Essential Amino Acids and Fatty Acids in Novel Foods: Emerging Nutritional Sources and Implications
Abstract
:1. Introduction
2. Materials and Methods
3. Nutritional Value of Novel Food
Name | Carbohydrates | Protein | Fat | Fiber | Ash | Ref. |
---|---|---|---|---|---|---|
ALGAE | ||||||
Spirulina platensis | 1.73 | 47.04 | 36.39 | na | 7.68 | [15] |
na | 51.06 | na | 0.49 | 6.35 | [14] | |
6.83 | 71.34 | 0.36 | 8.45 | 5.93 | [13] | |
Chlorella vulgaris | 11.86 | 35.45 | 12.18 | 9.18 | 9.5 | [35] |
28.35 | 38.85 | 24.5 | na | 7.85 | [36] | |
Ulva spp. | 61.5 | 27.2 | 0.3 | 60.5 | 11 | [37] |
39.42 | 20.44 | 0.65 | 8.61 | 30.88 | [38] | |
Porphyra spp. | na | 31.3 | 2.1 | 45.7 | nd | [39] |
na | 34.2 | 2.25 | na | 9.07 | [40] | |
Laminaria spp. | na | 1 | 0.8 | na | no | [41] |
na | 0.53 | 0.85 | na | 2.44 | [42] | |
Esculenta Alaria | na | 0.91 | 1.5 | na | 2.45 | [42] |
na | 11.5 | 2.05 | na | 32.28 | [43] | |
Gelidium spp. | 60.77 | 20.6 | 1.23 | na | 9.3 | [44] |
33.26 | 14.19 | 2.1 | na | 12.82 | [45] | |
FUNGI | ||||||
Pleurotus ostreatus | 43.42 | 17.06 | 1.21 | 23.63 | 8.22 | [16] |
50.87 | 22.29 | 3.17 | 15.77 | 6.99 | [17] | |
72.19.00 | 21.72 | 1.57 | 19.06 | 6.04 | [18] | |
Lentinula edible | 59.39 | 13.67 | 1.48 | 13.97 | 5.76 | [21] |
68.3 | 18.5 | 0.8 | na | 5.1 | [19] | |
Leafy grifola | 70.71 | 19.34 | 3.84 | na | 6.07 | [46] |
66.9 | 18.3 | 5.3 | na | 4.7 | [19] | |
Ganoderma lucidum | 73.6 | 17.2 | 1.95 | na | 1.85 | [19] |
29.61 | 16.45 | 3.44 | 38.67 | 6.95 | [20] | |
Agaricus brasiliensis | 53.45 | 29.8 | 2.25 | na | 8.9 | [19] |
INSECT | ||||||
Tenebrio molitor | na | 23.22 | 18.08 | na | 2.13 | [21] |
na | 60.21 | 19.12 | 22.35 | 4.2 | [47] | |
2.2–26.25 | 52.35–71.6 | 14.6–36.7 | 1.97–16.3 | 3.6–4.0 | [48] | |
Migratory locust | 4.05 | 42.16 | 18.9 | 14.21 | 5.72 | [34] |
na | 61.23 | 23 | na | 3.78 | [23] | |
13.46 | 50.79 | 34.93 | na | 2.42 | [33] | |
35.6 | 26.3 | 22.5 | na | na | [49] | |
18.6 | 51.97–71.20 | 11.42–23.81 | 3.09–13.75 | 3.33–5.51 | [48] | |
Domestic achete | 1.60–7.50 | 15.40–76.19 | 3.3–43.90 | 3.70–7.50 | 1.10–5.60 | [24] |
4.6 | 60.26 | 31.28 | no | 3.04 | [46] | |
na | 55.18 | 29.01 | 18.72 | 4.34 | [50] | |
Alphitobius diapernus | na | 49.51 | 26.44 | 12.96 | 4.71 | [50] |
PLANT | ||||||
Wolffia globosa | 48.31 | 26.76 | 0.49 | 16.76 | 7.68 | [25] |
na | 45.04 | 5.33 | 9.98 | 20.43 | [51] | |
Kanihua | 50.9 | 16.7 | 10 | 5.8 | 7.4 | [52] |
51.07 | 16.77 | 9.64 | 8.56 | 4.26 | [26] | |
59.9 | 12.8 | 7 | 6.3 | 3.1 | [53] | |
Baobab (pulp) | 74.9 | 5.3 | 3.6 | 13.7 | 4.9 | [31] |
76.2 | 3.2 | 0.3 | 5.4 | 4.5 | [32] | |
Moringa oleifera | 29.8 | 25.3 | 5.75 | 24.97 | 9.95 | [28] |
9.1 | 8.1 | 1.7 | 2.1 | na | [29] | |
na | 30.29 | 6.5 | na | 7.64 | [30] |
4. Essential Amino Acids
Novel Foods as a Source of Essential Amino Acids
ALGAE | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Essential Amino Acid | Non-Essential Amino Acid | Ref. | |||||||||||||||||
Name | Leucine | Tryptophane | Methionine | Phenylalanine | Lysine | Threonine | Isoleucine | Valine | Cys- teine | Histi- dine | Proline | Tyro- sine | Glycine | Serine | Argin- ine | Alanine | Aspartic Acid | Glutamic Acid | |
Spirulina platensis | 55 | 10 | 14 | 28 | 30 | 33 | 36 | 45 | 7 | 10 | 27 | 30 | 32 | 33 | 44 | 47 | 60 | 92 | [55] |
39.69 | nd | 8.07 | 19.02 | 22.62 | nd | 25.34 | 27.89 | 4.6 | 27.39 | 22.92 | 20.34 | 21.26 | 20.35 | 26.13 | 12.1 | 30.69 | 49.63 | [13] | |
4.84 | nd | 19.8 | 25 | 27.2 | 28.4 | 30.6 | 33.4 | 7.2 | 10 | 21.5 | 25.8 | 30 | 29.2 | 39.6 | 45.4 | 53.4 | 81.5 | [56] | |
Chlorella Vulgaris | 15.4 | nd | 3.3 | 9.4 | 16.1 | 13.2 | 5 | 5.2 | 3 | 4.1 | 12 | 5.6 | 13.8 | 14.3 | 9.2 | 18 | 17.8 | 16 | [57] |
6.84 | nd | 1.5 | 4.2 | 5.6 | 5.24 | 5.01 | 6.44 | nd | 5.02 | 6.4 | 5.2 | 5.1 | 10.74 | 8.2 | 8.44 | 10.5 | 10.74 | [35] | |
Ulva lactuca | 10.34 | nd | 6.71 | 12.45 | 7.23 | 7.97 | 5.5 | 3.39 | 0.55 | 1.33 | 0.007 | 4.35 | 8.15 | 8.33 | 4.86 | 10.94 | 14.87 | 15.08 | [37] |
0.09 | 0.15 | 0.16 | 0.21 | 0.38 | 0.135 | 0.13 | 0.14 | 0.56 | 0.319 | nd | 0.096 | 0.5 | 0.32 | 0.51 | 0.54 | 1.23 | 0.97 | [58] | |
7.1 | nd | 2.3 | 5.81 | 4.1 | 4.87 | 3.8 | 5.3 | nd | 1.08 | 0.75 | 2.7 | 5.54 | 4.06 | 6.87 | 11.52 | nd | 10.32 | [38] | |
Porphyra spp. | 5.5 | 0.7 | 1.8 | 3.3 | 4.9 | 5.3 | 3.1 | 5.2 | 1.2 | 2.6 | 3.5 | 3.4 | 5.1 | 0.7 | 5.9 | 6.2 | nd | 10.2 | [39] |
0.3 | na | na | na | na | 0.59 | 0.46 | 0.33 | na | na | na | na | 24.02 | 0.53 | 10.77 | 1.56 | 5.6 | [40] | ||
Laminaria spp. | 8.2 | nd | nd | na | 9 | 7 | 4.9 | 7.2 | na | nd | 5.8 | nd | 6.5 | 7.3 | nd | 7.5 | 18.8 | 17.9 | [41] |
5.2 | na | 1.8 | 3.4 | 3.7 | 3.8 | 2.7 | 3.6 | nd | 1.6 | 3.9 | 1.8 | 4.1 | 3.6 | 3.4 | 5.2 | 6.2 | 8.5 | [42] | |
Alaria esculenta | 7.5 | na | 2.4 | 4.8 | 5.3 | 5.5 | 3.8 | 5.5 | nd | 1.6 | 5.1 | 2.9 | 5.7 | 5.2 | 4.8 | 18.9 | 8.4 | 20.1 | [42] |
Gelidium spp. | na | na | nd | na | na | 26.85 | na | nd | na | na | na | na | na | na | 32.85 | na | na | 171.4 | [44] |
FUNGI | |||||||||||||||||||
Pleurotus ostreatus | 13.56 | na | 10.36 | 10.3 | 23.18 | 10.41 | na | na | 9.32 | na | 10.41 | na | na | 10.45 | na | 10.03 | 492.12 | 12.04 | [16] |
30.66 | 5.7 | 4.16 | 17.9 | 27.06 | 28.18 | 17.96 | 27.3 | 4.32 | 15.42 | 14.22 | 10.22 | 8.6 | 15.7 | 25.98 | 19.63 | 36.92 | 59.5 | [59] | |
Lentinula edodens | 1.29 | na | 0.42 | 0.83 | 1.91 | 1.01 | 0.62 | 1.05 | 0.08 | 0.84 | 0.82 | 0.54 | 0.89 | 1.04 | 2.45 | 1.17 | 1.73 | 4.93 | [60] |
3.03 | na | na | 3.2 | 2.98 | 0.66 | 1.04 | 9.05 | 13.18 | 3.12 | nd | 0.84 | 1.5 | 3.98 | 0.42 | 1.06 | na | 9.71 | [61] | |
3.03 | na | 0.47 | 2.01 | 3.03 | 2.37 | 2.28 | 2.05 | 0.46 | 1.26 | 2.65 | 1.43 | 2.26 | 2.55 | 3.02 | 3.3 | 4.28 | 5.07 | [62] | |
Grifola Frondosa | 0.05 | nd | nd | 0.26 | 1.56 | 1.43 | 0.12 | 0.96 | na | 1.53 | na | 1.77 | 1.53 | 2.91 | 3.02 | 2.15 | 1.61 | 8.01 | [46] |
0.65 | na | 0.19 | na | 0.56 | 0.69 | 0.48 | 1.52 | 0.21 | 0.29 | 0.21 | 0.32 | 0.47 | 0.54 | 0.82 | 0.56 | 0.91 | 1.09 | [19] | |
Ganoderma lucidum | 1.12 | na | 0.53 | na | 0.45 | 0.97 | 0.73 | 0.95 | 0.41 | 0.28 | 1.08 | 0.47 | 0.8 | 0.7 | 0.77 | 0.78 | 1.47 | 2.98 | [19] |
0.55 | na | 0.06 | 0.28 | 0.21 | 0.66 | 0.36 | 0.63 | na | 0.12 | 0.6 | 0.16 | 1.08 | 0.54 | 0.22 | 1 | 1.17 | 1.2 | [20] | |
Agaricus brasiliensis | 1.26 | na | 0.38 | na | 1.08 | 1.16 | 0.78 | 2.58 | na | 0.41 | 1.14 | 0.58 | 0.87 | 0.88 | 1.1 | 1.29 | na | 2.54 | [19] |
0.16 | na | 0.134 | 0.19 | 0.19 | 0.38 | na | 0.223 | nd | 0.56 | 0.84 | 0.19 | 0.518 | 0.305 | 1.62 | 0.36 | 0.33 | 0.67 | [63] | |
INSECTS | |||||||||||||||||||
Tenebrio molitor | 75.9 | na | na | 34.3 | 26.2 | 54.8 | 32.1 | 49.2 | na | 28.9 | 95.9 | 67.2 | 66 | 58.1 | 45.6 | 100.9 | 97.4 | 125.3 | [21] |
53.12 | na | 31.61 | 54.87 | 47.94 | 26.36 | 73.88 | 11.76 | na | na | 47.94 | 69.28 | 65.87 | 42.79 | 64.54 | 81.14 | 77.13 | 115.44 | [64] | |
37.9 | na | 6.2 | 16.3 | 24.6 | 12.7 | 21.4 | 28.8 | 3.8 | 14.9 | 26.7 | 34.7 | 28.7 | 17.3 | na | 33.8 | 32.1 | 37.3 | [65] | |
78.8 | na | 17.5 | 43.9 | 52 | 42.8 | 49.4 | 71.3 | na | 35.5 | 76.6 | 81.1 | 59.6 | 50.5 | 59.4 | 76.5 | 78.8 | 114.9 | [48] | |
locusta migratoria | 84.4 | na | 14.2 | 32.3 | 50.1 | 38.2 | 46.6 | 71 | na | 28.7 | 80.9 | 56.4 | 73.4 | 40.8 | 62 | 127.3 | 72.1 | 112.8 | [48] |
77.38 | na | 10.54 | 31.98 | 65.57 | 42.04 | 29.21 | 56.95 | 4.15 | 20.42 | 65.92 | 47.05 | 54.32 | 43.27 | 59.33 | 97.83 | 59.87 | 112.78 | [23] | |
50.4 | 5.2 | 9 | 20.3 | 36.4 | 23.3 | 29.2 | 41.8 | 4.7 | 15.6 | 43.1 | 36.3 | 39.4 | 22.2 | 38.4 | 56.4 | 47.4 | 62 | [23] | |
acheta domesticus | 7–38.0 | 1.3–43 | 1–9.8 | 3–23.8 | 5–32.2 | 7.4–16.5 | 4–29.0 | 5–45.0 | na | 2–17.2 | na | na | na | na | na | na | na | na | [24] |
38.0–65.0 | 4.0–6.8 | 9.0–1.40 | 14.0–30.0 | 3.0–5.40 | 16.65–36.0 | 26.0–44.5 | 10.7–45.0 | 4.0–8.0 | 15.2–22.5 | 11.5–35.6 | 2.50–31.8 | 10.4–3.50 | 10.2–28.7 | 37.0–61.0 | 36.7–88.5 | 56.6–77.5 | 64.8–104.5 | [66] | |
Alphitobius diaperinus | 73.6 | na | 17.1 | 42.2 | 73.5 | 44.2 | 47.7 | 64 | 8.4 | 32.1 | 71.3 | 61.6 | 50.2 | 46.6 | 59.1 | 79.5 | 94.7 | 134.3 | [48] |
74.78 | 44.98 | 22.21 | 48.76 | 73.71 | 44.98 | 48.46 | 64.2 | na | 40.36 | na | na | na | na | na | na | na | na | [50] | |
PLANT | |||||||||||||||||||
Wolffia globosa | 78 | na | 16 | 47 | 56 | 41 | 36 | 48 | 15 | 18 | 44 | 32 | 52 | 50 | 58 | 69 | 120 | 114 | [67] |
25.9 | 14.5 | 1.8 | 33.9 | 11.8 | 3.5 | 28.3 | 6.4 | 0.5 | 6.1 | 3 | 24.2 | 1.8 | 3.7 | 53.3 | 12.5 | 24.8 | 10.8 | [25] | |
canihua | 1.26 | na | 0.173 | 0.86 | 1.05 | 0.48 | 0.9 | 0.14 | 0.28 | 0.6 | 0.45 | 1.04 | 0.23 | 0.95 | 1.022 | na | na | 1.5 | [68] |
2.47 | na | 1.2 | 1.5 | 2.15 | 1.34 | 1.38 | 1.7 | 0.65 | 0.97 | 1.3 | 0.93 | 2.1 | 1.58 | 3.37 | 1.66 | 32.09 | 55.25 | [69] | |
Baobab (pulp) | 54 | 35 | 19 | 35 | 40 | 27 | 36 | 49 | 13 | 20 | 70 | 8.5 | 62 | 33 | 68 | 56.6 | 75 | 84 | [31] |
43 | na | 2 | 44 | 17 | 28 | 22 | 48 | 10 | 12 | 22 | 206 | 29 | 32 | 76 | 33 | 64 | 65 | [32] | |
Moringa oleifera (leaves) | 20.5 | na | 2.13 | 36.8 | 27.67 | 36.77 | 31.8 | 22.1 | na | 30.88 | na | na | na | na | 21.45 | na | na | na | [29] |
77 | na | 15 | 59 | 48 | 41 | 44 | 55 | 16 | 24 | 51 | 36 | 49 | 42 | 58 | 62 | 93 | 150 | [67] | |
19.6 | 4.86 | 2.9 | 16.4 | 16.37 | 13.57 | 11.7 | 14.1 | 0.1 | 7.1 | 12.03 | 26.5 | 15 | 10.87 | 17.8 | 30.33 | 14.3 | 25.3 | [30] |
5. Essential Fatty Acids
Novel Foods as a Source of Essential Fatty Acids
ALGAE | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Saturated Fatty Acid (SFA) | Unsaturated Fatty Acid (UFA) | Ref. | ||||||||||||||
Name | Caprinic | Caprilic | Lauric | Miristic | Pamitic | Stearic | Arachidic | Palmitoleic | Oleic | Linoleic | α-Linolenic | γ-Linolenic | Eicosatetraenoic | EPA | DHA | |
C6:0 | C8:0 | C12:0 | C14:0 | C16:0 | c18:0 | C20:0 | C16:1 | C18:1 cis9 | C18:2 cis9,12 | C18:3 cis9,12,15 | C18:3 cis6,9,12 | C20:4 cis 5,8,11,14 | C20:5 (w3) | C22:6 (w3) | ||
Spirulina platensis | na | na | na | na | 37.09 | 5.5 | 6.24 | 5.54 | 3.33 | 4.28 | 24.45 | 13.96 | na | na | [12] | |
0.16 | 7.73 | 0.68 | 0.88 | 34.71 | 6.87 | na | 4.87 | 22.25 | 16.84 | 4.41 | nd | nd | na | na | [14] | |
na | na | na | nd | 51.54 | 1.06 | nd | 2.88 | 2.69 | 18.51 | nd | 19.3 | na | na | na | [13] | |
Chlorella Vulgaris | na | na | 2.2 | 0.4 | 19.26 | 1.54 | nd | 3.8 | 13.47 | 16.32 | 3.3 | 12.03 | 1.77 | na | na | [7] |
na | na | 2.48 | na | 29.33 | 0.1 | na | 3.43 | 15.76 | 10.02 | 8.69 | 4.11 | na | na | na | [76] | |
na | na | 2.42 | 0.44 | 23.16 | 1.69 | nd | 4.18 | 17.8 | 17.93 | 12.42 | 4.63 | nd | na | na | [36] | |
Ulva lactuca | na | na | 0.14 | 1.14 | 14 | 8.39 | 0.19 | 0.69 | 27.43 | 8.31 | 4.38 | 4.38 | 0.34 | na | na | [37] |
na | na | 4.43 | 2.76 | 45.16 | 5.4 | 14.57 | 2.37 | 13.59 | 4.69 | 5.82 | nd | nd | na | na | [58] | |
na | na | 1.86 | 52.93 | 5.28 | 8.88 | nd | 25.08 | 1.14 | 2.62 | nd | nd | na | na | [38] | ||
Porphyra spp. | na | na | 0.02 | 2.68 | 30.8 | 0.66 | 0.21 | 2.24 | 7.16 | 3.86 | 0.31 | 5.66 | 8 | na | na | [39] |
Laminaria spp. | na | na | na | 4.5 | 19 | 0.9 | na | 7.4 | 11.3 | 2.9 | 5.7 | na | 9.3 | na | na | [41] |
na | na | na | 9.1 | 26.9 | 1.05 | na | 0.9 | 22.15 | 7.25 | na | 5.65 | 7.3 | na | na | [42] | |
Alaria esculenta | na | na | na | 8.9 | 26.9 | 1.7 | na | 1.5 | 23.9 | 8.2 | na | 5.1 | 4.6 | na | na | [42] |
na | na | na | na | 15.68 | na | na | na | 11.17 | na | na | na | 11.02 | 10.1 | 0.75 | [43] | |
Gelidium spp. | na | 1.79 | 22.61 | 12.39 | 46.71 | 1.58 | 0.43 | 1.45 | 4.45 | 0.49 | 0.18 | na | na | na | na | [44] |
na | na | na | 6.2 | 52.04 | 1.8 | na | 1.21 | 6.94 | 0.73 | na | na | na | 14.17 | na | [43] | |
FUNGI | ||||||||||||||||
Pleurotus ostreatus | na | na | na | na | 2.99 | 0.71 | na | na | 3.2 | 10.06 | 0.07 | na | na | na | na | [18] |
na | na | 0.23 | 0.46 | 15.05 | 3.28 | 0.26 | 0.65 | 13.11 | 61.53 | 0.54 | 0.54 | na | na | na | [77] | |
0.263 | 1.153 | 0.023 | 0.043 | 0.0596 | 0.0466 | na | na | 0.056 | 65.59 | 0.39 | 0.05 | 0.183 | nd | 0.0402 | [78] | |
Lentinula edodens | na | na | na | na | 9.82 | 3.47 | na | 2.15 | 11.43 | 23.94 | na | na | na | na | na | [79] |
na | na | na | na | 0.58 | 0.16 | na | 14.75 | 0.22 | 1.44 | 0.83 | na | na | na | na | [61] | |
Grifola Frondosa | na | na | na | nd | 16.85 | 2.34 | nd | 0.5 | 44.1 | 35.1 | nd | 0.55 | nd | na | na | [19] |
Ganoderma lucidum | na | na | na | nd | 20.1 | 3.7 | 1 | 0.3 | 29.3 | 42.4 | 2.2 | nd | na | na | na | [19] |
na | na | na | na | 15.3 | 8.9 | na | na | 17.3 | 16.1 | 0.16 | na | 1.3 | na | na | [79] | |
Agaricus brasiliensis | na | na | na | 0.26 | 13.65 | 6.2 | 1.1 | nd | 0.56 | 65.86 | 1.1 | 0.36 | na | na | na | [19] |
na | na | na | na | 78.3 | 10 | na | na | 14.1 | 33.7 | 0.52 | na | 6.4 | na | na | [79] | |
na | na | na | nd | 12.4 | 3.1 | na | na | 1.7 | 75.2 | 1.1 | na | na | na | na | [73] | |
INSECTS | ||||||||||||||||
Tenebrio molitor | na | na | na | 0.39 | 1.47 | 0.26 | na | 0.27 | 3.63 | 3.19 | 0.14 | na | na | na | na | [21] |
na | na | na | na | 4.16 | 0.56 | na | na | 10.29 | 7.51 | 0.27 | na | na | 0.01 | 0.02 | [72] | |
na | na | 3.14 | na | 18.71 | 4.8 | na | 1.93 | 33.85 | 18.56 | nd | 0.56 | 2.53 | 2.65 | 1.28 | [71] | |
na | na | na | 3.26 | 17.21 | 3.06 | na | na | 44.36 | 31.63 | 1.46 | na | 0.5 | na | na | [71] | |
na | nd | nd | nd | 18.62 | 5.33 | na | nd | 35.63 | 28.23 | 1.18 | na | nd | na | na | [48] | |
locusta migratoria | na | nd | nd | nd | 28.44 | 8.27 | nd | nd | 31.6 | 16.96 | 10.47 | na | nd | nd | [48] | |
na | na | 0.15 | 1.4 | 23.5 | 9.37 | 0.26 | 0.78 | 35.79 | 17.3 | 10.21 | 0.05 | 0.17 | na | na | [23] | |
na | na | na | 2.69 | 27.3 | 7.23 | na | 1.17 | na | 8.94 | 15.64 | na | na | na | na | [33] | |
na | na | 0.11 | 1.9 | 29.52 | 7.33 | 0.56 | 1.13 | 38 | nd | 11.69 | 0.11 | nd | nd | na | [72] | |
acheta domesticus | na | na | 0.02–0.03 | 0.04–0.11 | 1.56–5.87 | 0.58–1.83 | na | 0.09–0.15 | 1.54–3.90 | 0.06–1.17 | na | na | na | 0.06 | na | [24] |
na | na | 0.02–0.10 | 0.04–1.55 | 1.56–23.69 | 0.58–8.54 | 0.04–0.125 | 0.09–0.34 | 3.90–20.18 | 1.17–41.39 | 0.011–1.14 | 0.07 | 0.01 | 0.01–0.057 | na | [74] | |
Alphitobius diaperinus | na | nd | nd | nd | 24.29 | 8.7 | nd | nd | 37.16 | 22.57 | nd | na | nd | nd | nd | [48] |
na | na | na | na | 27.21 | 8.55 | na | na | 34.12 | 24.84 | na | na | na | na | na | [50] | |
PLANT | ||||||||||||||||
Wolffia globosa | na | na | na | 0.39 | 28.7 | 2.2 | 0.55 | na | 2.65 | 25 | 37.1 | 0.53 | na | na | na | [67] |
na | na | 0.22 | 0.38 | 24.54 | 2.43 | 0.28 | 5.52 | 4.32 | 26.08 | 33.36 | na | na | na | na | [25] | |
Kanihua (seed) | na | na | na | na | 11.8 | 0.97 | 0.46 | na | 24.19 | 53.48 | na | na | na | na | na | [26] |
na | na | 1.3 | 1.5 | 22.8 | 0.6 | 0.9 | 0.9 | 29.8 | 39.2 | 1.2 | na | na | na | na | [53] | |
Baobab | na | nd | nd | 0.2 | 13.6 | 3.3 | 0.7 | nd | 25 | 13.5 | na | 0.5 | na | na | na | [31] |
na | na | na | 0.2 | 24.2 | 4.6 | 1.3 | na | 35.8 | 30.7 | 1 | na | na | na | na | [32] | |
Moringa oleifera | na | na | 0.58 | 3.66 | 11.79 | 2.13 | 1.61 | 0.17 | 3.96 | 7.44 | 44.57 | 0.2 | na | na | na | [30] |
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods. Available online: https://eur-lex.europa.eu/eli/reg_impl/2017/2470/oj/eng (accessed on 17 December 2024).
- Market Research Future. Available online: https://www.marketresearchfuture.com/ (accessed on 17 December 2024).
- Ververis, E.; Ackerl, R.; Azzollini, D.; Colombo, P.A.; de Sesmaisons, A.; Dumas, C.; Fernandez-Dumont, A.; Ferreira da Costa, L.; Germini, A.; Goumperis, T.; et al. Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority. Food Res. Int. 2020, 137, 109515. [Google Scholar] [CrossRef] [PubMed]
- Aristoy, M.C.; Toldrá, F. Essential Amino Acids. In Handbook of Seafood and Seafood Products Analysis, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shannon, O.M.; Ashor, A.W.; Scialo, F.; Saretzki, G.; Martin-Ruiz, C.; Lara, J.; Matu, J.; Griffiths, A.; Robinson, N.; Lillà, L.; et al. Mediterranean diet and the hallmarks of ageing. Eur. J. Clin. Nutr. 2021, 75, 1176–1192. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, F. Impacts of essential amino acids on energy balance. Mol. Metab. 2022, 57, 101393. [Google Scholar] [CrossRef]
- Rocha, C.P.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M. Seaweeds as valuable sources of essential fatty acids for human nutrition. Int. J. Environ. Res. Public Health 2021, 18, 4968. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Frias-Toral, E.; Laudisio, D.; Pugliese, G.; Castellucci, B.; Garcia-Velasquez, E.; Savastano, S.; Colao, A. Nutrition and immune system: From the Mediterranean diet to dietary supplementary through the microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 3066–3090. [Google Scholar] [CrossRef]
- Patel, A.; Desai, S.S.; Mane, V.K.; Enman, J.; Rova, U.; Christakopoulos, P.; Matsakas, L. Futuristic food fortification with a balanced ratio of dietary ω-3/ω-6 omega fatty acids for the prevention of lifestyle diseases. Trends Food Sci. Technol. 2022, 120, 140–153. [Google Scholar] [CrossRef]
- Rinott, E.; Meir, A.Y.; Tsaban, G.; Zelicha, H.; Kaplan, A.; Knights, D.; Tuohy, K.; Scholz, M.U.; Koren, O.; Stampfer, M.J.; et al. The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: A randomized controlled trial. Genome Med. 2022, 14, 29. [Google Scholar] [CrossRef]
- Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng (accessed on 17 December 2024).
- Ramírez-Rodrigues, M.M.; Estrada-Beristain, C.; Metri-Ojeda, J.; Pérez-Alva, A.; Baigts-Allende, D.K. Spirulina platensis protein as sustainable ingredient for nutritional food products development. Sustainability 2021, 13, 6849. [Google Scholar] [CrossRef]
- Raczyk, M.; Polanowska, K.; Kruszewski, B.; Grygier, A.; Michałowska, D. Effect of spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (Triticum durum) based fresh pasta. Molecules 2022, 27, 355. [Google Scholar] [CrossRef]
- Panaite, T.D.; Cornescu, G.M.; Predescu, N.C.; Cismileanu, A.; Turcu, R.P.; Saracila, M.; Soica, C. Microalgae (Chlorella vulgaris and Spirulina platensis) as a protein alternative and their effects on productive performances, blood parameters, protein digestibility, and nutritional value of laying hens’ egg. Appl. Sci. 2023, 13, 10451. [Google Scholar] [CrossRef]
- FAO. Fats and Fatty Acids in Human Nutrition. In Report of an Expert Consultation; Food and Nutrition Paper; FAO: Rome, Italy, 2008. [Google Scholar]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front. Nutr. 2024, 10, 1279208. [Google Scholar]
- Lesa, K.N.; Khandaker, M.U.; Mohammad Rashed Iqbal, F.; Sharma, R.; Islam, F.; Mitra, S.; Emran, T.B. Nutritional Value, Medicinal Importance, and Health-Promoting Effects of Dietary Mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 2022, 2454180. [Google Scholar]
- Irshad, A.; Tahir, A.; Sharif, S.; Khalid, A.; Ali, S.; Naz, A.; Sadia, H.; Ameen, A. Determination of Nutritional and Biochemical Composition of Selected Pleurotus spps. BioMed Res. Int. 2023, 2023, 8150909. [Google Scholar]
- Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.T.; Yang, Y.C.; Li, Y.H.; Mau, J.L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher Basidiomycetes mushrooms. Int. J. Med. Mushrooms 2014, 16, 273–291. [Google Scholar]
- Cadar, E.; Negreanu-Pirjol, T.; Pascale, C.; Sirbu, R.; Prasacu, I.; Negreanu-Pirjol, B.S.; Tomescu, C.L.; Ionescu, A.M. Natural bio-compounds from Ganoderma lucidum and their beneficial biological actions for anticancer application: A review. Antioxidants 2023, 12, 1907. [Google Scholar] [CrossRef]
- Desisa, B.; Muleta, D.; Jida, M.; Dejene, T.; Goshu, A.; Negi, T.; Martin-Pinto, P. Improvement of nutritional composition of shiitake mushroom (Lentinula edodes) using formulated substrates of plant and animal origins. Future Foods 2024, 9, 100302. [Google Scholar]
- Perez-Santaescolastica, C.; de Pril, I.; van de Voorde, I.; Fraeye, I. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors. Foods 2023, 12, 4090. [Google Scholar] [CrossRef]
- Mazı, I.B. Comparative analysis of nutritional quality and color properties of flours derived from Locusta migratoria at different developmental stages. Food Sci. Technol. Int. 2024. [Google Scholar] [CrossRef]
- Pilco-Romero, G.; Chisaguano-Tonato, A.M.; Herrera-Fontana, M.E.; Chimbo-Gándara, L.F.; Sharifi-Rad, M.; Giampieri, F.; Battino, M.; Vernaza, M.G.; Álvarez-Suárez, J.M. House cricket (Acheta domesticus): A review based on its nutritional composition, quality, and potential uses in the food industry. Trends Food Sci. Technol. 2023, 142, 104226. [Google Scholar]
- Boonarsa, P.; Bunyatratchata, A.; Chumroenphat, T.; Thammapat, P.; Chaikwang, T.; Siripan, T.; Li, H.; Siriamornpun, S. Nutritional Quality, Functional Properties, and Biological Characterization of Watermeal (Wolffia globosa). Horticulturae 2024, 10, 1171. [Google Scholar] [CrossRef]
- Mérida-López, J.; Pérez, S.J.; Morales, R.; Purhagen, J.; Bergenståhl, B.; Rojas, C.C. Comparison of the Chemical Composition of Six Canihua (Chenopodium pallidicaule) Cultivars Associated with Growth Habits and after Dehulling. Foods 2023, 12, 1734. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO/UNU. Expert Consultation on Protein and Amino Acid Requirements in Human Nutrition (2007)—Table 6: Composition of Dietary Protein Sources; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Peñalver, R.; Martínez-Zamora, L.; Lorenzo, J.M.; Ros, G.; Nieto, G. Nutritional and antioxidant properties of Moringa oleifera leaves in functional foods. Foods 2022, 11, 1107. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.K.; Elsharbasy, F.S.; Fadlelmula, A.A. Nutritional values of Moringa oleifera, total protein. Amino acid, vitamins, minerals, carbohydrates, total fat and crude fiber, under the semi-arid conditions of Sudan. J. Microb. Biochem. Technol. 2018, 10, 56–58. [Google Scholar]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Chadare, F.J.; Linnemann, A.R.; Hounhouigan, J.D.; Nout, M.J.R.; Van Boekel, M.A.J.S. Baobab food products: A review on their composition and nutritional value. Crit. Rev. Food Sci. Nutr. 2008, 49, 254–274. [Google Scholar]
- Osman, M.A. Chemical and nutrient analysis of baobab (Adansonia digitata) fruit and seed protein solubility. Plant Foods Hum. Nutr. 2004, 59, 29–33. [Google Scholar]
- Clarkson, C.; Mirosa, M.; Birch, J. Potential of extracted Locusta migratoria protein fractions as value-added ingredients. Insects 2018, 9, 20. [Google Scholar] [CrossRef]
- Mohamed, E.H. Determination of nutritive value of the edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). Int. J. Adv. Pharm. Biol. Chem. 2015, 4, 144–148. [Google Scholar]
- Mohamed, A.G.; Abo-El-Khair, B.E.; Shalaby, S.M. Quality of novel healthy processed cheese analogue enhanced with marine microalgae Chlorella vulgaris biomass. World Appl. Sci. J. 2013, 23, 914–925. [Google Scholar]
- Jahromi, K.G.; Koochi, Z.H.; Kavoosi, G.; Shahsavar, A. Manipulation of fatty acid profile and nutritional quality of Chlorella vulgaris by supplementing with citrus peel fatty acid. Sci. Rep. 2022, 12, 8151. [Google Scholar]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernández, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar]
- Metwaly, H.R.; El-Sayed, A.E.K.B.; Amin, H.F. Chemical and Biochemical Properties of Marine Algae Ulva lactuca and Nannocholoropsis oculata. Egypt. J. Aquat. Biol. Fish. 2023, 27, 19. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar]
- Hwang, E.S.; Ki, K.N.; Chung, H.Y. Proximate composition. amino acid, mineral, and heavy metal content of dried laver. Prev. Nutr. Food Sci. 2013, 18, 139. [Google Scholar]
- Biancarosa, I.; Liland, N.S.; Day, N.; Belghit, I.; Amlund, H.; Lock, E.J.; Gilburn, A.S. The chemical composition of two seaweed flies (Coelopa frigida and Coelopa pilipes) reared in the laboratory. J. Insects Food Feed 2018, 4, 135–142. [Google Scholar]
- Mæhre, H.K.; Malde, M.K.; Eilertsen, K.E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar]
- Blanco, S.; Sapatinha, M.; Mackey, M.; Maguire, J.; Paolacci, S.; Gonçalves, S.; Lourenço, H.M.; Mendes, R.; Bandarra, N.M.; Pires, C. Effect of deployment and harvest date on growth and high-value compounds of farmed Alaria esculenta. Mar. Drugs 2023, 21, 305. [Google Scholar] [CrossRef]
- Taouam, I.; El Bouqdaoui, K.; Ridaoui, K.; Bourjilat, F.; Kabine, M.; Maata, N.; Cherki, M. Nutritional profile. phytochemical composition, antioxidant and antibacterial activities of Gelidium corneum from Dar Bouazza, Morocco. Egypt. J. Aquat. Res. 2024, 50, 516–527. [Google Scholar]
- Cavaco, M.; Duarte, A.; Freitas, M.V.; Afonso, C.; Bernardino, S.; Pereira, L.; Martins, M.; Mouga, T. Seasonal nutritional profile of Gelidium corneum (Rhodophyta, Gelidiaceae) from the center of Portugal. Foods 2021, 10, 2394. [Google Scholar] [CrossRef]
- Wu, J.Y.; Siu, K.C.; Geng, P. Bioactive ingredients and medicinal values of Grifola frondosa (Maitake). Foods 2021, 10, 95. [Google Scholar] [CrossRef]
- Heidari-Parsa, S. Determination of yellow mealworm (Tenebrio molitor) nutritional value as an animal and human food supplementation. Arthropods 2018, 7, 94. [Google Scholar]
- Costa, S.; Pedro, S.; Lourenço, H.; Batista, I.; Teixeira, B.; Bandarra, N.M.; Murta, D.; Nunes, R.; Pires, C. Evaluation of Tenebrio molitor larvae as an alternative food source. NFS J. 2020, 21, 57–64. [Google Scholar]
- Adegboye, A.R.A. Potential use of edible insects in complementary foods for children: A literature review. Int. J. Environ. Res. Public Health 2022, 19, 4756. [Google Scholar] [CrossRef]
- Kowalski, S.; Oracz, J.; Skotnicka, M.; Mikulec, A.; Gumul, D.; Mickowska, B.; Mazurek, A.; Sabat, R.; Wywrocka-Gurgul, A.; Żyżelewicz, D. Chemical composition, nutritional value. and acceptance of nut bars with the addition of edible insect powder. Molecules 2022, 27, 8472. [Google Scholar] [CrossRef]
- Said, D.S.; Chrismadha, T.; Mayasari, N.; Febrianti, D.; Suri, A.R.M. Nutrition value and growth ability of aquatic weed Wolffia globosa as alternative feed sources for aquaculture system. IOP Conf. Ser. Earth Environ. Sci. 2022, 950, 012044. [Google Scholar]
- Moscoso-Mujica, G.; Mujica, Á.; Chura, E.; Begazo, N.; Jayo-Silva, K.; Oliva, M. Kañihua (Chenopodium pallidicaule Aellen), an ancestral Inca seed and optimal functional food and nutraceutical for the industry. Heliyon 2024, 10, e34589. [Google Scholar]
- Villa, D.Y.G.; Russo, L.; Kerbab, K.; Landi, M.; Rastrelli, L. Chemical and nutritional characterization of Chenopodium pallidicaule (cañihua) and Chenopodium quinoa (quinoa) seeds. Emir. J. Food Agric. 2014, 26, 609. [Google Scholar]
- Chandel, N.S. Amino acid metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040584. [Google Scholar]
- Liestianty, D.; Rodianawati, I.; Arfah, R.A.; Assa, A.; Patimah; Sundari; Muliadi. Nutritional analysis of spirulina sp to promote as superfood candidate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012031. [Google Scholar]
- Alvarenga, R.R.; Rodrigues, P.B.; Cantarelli, V.D.; Zangeronimo, M.G.; Silva Júnior, J.W.; Silva, L.R.; Santos, L.M.; Pereira, L.J. Energy values and chemical composition of spirulina (Spirulina platensis) evaluated with broilers. Rev. Bras. De Zootec. 2011, 40, 992–996. [Google Scholar]
- Nateghpour, B.; Kavoosi, G.; Mirakhorli, N. Amino acid profile of the peel of three citrus species and its effect on the combination of amino acids and fatty acids Chlorella vulgaris. J. Food Compos. Anal. 2021, 98, 103808. [Google Scholar] [CrossRef]
- Mutavski, Z.; Jerković, I.; Nikolić, N.Ć.; Radman, S.; Flanjak, I.; Aladić, K.; Šubarić, D.; Vulić, J.; Jokić, S. Comprehensive Phytochemical Profiling of Ulva lactuca from the Adriatic Sea. Int. J. Mol. Sci. 2024, 25, 11711. [Google Scholar] [CrossRef] [PubMed]
- Sopanrao, P.S.; Abrar, A.S.; Manoharrao, T.S.; Vaseem, B.M.M. Nutritional value of Pleurotus ostreatus (Jacq: Fr) Kumm cultivated on different lignocellulosic agro-wastes. Innov. Rom. Food Biotechnol. 2010, 7, 66–76. [Google Scholar]
- Yu, C.X.; Zhang, Y.R.; Ren, Y.F.; Zhao, Y.; Song, X.X.; Yang, H.L.; Chen, M.J. Composition and contents of fatty acids and amino acids in the mycelia of Lentinula edodes. Food Sci. Nutr. 2023, 11, 4038–4046. [Google Scholar] [CrossRef]
- Kayode, R.M.O.; Olakulehin, T.F.; Adedeji, B.S.; Ahmed, O.; Aliyu, T.H.; Badmos, A.H.A. Evaluation of amino acid and fatty acid profiles of commercially cultivated oyster mushroom (Pleurotus sajor-caju) grown on gmelina wood waste. Niger. Food J. 2015, 33, 18–21. [Google Scholar] [CrossRef]
- Eghianruwa, Q.; Odekanyin, O.; Kuku, A. Physicochemical properties and acute toxicity studies of a lectin from the saline extract of the fruiting bodies of the shiitake mushroom, Lentinula edodes (Berk). Int. J. Biochem. Mol. Biol. 2011, 2, 309. [Google Scholar]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Appenroth, K.J.; Sree, K.S.; Bog, M.; Ecker, J.; Seeliger, C.; Böhm, V.; Lorkowski, S.; Sommer, K.; Vetter, W.; Tolzin-Banasch, K.; et al. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front. Chem. 2018, 6, 483. [Google Scholar] [CrossRef]
- Serena-Romero, G.; Ignot-Gutiérrez, A.; Conde-Rivas, O.; Lima-Silva, M.Y.; Martínez, A.J.; Guajardo-Flores, D.; Cruz-Huerta, E. Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (Amaranthus cruentus L.) and Cañihua (Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells. Antioxidants 2023, 12, 2075. [Google Scholar] [CrossRef]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Owon, M.; Osman, M.; Ibrahim, A.; Salama, M.A.; Matthäus, B. Characterisation of different parts from Moringa oleifera regarding protein. lipid composition and extractable phenolic compounds. OCL 2021, 28, 45. [Google Scholar] [CrossRef]
- Jankauskienė, A.; Aleknavičius, D.; Andrulevičiūtė, V.; Mockus, E.; Bartkienė, E.; Juknienė, I.; Kiseliovienė, S.; Zavistanavičiūtė, P.; Zaborskienė, G.; Kabašinskienė, A. Nutritional composition and safety parameters of mealworms (Tenebrio molitor) reared on substrates derived from by-products. Appl. Sci. 2024, 14, 2744. [Google Scholar] [CrossRef]
- Jajić, I.; Popović, A.; Urošević, M.I.; Krstović, S.; Petrović, M.; Guljaš, D.; Samardžić, M. Fatty and amino acid profile of mealworm larvae (Tenebrio molitor L.). Biotechnol. Anim. Husb. 2020, 36, 167–180. [Google Scholar] [CrossRef]
- Cho, S.M.; Jang, K.Y.; Park, H.J.; Park, J.S. Analysis of the Chemical Constituents of Agaricus brasiliensis. Mycobiology 2008, 36, 50–54. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Di Pasquale, M.G. The essentials of essential fatty acids. J. Diet. Suppl. 2009, 6, 143–161. [Google Scholar] [CrossRef]
- Siahbalaei, R.; Kavoosi, G.; Noroozi, M. Manipulation of Chlorella vulgaris polyunsaturated ω-3 fatty acid profile by supplementation with vegetable amino acids and fatty acids. Phycol. Res. 2021, 69, 116–123. [Google Scholar] [CrossRef]
- Pedneault, K.; Angers, P.; Avis, T.J.; Gosselin, A.; Tweddell, R.J. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var.‘citrino-pileatus’ grown at different temperatures. Mycol. Res. 2007, 111, 1228–1234. [Google Scholar] [CrossRef]
- Das, A.K.; Asif, M.; Hasan, G.A. A comparative study of fatty acid compositions of three cultivated edible mushroom species of Bangladesh. J. Agric. Food Res. 2023, 12, 100620. [Google Scholar] [CrossRef]
- Farhan, E.M.; Chechan, R.A. Analysis of Amino Acids and Fatty Acids in the Local Strain of Wild and Cultivated Food Mushrooms IOP Conf. Ser. Earth Environ. Sci. 2023, 1158. [Google Scholar] [CrossRef]
- Hossain, M.S.; Alam, N.; Amin, S.R.; Basunia, M.A.; Rahman, A. Essential fatty acid contents of Pleurotus ostreatus, Ganoderma lucidum and Agaricus bisporus. Bangladesh J. Mushroom 2007, 1, 1–7. [Google Scholar]
- Khanal, P.; Pandey, D.; Næss, G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Timilsina, B.; Veldkamp, T.; Sapkota, R.; Overrein, H. Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. J. Clean. Prod. 2023, 389, 136104. [Google Scholar]
- Siddiqui, S.A.; Zhao, T.; Fitriani, A.; Rahmadhia, S.N.; Alirezalu, K.; Fernando, I. Acheta domesticus (house cricket) as human foods—An approval of the European Commission—A systematic review. Food Front. 2024, 5, 435–473. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maddaloni, L.; Donini, L.M.; Gobbi, L.; Muzzioli, L.; Vinci, G. Essential Amino Acids and Fatty Acids in Novel Foods: Emerging Nutritional Sources and Implications. Dietetics 2025, 4, 14. https://doi.org/10.3390/dietetics4020014
Maddaloni L, Donini LM, Gobbi L, Muzzioli L, Vinci G. Essential Amino Acids and Fatty Acids in Novel Foods: Emerging Nutritional Sources and Implications. Dietetics. 2025; 4(2):14. https://doi.org/10.3390/dietetics4020014
Chicago/Turabian StyleMaddaloni, Lucia, Lorenzo Maria Donini, Laura Gobbi, Luca Muzzioli, and Giuliana Vinci. 2025. "Essential Amino Acids and Fatty Acids in Novel Foods: Emerging Nutritional Sources and Implications" Dietetics 4, no. 2: 14. https://doi.org/10.3390/dietetics4020014
APA StyleMaddaloni, L., Donini, L. M., Gobbi, L., Muzzioli, L., & Vinci, G. (2025). Essential Amino Acids and Fatty Acids in Novel Foods: Emerging Nutritional Sources and Implications. Dietetics, 4(2), 14. https://doi.org/10.3390/dietetics4020014