chapter SUS—A Quick and Dirty Usability Scale. In Usability Evaluation in Industry, 1st ed.; Taylor & Francis: London, UK, 1996; pp. 189–194. [Google Scholar]
- Bangor, A.; Kortum, P.T.; Miller, J.T. Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale. J. Usability Stud. Arch. 2009, 4, 114–123. [Google Scholar]
- Hilligoss, B.; Zheng, K. Chart Biopsy: An Emerging Medical Practice Enabled by Electronic Health Records and Its Impacts on Emergency Department-Inpatient Admission Handoffs. J. Am. Med. Inform. Assoc. JAMIA 2013, 20, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Mazur, L.; Mosaly, P.; Moore, C.R.; Marks, L.B. Association of the Usability of Electronic Health Records with Cognitive Workload and Performance Levels Among Physicians. JAMA Netw. Open 2019, 2, e191709. [Google Scholar] [CrossRef]
- Tawfik, A.A.; Kochendorfer, K.M.; Saparova, D.; Al Ghenaimi, S.; Moore, J.L. Using Semantic Search to Reduce Cognitive Load in an Electronic Health Record. In Proceedings of the 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services, Columbia, MO, USA, 13–15 June 2011; pp. 181–184. [Google Scholar]
- Medical Transcriptions. Available online: https://www.kaggle.com/datasets/tboyle10/medicaltranscriptions (accessed on 31 January 2022).
SOAP Sections | Description |
---|---|
Subjective | Background information that is relevant for knowing the current state of the patient. It may include family history, daily habits, current medications, allergies, and series of events that happened in between |
Objective | Quantifiable or measurable data obtained from past records and examinations, screening, and tests |
Assessment | Possible diagnosis provided by the practitioners or the staff treating the patient |
Plan | Treatment strategies, actions to be taken, and follow-up plans |
Strongly Disagree 1 | 2 | 3 | 4 | Strongly Agree 5 | ||
---|---|---|---|---|---|---|
1 | I think that I would like to use this system frequently | ☐ | ☐ | ☐ | ☐ | ☐ |
2 | I found the system unnecessarily complex | ☐ | ☐ | ☐ | ☐ | ☐ |
3 | I thought the system was easy to use | ☐ | ☐ | ☐ | ☐ | ☐ |
4 | I think that I would need the support of a technical person to be able to use this system | ☐ | ☐ | ☐ | ☐ | ☐ |
5 | I found the various functions in this system were well integrated. | ☐ | ☐ | ☐ | ☐ | ☐ |
6 | I thought there was too much inconsistency in this system. | ☐ | ☐ | ☐ | ☐ | ☐ |
7 | I would imagine that most people would learn to use this system very quickly | ☐ | ☐ | ☐ | ☐ | ☐ |
8 | I found the system very cumbersome to use | ☐ | ☐ | ☐ | ☐ | ☐ |
9 | I felt very confident using the system. | ☐ | ☐ | ☐ | ☐ | ☐ |
10 | I needed to learn a lot of things before I could get going with this system | ☐ | ☐ | ☐ | ☐ | ☐ |
Participant | Questions | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Sus Score | |
1 | 5 | 1 | 5 | 1 | 4 | 1 | 4 | 1 | 4 | 2 | 90.0 |
2 | 3 | 2 | 4 | 2 | 5 | 2 | 5 | 2 | 4 | 3 | 75.0 |
3 | 5 | 2 | 3 | 2 | 4 | 2 | 4 | 1 | 5 | 1 | 82.5 |
4 | 4 | 1 | 4 | 2 | 4 | 3 | 3 | 1 | 4 | 2 | 75 |
5 | 5 | 2 | 4 | 1 | 3 | 1 | 4 | 2 | 4 | 1 | 82.5 |
6 | 2 | 2 | 3 | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 52.5 |
7 | 4 | 2 | 2 | 3 | 4 | 2 | 4 | 2 | 2 | 1 | 65 |
8 | 4 | 2 | 3 | 2 | 5 | 1 | 2 | 2 | 3 | 3 | 67.5 |
9 | 5 | 2 | 4 | 1 | 4 | 2 | 4 | 1 | 4 | 1 | 85 |
10 | 4 | 1 | 2 | 2 | 4 | 3 | 3 | 2 | 3 | 2 | 65 |
11 | 4 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 4 | 2 | 70 |
12 | 3 | 2 | 3 | 1 | 3 | 1 | 4 | 1 | 4 | 1 | 77.5 |
Average | 73.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenei, J.; Opiyo, E. Modeling and Visualization of Clinical Texts to Enhance Meaningful and User-Friendly Information Retrieval. Med. Sci. Forum 2022, 10, 9. https://doi.org/10.3390/IECH2022-12294
Kenei J, Opiyo E. Modeling and Visualization of Clinical Texts to Enhance Meaningful and User-Friendly Information Retrieval. Medical Sciences Forum. 2022; 10(1):9. https://doi.org/10.3390/IECH2022-12294
Chicago/Turabian StyleKenei, Jonah, and Elisha Opiyo. 2022. "Modeling and Visualization of Clinical Texts to Enhance Meaningful and User-Friendly Information Retrieval" Medical Sciences Forum 10, no. 1: 9. https://doi.org/10.3390/IECH2022-12294