Next Article in Journal
National Antimicrobial Stewardship Activities in Primary and Secondary Care in England 2021–22 (ESPAUR Report)
Previous Article in Journal
Development and User Feedback on Antimicrobial Stewardship Explainer Videos: A Collaborative Approach between the UK and Eight African Countries
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Abstract

Research on Antimicrobial Utilization and Resistance in England 2021–22 (ESPAUR Report) †

by
Emily Agnew
* and
Julie V. Robotham
* on behalf of the ESPAUR Research Chapter Authors
HCAI & AMR Modelling and Evaluation Unit, HCAI, Fungal, AMR, AMU &Sepsis Division, Clinical and Public Health Group, UK Health Security Agency, 61 Colindale Avenue, London NW9 5EQ, UK
*
Authors to whom correspondence should be addressed.
Presented at the ESPAUR 2021/22 Webinar, Antibiotic Guardian, 23 November 2022; Available online: https://antibioticguardian.com/Meetings/espaur-2021-22-webinar/.
Med. Sci. Forum 2022, 15(1), 17; https://doi.org/10.3390/msf2022015017
Published: 28 March 2023
(This article belongs to the Proceedings of ESPAUR Report Webinar and Antibiotic Guardian Shared Learning Awards)
The Research Chapter (Chapter 8) of the English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2021–2022 showcases the research that has been undertaken and that is ongoing at the UK Health Security Agency (UKHSA) in the field of healthcare-associated infections (HCAIs) and antimicrobial resistance (AMR) from April 2021 to March 2022 [1,2]. These findings were presented at the ESPAUR Report webinar on 23 November 2022.
This chapter highlights the scope and breadth of projects that are underway covering many research and development priorities, including improvements in surveillance and data collection and enhancing insights drawn from them. Work has been directed to the development of novel diagnostics and treatments, as well as improving the evidence base for existing control strategies, including infection prevention and control (IPC), antimicrobial stewardship (AMS), diagnostics, antimicrobials, and novel alternatives (such as vaccination and host-directed therapies). A significant amount of research has been undertaken to improve our understanding of the mechanisms of disease transmission, risk factors for carriage and infection, and the health and economic burden. As well as covering a breadth of topic areas, this research also uses a breadth of methodologies, both quantitative and qualitative, from mathematical modelling to behavioral research, and from exploratory laboratory science to implementation science. The projects covered in the chapter span the majority of the major themes of the national action plan (NAP) for AMR [3], as shown in Figure 1.
Examples of AMR and HCAI research projects from across the NAP’s major themes are described in the chapter, with the majority of projects reflecting the themes of ‘Stronger laboratory capacity and surveillance in AMR’, ‘Human infection prevention and control’, and the ‘Optimal use of antimicrobials’. Further projects cover the themes of ‘Basic research’, the ‘Development of new therapeutics’, and ‘Development and access to novel diagnostics’. The publication distribution in Figure 2 shows that there is also cutting-edge research underway across the following topics: ‘Environmental contamination’, ‘Better food safety’, ‘Wider access to therapeutics’, ‘Development and access to vaccines’, ‘Better quality assurance’, and ‘International diplomacy’.
Research from the two National Institute for Health Research (NIHR) Health Protection Research Units (HPRUs) in the topic areas of HCAI and AMR, led by Imperial College London and Oxford University in partnership with UKHSA, is highlighted. The HPRUs are multi-disciplinary centers of excellence, with a focus on collaboration, training, and knowledge sharing. An overview of the four main research themes of each HCAI and AMR HPRU is provided and individual exemplar research projects are described, demonstrating the breadth and scale of the work within the HPRUs. These include, for example, a large-scale observational hybrid sequencing-based study that explores the mobilomes associated with Gram-negative bloodstream infections, and work in collaboration with global expert stakeholders to develop a research roadmap for optimizing antibiotic use in human populations. The work of HPRUs is intended to be translational, e.g., helping to shape the next national action plan. As such, in unity with the goals of HPRUs, this chapter highlights the importance of—and approaches to— embedding knowledge mobilization, optimizing the use of research-generated knowledge, and ensuring that the right audiences are reached in the right way to achieve the greatest impact.

Author Contributions

Writing—original draft preparation, E.A. and J.V.R.; writing—review and editing, E.A. and J.V.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing not applicable.

Acknowledgments

We acknowledge the contribution of the all of the authors of the ESPAUR research chapter: Jordan Charlesworth, Joanna Bacon, Esmita Charani, Jane Turton, Rebecca Guy, Samuel Lipworth, Aleksandra Borek, Simon Collin, Diane Ashiru-Oredope, Gisela Robles Aguilar, Nichola Naylor, Alice Ledda, Ross Booton, Amelia Andrews, Mark Sutton, Ginny Moore, Nicole Stoesser, Donna Lecky, Hannah Higgins, Caroline Jamieson-Leadbitter, Sarah Tonkin-Crine, Alison Holmes, and Sarah A Walker. The authors would also like to acknowledge the ESPAUR oversight group members.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ashiru-Oredope, D.; Hopkins, S. on behalf of the English Surveillance Programme for Antimicrobial Utilization and Resistance Oversight Group; Kessel, A.; Hopkins, S.; Ashiru-Oredope, D.; Brown, B.; Brown, N.; Carter, S.; Charlett, A.; Cichowka, A.; et al. Antimicrobial stewardship: English surveillance programme for antimicrobial utilization and resistance (ESPAUR). J. Antimicrob. Chemother. 2013, 68, 2421–2423. [Google Scholar] [CrossRef] [PubMed]
  2. Agnew, E.; Robotham, J. on behalf of the ESPAUR Research Chapter Authors. Chapter 8. Research. In English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2021 to 2022; UK Health Security Agency: London, UK, 2022. [Google Scholar]
  3. UK 5-Year Action Plan for Antimicrobial Resistance 2019 to 2024; Department of Health and Social Care: London, UK, 2019.
  4. Acolatse, J.E.E.; Portal, E.A.R.; Boostrom, I.; Akafity, G.; Dakroah, M.P.; Chalker, V.J.; Sands, K.; Spiller, O.B. Environmental surveillance of ESBL and carbapenemase-producing gram-negative bacteria in a Ghanaian Tertiary Hospital. Antimicrob. Resist. Infect. Control. 2022, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
  5. Aliabadi, S.; Jauneikaite, E.; Müller-Pebody, B.; Hope, R.; Vihta, K.-D.; Horner, C.; Costelloe, C.E. Exploring temporal trends and risk factors for resistance in Escherichia coli-causing bacteraemia in England between 2013 and 2018: An ecological study. J. Antimicrob. Chemother. 2022, 77, 782–792. [Google Scholar] [CrossRef] [PubMed]
  6. Allen, H.; Merrick, R.; Ivanov, Z.; Pitt, R.; Mohammed, H.; Sinka, K.; Hughes, G.; Fifer, H.; Cole, M.J. Is there an association between previous infection with Neisseria gonorrhoeae and gonococcal AMR? A cross-sectional analysis of national and sentinel surveillance data in England, 2015–2019. Sex. Transm. Infect. 2023, 99, 1–6. [Google Scholar] [CrossRef] [PubMed]
  7. Andrews, A.; Bou-Antoun, S.; Guy, R.; Brown, C.S.; Hopkins, S.; Gerver, S. Respiratory antibacterial prescribing in primary care and the COVID-19 pandemic in England, winter season 2020–21. J. Antimicrob. Chemother. 2021, 77, 799–802. [Google Scholar] [CrossRef] [PubMed]
  8. Andrews, A.; Budd, E.L.; Hendrick, A.; Ashiru-Oredope, D.; Beech, E.; Hopkins, S.; Gerver, S.; Muller-Pebody, B.; The Amu Covid-Stakeholder Group. Surveillance of antibacterial usage during the COVID-19 pandemic in England, 2020. Antibiotics 2021, 10, 841. [Google Scholar] [CrossRef] [PubMed]
  9. Aranega-Bou, P.; Ellaby, N.; Ellington, M.J.; Moore, G. Migration of Escherichia coli and Klebsiella pneumoniae Carbapenemase (KPC)-Producing Enterobacter cloacae through wastewater pipework and establishment in hospital sink waste traps in a laboratory model system. Microorganisms 2021, 9, 1868. [Google Scholar] [CrossRef]
  10. Baede, V.O.; David, M.Z.; Andrasevic, A.T.; Blanc, D.S.; Borg, M.; Brennan, G.; Catry, B.; Chabaud, A.; Empel, J.; Enger, H.; et al. MRSA surveillance programmes worldwide: Moving towards a harmonised international approach. Int. J. Antimicrob. Agents 2022, 59, 106538. [Google Scholar] [CrossRef]
  11. Beale, M.A.; Marks, M.; Cole, M.J.; Lee, M.K.; Pitt, R.; Ruis, C.; Balla, E.; Crucitti, T.; Ewens, M.; Fernández-Naval, C.; et al. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat. Microbiol. 2021, 6, 1549–1560. [Google Scholar] [CrossRef]
  12. Berrocal-Almanza, L.C.; Harris, R.J.; Collin, S.M.; Muzyamba, M.C.; Conroy, O.D.; Mirza, A.; O’Connell, A.M.; Altass, L. Anderson, S.R.; Thomas, H.L.; et al. Effectiveness of nationwide programmatic testing and treatment for latent tuberculosis infection in migrants in England: A retrospective, population-based cohort study. Lancet Public Health 2022, 7, e305–e315. [Google Scholar] [CrossRef]
  13. Bhate, K.; Lin, L.Y.; Barbieri, J.; Leyrat, C.; Hopkins, S.; Stabler, R.; Shallcross, L.; Smeeth, L.; Francis, N.A.; Mathur, R.; et al. Is there an association between long-term antibiotics for acne and subsequent infection sequelae and antimicrobial resistance? A systematic review protocol. BMJ Open 2020, 10, e033662. [Google Scholar] [CrossRef] [PubMed]
  14. Bhattacharya, A.; Collin, S.M.; Stimson, J.; Thelwall, S.; Nsonwu, O.; Gerver, S.; Robotham, J.; Wilcox, M.; Hopkins, S.; Hope, R. Healthcare-associated COVID-19 in England: A national data linkage study. J. Infect. 2021, 83, 565–572. [Google Scholar] [CrossRef] [PubMed]
  15. Bielicki, J.A.; Stöhr, W.; Barratt, S.; Dunn, D.; Naufal, N.; Roland, D.; Sturgeon, K.; Finn, A.; Rodriguez-Ruiz, J.P.; Malhotra-Kumar, S.; et al. Effect of amoxicillin dose and treatment duration on the need for antibiotic Re-treatment in children with community-acquired pneumonia: The CAP-IT randomized clinical trial. JAMA 2021, 326, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
  16. Borek, A.J.; Pouwels, K.B.; van Hecke, O.; Robotham, J.V.; Butler, C.C.; Tonkin-Crine, S. Role of locum GPs in antibiotic prescribing and stewardship: A mixed-methods study. Br. J. Gen. Pract. 2022, 72, e118–e127. [Google Scholar] [CrossRef]
  17. Buchanan, J.; Roope, L.S.J.; Morrell, L.; Pouwels, K.B.; Robotham, J.V.; Abel, L.; Crook, D.W.; Peto, T.; Butler, C.C.; Walker, A.S.; et al. Preferences for medical consultations from online providers: Evidence from a discrete choice experiment in the United Kingdom. Appl. Health Econ. Health Policy 2021, 19, 521–535. [Google Scholar] [CrossRef] [PubMed]
  18. Budgell, E.P.; Davies, T.J.; Donker, T.; Hopkins, S.; Wyllie, D.H.; Peto, T.E.A.; Gill, M.J.; Llewelyn, M.J.; Walker, A.S. Impact of antibiotic use on patient-level risk of death in 36 million hospital admissions in England. J. Infect. 2022, 84, 311–320. [Google Scholar] [CrossRef] [PubMed]
  19. Coia, J.E.; Wilson, J.A.; Bak, A.; Marsden, G.L.; Shimonovich, M.; Loveday, H.P.; Humphreys, H.; Wigglesworth, N.; Demirjian, A.; Brooks, J.; et al. Joint Healthcare Infection Society (HIS) and Infection Prevention Society (IPS) guidelines for the prevention and control of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J. Hosp. Infect. 2021, 118, S1–S39. [Google Scholar] [CrossRef]
  20. Cole, M.J.; Davis, G.S.; Fifer, H.; Saunders, J.M.; Unemo, M.; Hadad, R.; Roberts, D.J.; Fazal, M.; Day, M.J.; Minshul, J.; et al. No widespread dissemination of Chlamydia trachomatis diagnostic-escape variants and the impact of Neisseria gonorrhoeae positivity on the Aptima Combo 2 assay. Sex. Transm. Infect. 2022, 98, 366–370. [Google Scholar] [CrossRef]
  21. Collin, S.M.; Farra, A. Antimicrobial resistance, infection prevention and control, and conflict in the Middle East. Int. J. Infect. Dis. 2021, 111, 326–327. [Google Scholar] [CrossRef]
  22. Dean, G.; Soni, S.; Pitt, R.; Ross, J.; Sabin, C.; Whetham, J. Treatment of mild-to-moderate pelvic inflammatory disease with a short-course azithromycin-based regimen versus ofloxacin plus metronidazole: Results of a multicentre, randomised controlled trial. Sex. Transm. Infect. 2021, 97, 177–182. [Google Scholar] [CrossRef]
  23. Emes, D.; Naylor, N.; Waage, J.; Knight, G. Quantifying the relationship between antibiotic use in food-producing animals and antibiotic resistance in humans. Antibiotics 2022, 11, 66. [Google Scholar] [CrossRef]
  24. Fifer, H.; Livermore, D.M.; Uthayakumaran, T.; Woodford, N.; Cole, M.J. What’s left in the cupboard? Older antimicrobials for treating gonorrhoea. J. Antimicrob. Chemother. 2021, 76, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
  25. Fifer, H.; Merrick, R.; Pitt, R.; Yung, M.; Allen, H.; Day, M.; Sinka, K.; Woodford, N.; Mohammed, H.; Brown, C.S.; et al. Frequency and correlates of Mycoplasma genitalium antimicrobial resistance mutations and their association with treatment outcomes: Findings from a national sentinel surveillance pilot in England. Sex. Transm. Dis. 2021, 48, 951–954. [Google Scholar] [CrossRef] [PubMed]
  26. Fifer, H.; Schaefer, U.; Pitt, R.; Allen, H.; Day, M.; Woodford, N.; Cole, M.J. Use of genomics to investigate Neisseria gonorrhoeae antimicrobial susceptibility testing discrepancies. J. Antimicrob. Chemother. 2022, 77, 849–850. [Google Scholar] [CrossRef] [PubMed]
  27. Gagliotti, C.; Högberg, L.D.; Billström, H.; Eckmanns, T.; Giske, C.G.; Heuer, O.E.; Jarlier, V.; Kahlmeter, G.; Lo Fo Wong, D.; Monen, J.; et al. Staphylococcus aureus bloodstream infections: Diverging trends of meticillin-resistant and meticillin-susceptible isolates, EU/EEA, 2005 to 2018. Eurosurveillance 2021, 26, 2002094. [Google Scholar] [CrossRef] [PubMed]
  28. Gerver, S.M.; Nsonwu, O.; Thelwall, S.; Brown, C.S.; Hope, R. Trends in rates of incidence, fatality and antimicrobial resistance among isolates of Pseudomonas spp. causing bloodstream infections in England between 2009 and 2018: Results from a national voluntary surveillance scheme. J. Hosp. Infect. 2022, 120, 73–80. [Google Scholar] [CrossRef]
  29. Hayes, C.V.; Eley, C.V.; Ashiru-Oredope, D.; Hann, M.; McNulty, C.A. Development and pilot evaluation of an educational programme on infection prevention and antibiotics with English and Scottish youth groups, informed by COM-B. J. Infect. Prev. 2021, 22, 212–219. [Google Scholar] [CrossRef]
  30. Hayes, C.V.; Eley, C.V.; Wood, F.; Demirjian, A.; McNulty, C.A.M. Knowledge and attitudes of adolescents towards the human microbiome and antibiotic resistance: A qualitative study. JAC-Antimicrob. Resist. 2021, 3, dlab039. [Google Scholar] [CrossRef]
  31. Hayes, C.V.; Mahon, B.; Sides, E.; Allison, R.; Lecky, D.M.; McNulty, C.A.M. Empowering patients to self-manage common infections: Qualitative study informing the development of an evidence-based patient information leaflet. Antibiotics 2021, 10, 1113. [Google Scholar] [CrossRef]
  32. Horner, C.; Mushtaq, S.; Allen, M.; Hope, R.; Gerver, S.; Longshaw, C.; Reynolds, R.; Woodford, N.; Livermore, D.M. Replacement of Enterococcus faecalis by Enterococcus faecium as the predominant enterococcus in UK bacteraemias. JAC-Antimicrob. Resist. 2021, 3, dlab185. [Google Scholar] [CrossRef]
  33. Khan, U.B.; Jauneikaite, E.; Andrews, R.; Chalker, V.J.; Spiller, O.B. Identifying large-scale recombination and capsular switching events in Streptococcus agalactiae strains causing disease in adults in the UK between 2014 and 2015. Microb. Genom. 2022, 8, 000783. [Google Scholar] [CrossRef] [PubMed]
  34. Lamagni, T.; Wloch, C.; Broughton, K.; Collin, S.M.; Chalker, V.; Coelho, J.; Ladhani, S.N.; Brown, C.S.; Shetty, N.; Johnson, A.P. Assessing the added value of group B Streptococcus maternal immunisation in preventing maternal infection and fetal harm: Population surveillance study. BJOG 2022, 129, 233–240. [Google Scholar] [CrossRef] [PubMed]
  35. Langton Hewer, S.C.; Smyth, A.R.; Brown, M.; Jones, A.P.; Hickey, H.; Kenna, D.; Ashby, D.; Thompson, A.; Sutton, L.; Clayton, D.; et al. Intravenous or oral antibiotic treatment in adults and children with cystic fibrosis and Pseudomonas aeruginosa infection: The TORPEDO-CF RCT. Health Technol. Assess. 2021, 25, 1–128. [Google Scholar] [CrossRef] [PubMed]
  36. Larsen, J.; Raisen, C.L.; Ba, X.L.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef] [PubMed]
  37. Lipworth, S.; Vihta, K.-D.; Chau, K.; Barker, L.; George, S.; Kavanagh, J.; Davies, T.; Vaughan, A.; Andersson, M.; Jeffery, K.; et al. Ten-year longitudinal molecular epidemiology study of Escherichia coli and Klebsiella species bloodstream infections in Oxfordshire, UK. Genome Med. 2021, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
  38. Lopez-Diaz, M.; Ellaby, N.; Turton, J.; Woodford, N.; Tomas, M.; Ellington, M.J. NDM-1 carbapenemase resistance gene vehicles emergent on distinct plasmid backbones from the IncL/M family. J. Antimicrob. Chemother. 2022, 77, 620–624. [Google Scholar] [CrossRef] [PubMed]
  39. Mabayoje, D.A.; Kenna, D.T.D.; Dance, D.A.B.; NicFhogartaigh, C. Melioidosis manifesting as chronic femoral osteomyelitis in patient from Ghana. Emerg. Infect. Dis. 2022, 28, 201–204. [Google Scholar] [CrossRef]
  40. Martelli, F.; AbuOun, M.; Cawthraw, S.; Storey, N.; Turner, O.; Ellington, M.; Nair, S.; Painset, A.; Teale, C.; Anjum, M.F. Detection of the transferable tigecycline resistance gene tet (X4) in Escherichia coli from pigs in the United Kingdom. J. Antimicrob. Chemother. 2022, 77, 846–848. [Google Scholar] [CrossRef]
  41. McHardy, J.A.; Selvaganeshapillai, V.; Khanna, P.; Whittington, A.M.; Turton, J.; Gopal Rao, G. A case of neck abscess caused by rare hypervirulent Klebsiella pneumoniae, capsular type K20 and sequence type 420. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 46. [Google Scholar] [CrossRef]
  42. McHugh, M.P.; Parcell, B.J.; Pettigrew, K.A.; Toner, G.; Khatamzas, E.; El Sakka, N.; Karcher, A.M.; Walker, J.; Weir, R.; Meunier, D.; et al. Presence of optrA-mediated linezolid resistance in multiple lineages and plasmids of Enterococcus faecalis revealed by long read sequencing. Microbiology 2022, 168, 001137. [Google Scholar] [CrossRef]
  43. McNulty, C.; Read, B.; Quigley, A.; Verlander, N.Q.; Lecky, D.M. What the public in England know about antibiotic use and resistance in 2020: A face-to-face questionnaire survey. BMJ Open 2022, 12, e055464. [Google Scholar] [CrossRef] [PubMed]
  44. McNulty, C.; Sides, E.; Thomas, A.; Kamal, A.; Syeda, R.B.; Kaissi, A.; Lecky, D.M.; Patel, M.; Campos-Matos, I.; Shukla, R.; et al. Public views of and reactions to the COVID-19 pandemic in England-a qualitative study with diverse ethnicities. BMJ Open 2022, 12, e061027. [Google Scholar] [CrossRef] [PubMed]
  45. Meunier, D.; Woodford, N.; Hopkins, K.L. Evaluation of the Revogene Carba C assay for detection of carbapenemases in MDR Gram-negative bacteria. J. Antimicrob. Chemother. 2021, 76, 1941–1944. [Google Scholar] [CrossRef]
  46. Moore, A.; Cannings-John, R.; Butler, C.C.; McNulty, C.A.; Francis, N.A. Alternative approaches to managing respiratory tract infections: A survey of public perceptions. BJGP Open 2021, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
  47. Morrell, L.; Buchanan, J.; Roope, L.S.J.; Pouwels, K.B.; Butler, C.C.; Hayhoe, B.; Tonkin-Crine, S.; McLeod, M.; Robotham, J.V.; Holmes, A.; et al. Public preferences for delayed or immediate antibiotic prescriptions in UK primary care: A choice experiment. PLoS Med. 2021, 18, e1003737. [Google Scholar] [CrossRef]
  48. Muller-Pebody, B.; Sinnathamby, M.A.; Warburton, F.; Rooney, G.; Andrews, N.; Whitaker, H.; Henderson, K.L.; Tsang, C.; Hopkins, S.; Pebody, R.G.; et al. Impact of the childhood influenza vaccine programme on antibiotic prescribing rates in primary care in England. Vaccine 2021, 39, 6622–6627. [Google Scholar] [CrossRef]
  49. Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
  50. Patel, S.; Jhass, A.; Slee, A.; Hopkins, S.; Shallcross, L. Variation in approaches to antimicrobial use surveillance in high-income secondary care settings: A systematic review. J. Antimicrob. Chemother. 2021, 76, 1969–1977. [Google Scholar] [CrossRef]
  51. Pitt, R.; Fifer, H.; Woodford, N.; Hopkins, S.; Cole, M.J. Prevalence of Chlamydia trachomatis and Mycoplasma genitalium coinfections and M. genitalium antimicrobial resistance in rectal specimens. Sex. Transm. Infect. 2021, 97, 469–470. [Google Scholar] [CrossRef]
  52. Sánchez-Busó, L.; Yeats, C.A.; Taylor, B.; Goater, R.J.; Underwood, A.; Abudahab, K.; Argimón, S.; Ma, K.C.; Mortimer, T.D.; Golparian, D.; et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genome Med. 2021, 13, 61. [Google Scholar] [CrossRef]
  53. Sides, E.; Jones, L.F.; Kamal, A.; Thomas, A.; Syeda, R.; Kaissi, A.; Lecky, D.M.; Patel, M.; Nellums, L.; Greenway, J.; et al. Attitudes towards coronavirus (COVID-19) vaccine and sources of information across diverse ethnic groups in the UK: A qualitative study from June to October 2020. BMJ Open 2022, 12, e060992. [Google Scholar] [CrossRef] [PubMed]
  54. Sloot, R.; Nsonwu, O.; Chudasama, D.; Rooney, G.; Pearson, C.; Choi, H.; Mason, E.; Springer, A.; Gerver, S.; Brown, C.; et al. Rising rates of hospital-onset Klebsiella spp. and Pseudomonas aeruginosa bacteraemia in NHS acute trusts in England: A review of national surveillance data, August 2020–February 2021. J. Hosp. Infect. 2022, 119, 175–181. [Google Scholar] [CrossRef] [PubMed]
  55. Syeda, R.; Touboul Lundgren, P.; Kasza, G.; Truninger, M.; Brown, C.; Lacroix-Hugues, V.; Izsó, T.; Teixeira, P.; Eley, C.; Ferré, N.; et al. Young People’s Views on Food Hygiene and Food Safety: A Multicentre Qualitative Study. Educ. Sci. 2021, 11, 261. [Google Scholar] [CrossRef]
  56. Taylor, E.; Bal, A.M.; Balakrishnan, I.; Brown, N.M.; Burns, P.; Clark, M.; Diggle, M.; Donaldson, H.; Eltringham, I.; Folb, J.; et al. A prospective surveillance study to determine the prevalence of 16S rRNA methyltransferase-producing Gram-negative bacteria in the UK. J. Antimicrob. Chemother. 2021, 76, 2428–2436. [Google Scholar] [CrossRef] [PubMed]
  57. Taylor, E.; Jauneikaite, E.; Sriskandan, S.; Woodford, N.; Hopkins, K.L. Detection and characterisation of 16S rRNA methyltransferase-producing Pseudomonas aeruginosa from the UK and Republic of Ireland from 2003–2015. Int. J. Antimicrob. Agents 2022, 59, 106550. [Google Scholar] [CrossRef] [PubMed]
  58. Unemo, M.; Ahlstrand, J.; Sánchez-Busó, L.; Day, M.; Aanensen, D.; Golparian, D.; Jacobsson, S.; Cole, M.J.; European Collaborative Group. High susceptibility to zoliflodacin and conserved target (GyrB) for zoliflodacin among 1209 consecutive clinical Neisseria gonorrhoeae isolates from 25 European countries, 2018. J. Antimicrob. Chemother. 2021, 76, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
  59. Unemo, M.; Lahra, M.M.; Escher, M.; Eremin, S.; Cole, M.J.; Galarza, P.; Ndowa, F.; Martin, I.; Dillon, J.R.; Galas, M.; et al. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017–18: A retrospective observational study. Lancet Microbe. 2021, 2, e627–e636. [Google Scholar] [CrossRef]
  60. Zendri, F.; Isgren, C.M.; Sinovich, M.; Richards-Rios, P.; Hopkins, K.L.; Russell, K.; Groves, N.; Litt, D.; Fry, N.K.; Timofte, D. Case report: Toxigenic Corynebacterium ulcerans diphtheria-like infection in a horse in the United Kingdom. Front. Vet. Sci. 2021, 8, 650238. [Google Scholar] [CrossRef]
  61. Zhu, N.J.; Ahmad, R.; Holmes, A.; Robotham, J.V.; Lebcir, R.; Atun, R. System dynamics modelling to formulate policy interventions to optimise antibiotic prescribing in hospitals. J. Oper. Res. Soc. 2020, 72, 2490–2502. [Google Scholar] [CrossRef]
Figure 1. National action plan major AMR themes. Adapted from Ref. [3].
Figure 1. National action plan major AMR themes. Adapted from Ref. [3].
Msf 15 00017 g001
Figure 2. An illustration of the wide distribution of almost 60 publications [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] from UKHSA across the NAP’s major themes.
Figure 2. An illustration of the wide distribution of almost 60 publications [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] from UKHSA across the NAP’s major themes.
Msf 15 00017 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Agnew, E.; Robotham, J.V., on behalf of the ESPAUR Research Chapter Authors. Research on Antimicrobial Utilization and Resistance in England 2021–22 (ESPAUR Report). Med. Sci. Forum 2022, 15, 17. https://doi.org/10.3390/msf2022015017

AMA Style

Agnew E, Robotham JV on behalf of the ESPAUR Research Chapter Authors. Research on Antimicrobial Utilization and Resistance in England 2021–22 (ESPAUR Report). Medical Sciences Forum. 2022; 15(1):17. https://doi.org/10.3390/msf2022015017

Chicago/Turabian Style

Agnew, Emily, and Julie V. Robotham on behalf of the ESPAUR Research Chapter Authors. 2022. "Research on Antimicrobial Utilization and Resistance in England 2021–22 (ESPAUR Report)" Medical Sciences Forum 15, no. 1: 17. https://doi.org/10.3390/msf2022015017

APA Style

Agnew, E., & Robotham, J. V., on behalf of the ESPAUR Research Chapter Authors. (2022). Research on Antimicrobial Utilization and Resistance in England 2021–22 (ESPAUR Report). Medical Sciences Forum, 15(1), 17. https://doi.org/10.3390/msf2022015017

Article Metrics

Back to TopTop