Eco-Friendly One Pot Synthesis of Zinc Oxide Nanoparticles Using Catkin Extract of Piper longum: In Vitro Antibacterial, Antioxidant and Antibiofilm Potential against Multi Drug Resistant Enteroaggregative E. coli †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Preparation of Piper longum Catkin Extract
2.3. Synthesis of ZnO NPs
2.4. Characterization of Green Synthesized ZnO NPs
2.5. In Vitro Antibacterial Efficacy of ZnO NPs
2.6. In Vitro Stability Assays of ZnO NPs
2.7. In Vitro Safety Assays of ZnO NPs
2.8. In Vitro Antioxidant Activity of ZnO NPs
2.9. In Vitro Antibiofilm Efficacy of ZnO NPs
3. Results and Discussion
3.1. Green Synthesis of ZnO NPs
3.2. Characterization of Green Synthesized ZnO NPs
3.3. In Vitro Antibacterial Activity of ZnO NPs
3.4. In Vitro Stability Assays of ZnO NPs
3.5. In Vitro Safety Assays of ZnO NPs
3.6. In Vitro Antioxidant Activity of ZnO NPs
3.7. In Vitro Antibiofilm Activity of ZnO NPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abishad, P.; Niveditha, P.; Unni, V.; Vergis, J.; Kurkure, N.V.; Chaudhari, S.; Rawool, D.B.; Barbuddhe, S.B. In silico molecular docking and in vitro antimicrobial efficacy of phytochemicals against multi-drug-resistant enteroaggregative Escherichia coli and non-typhoidal Salmonella spp. Gut Pathog. 2021, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Ying, S.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Tech. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Biswas, P.; Ghorai, M.; Mishra, T.; Gopalakrishnan, A.V.; Roy, D.; Mane, A.B.; Mundhra, A.; Das, N.; Mohture, V.M.; Patil, M.T.; et al. Piper longum L.: A comprehensive review on traditional uses, phytochemistry, pharmacology, and health-promoting activities. Phytother. Res. 2022, 36, 4425–4476. [Google Scholar] [CrossRef] [PubMed]
- Jayapriya, M.; Dhanasekaran, D.; Arulmozhi, M.; Nandhakumar, E.; Senthilkumar, N.; Sureshkumar, K. Green Synthesis ofSilver Nanoparticles Using Piper Longum Catkin Extract Irradiated by Sunlight: Antibacterial and Catalytic Activity. Res. Chem. Intermed. 2019, 45, 3617–3631. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplementm100, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Nair, A.; Balasaravanan, T.; Malik, S.V.S.; Mohan, V.; Kumar, M.; Vergis, J.; Rawool, D.B. Isolation and identification of Salmonella from diarrheagenic infants and young animals, sewage waste and fresh vegetables. Vet. Wrld. 2015, 8, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Unni, V.; Abishad, P.; Prasastha Ram, V.; Niveditha, P.; Yasur, J.; John, L.; Prejit, N.; Juliet, S.; Latha, C.; Vergis, J.; et al. Green synthesis, and characterization of zinc oxide nanoparticles using Piper longum catkin extract and its in vitroantimicrobial activity against multi-drug-resistant non-typhoidal Salmonella spp. Inorg. NanoMet. Chem. 2022, 1–9. [Google Scholar] [CrossRef]
- Vergis, J.; Malik, S.V.S.; Pathak, R.; Kumar, M.; Kurkure, N.V.; Barbuddhe, S.B.; Rawool, D.B. Exploring Galleria mellonella larval model to evaluate antibacterial efficacy of Cecropin A (1-7)-Melittin against multi-drug resistant enteroaggregative Escherichia coli. Pathog. Dis. 2021, 79, ftab010. [Google Scholar] [CrossRef] [PubMed]
- Dalmolin, L.F.; Khalil, N.M.; Mainardes, R.M. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity. Mater. Sci. Eng. 2016, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vergis, J.; Malik, S.S.; Pathak, R.; Kumar, M.; Ramanjaneya, S.; Kurkure, N.V.; Barbuddhe, S.B.; Rawool, D.B. AntimicrobialEfficacy of Indolicidin Against Multi-Drug Resistant Enteroaggregative Escherichia coli in a Galleria mellonella Model. Front. Microbiol. 2019, 10, 2723. [Google Scholar] [CrossRef] [PubMed]
- Phurailatpam, L.; Gupta, A.; Sahu, P.K.; Mishra, S. Insights into the functional potential of bacterial endophytes from the ethnomedicinal plant, Piper longum L. Symbiosis 2022, 87, 165–174. [Google Scholar] [CrossRef]
- Alqahtani, A.A.; Attia, G.H.; Elgamal, A.; Aleraky, M.; Youns, M.; Ibrahim, A.M.; Abdou, R.; Shaikh, I.A.; El Raey, M.A. Cytotoxic Activity of Zinc Oxide Nanoparticles Mediated by Euphorbia Retusa. Crystals 2022, 12, 903. [Google Scholar] [CrossRef]
- Afzal, S.; Aftab, T.; Singh, N.K. Impact of Zinc Oxide and Iron Oxide Nanoparticles on Uptake, Translocation, and Physio-logical Effects in Oryza sativa L. J. Plant Growth Regul. 2022, 41, 1445–1461. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Mohseni, S.; Feizyzadeh, B.; Morsali, A. Green Synthesis of Zinc Oxide and Copper Oxide Nanoparti-cles Using Achillea Nobilis Extract and Evaluating Their Antioxidant and Antibacterial Properties. Bull. Mater. Sci. 2021, 44, 129. [Google Scholar] [CrossRef]
- Ebbensgaard, A.; Mordhorst, H.; Overgaard, M.T.; Nielsen, C.G.; Aarestrup, F.M.; Hansen, E.B. Comparative evaluation ofthe antimicrobial activity of different antimicrobial peptides against a range of pathogenic Bacteria. PLoS ONE. 2015, 10, e0144611. [Google Scholar] [CrossRef] [PubMed]
- Phongtongpasuk, S.; Norasingsatorn, T.; Yongvanich, N. Effect of pH on the environmentally friendly fabrication of silvernanoparticles using rambutan peel extract. Key Eng. Mat. 2019, 824, 149–155. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Hakansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Min, L.; Zhang, W.; Liu, J.; Hou, Z.; Chu, M.; Li, L.; Shen, W.; Zhao, Y.; Zhang, H. Zinc oxide nanoparticlesinfluence microflora in ileal digesta and correlate well with blood metabolites. Front. Microbiol. 2017, 8, 992. [Google Scholar] [CrossRef] [PubMed]
Isolates | MIC/MBC (μg/mL) | |
---|---|---|
EAEC | E1 | 125/250 |
E2 | 125/250 | |
E3 | 125/250 |
MIC/MBC (μg/mL) | ||||||
---|---|---|---|---|---|---|
Isolates | 70 °C | 90 °C | ||||
5 min | 15 min | 30 min | 5 min | 15 min | 30 min | |
E1 | 125/250 | 125/500 | 125/500 | 125/250 | 125/500 | 125/500 |
E2 | 125/250 | 125/500 | 125/500 | 125/250 | 125/750 | 125/500 |
E3 | 125/250 | 125/500 | 125/500 | 125/250 | 125/500 | 125/500 |
Isolates | MIC/MBC (μg/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Proteinase-k | Lysozyme | Trypsin | ||||||||||
30 s | 5 min | 15 min | 30 min | 30 s | 5 min | 15 min | 30 min | 30 s | 5 min | 15 min | 30 min | |
E1 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/125 | 62.5/250 | 62.5/125 | 62.5/125 | 62.5/250 |
E2 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/125 | 62.5/250 | 62.5/250 | 62.5/125 | 62.5/250 | 62.5/250 | 62.5/125 | 62.5/250 |
E3 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/250 | 62.5/125 | 62.5/250 | 62.5/125 | 62.5/125 | 62.5/250 |
Isolates | MIC/MBC (μg/mL) | |
---|---|---|
NaCl (150 mM) | MgCl2 (2 mM) | |
E1 | 125/250 | 125/250 |
E2 | 125/250 | 125/250 |
E3 | 125/250 | 125/250 |
Isolates | MIC/MBC (μg/mL) | ||
---|---|---|---|
pH: 4 | pH: 6 | pH: 8 | |
E1 | 125/250 | 125/250 | 62.5/250 |
E2 | 125/250 | 125/250 | 62.5/250 |
E3 | 125/250 | 125/250 | 62.5/250 |
Concentration of ZnO NPs | Haemolysis (%) |
---|---|
MIC (1×) | 1.04 |
MIC (5×) | 1.23 |
MIC (10×) | 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unni, V.; Abishad, P.; Arya, P.R.; Mohan, B.; Juliet, S.; John, L.; Nambiar, P.; Vinod, V.K.; Karthikeyan, A.; Kurkure, N.V.; et al. Eco-Friendly One Pot Synthesis of Zinc Oxide Nanoparticles Using Catkin Extract of Piper longum: In Vitro Antibacterial, Antioxidant and Antibiofilm Potential against Multi Drug Resistant Enteroaggregative E. coli . Med. Sci. Forum 2023, 21, 14. https://doi.org/10.3390/ECB2023-14269
Unni V, Abishad P, Arya PR, Mohan B, Juliet S, John L, Nambiar P, Vinod VK, Karthikeyan A, Kurkure NV, et al. Eco-Friendly One Pot Synthesis of Zinc Oxide Nanoparticles Using Catkin Extract of Piper longum: In Vitro Antibacterial, Antioxidant and Antibiofilm Potential against Multi Drug Resistant Enteroaggregative E. coli . Medical Sciences Forum. 2023; 21(1):14. https://doi.org/10.3390/ECB2023-14269
Chicago/Turabian StyleUnni, Varsha, Padikkamannil Abishad, Pokkittath Radhakrishnan Arya, Bibin Mohan, Sanis Juliet, Lijo John, Prejit Nambiar, Valil Kunjukunju Vinod, Asha Karthikeyan, Nitin Vasantrao Kurkure, and et al. 2023. "Eco-Friendly One Pot Synthesis of Zinc Oxide Nanoparticles Using Catkin Extract of Piper longum: In Vitro Antibacterial, Antioxidant and Antibiofilm Potential against Multi Drug Resistant Enteroaggregative E. coli " Medical Sciences Forum 21, no. 1: 14. https://doi.org/10.3390/ECB2023-14269
APA StyleUnni, V., Abishad, P., Arya, P. R., Mohan, B., Juliet, S., John, L., Nambiar, P., Vinod, V. K., Karthikeyan, A., Kurkure, N. V., Barbuddhe, S. B., Rawool, D. B., & Vergis, J. (2023). Eco-Friendly One Pot Synthesis of Zinc Oxide Nanoparticles Using Catkin Extract of Piper longum: In Vitro Antibacterial, Antioxidant and Antibiofilm Potential against Multi Drug Resistant Enteroaggregative E. coli . Medical Sciences Forum, 21(1), 14. https://doi.org/10.3390/ECB2023-14269