Assessment of Line Outage Prediction Using Ensemble Learning and Gaussian Processes During Extreme Meteorological Events
Abstract
1. Introduction
2. The Structure of Proposed Binary Classification and Data Generation for Line Failure Prediction
2.1. Fragility Curve Development
2.2. Weather Information
2.3. Scenario Generation
3. Methodology—Studied Machine Learning Models and Hyperparameters
3.1. K-Nearest Neighbors (KNN)
3.2. Random Forest (RF)
3.3. Support Vector Machine (SVM)
3.4. Decision Trees (DTs)
3.5. Gradient Boosting Machine (GBM)
3.6. Gaussian Process (GP)
3.7. Ensemble Learning (RF + SVM + GP)
3.8. Deep Neural Network (DNN)
- is the output of the l-th layer.
- is the output of the previous layer (or the input to the current layer).
- is the weight matrix for the l-th layer.
- is the bias vector for the l-th layer.
- is the activation function
3.9. ML Model Hyperparameter Tuning
3.10. Deep Learning Model
3.11. Cross-Validation and Final Model Evaluation
3.12. Performance Evaluation Metrics
3.13. Experiment Setup
4. Results and Discussion
4.1. Binary Classification for Line Outages
4.2. Cross-Validation Results and Discussion
4.3. Final Model Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KNN | K-Nearest Neighbors |
RF | Random Forest |
SVM | Support Vector Machine |
DT | Decision Trees |
GBM | Gradient Boosting Machine |
GP | Gaussian Process |
DNN | Deep Neural Network |
DFFNN | Deep Feed-Forward Neural Network |
DERs | Distributed Energy Resources |
RE | Renewable Energy |
MC | Monte Carlo |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
SMOTE | Synthetic Minority Over-sampling |
ML | Machine Learning |
TP | True Positives |
TN | True Negatives |
FP | False Positives |
FN | False Negatives |
CDF | Cumulative Distribution Function |
WS | wind speed |
WP | Wind Power |
References
- Akdemir, K.Z.; Kern, J.D.; Lamontagne, J. Assessing risks for New England’s wholesale electricity market from wind power losses during extreme winter storms. Energy 2022, 251, 123886. [Google Scholar] [CrossRef]
- Mujjuni, F.; Betts, T.R.; Blanchard, R.E. Evaluation of Power Systems Resilience to Extreme Weather Events: A Review of Methods and Assumptions. IEEE Access 2023, 11, 87279–87296. [Google Scholar] [CrossRef]
- Panteli, M.; Trakas, D.N.; Mancarella, P.; Hatziargyriou, N.D. Power systems resilience assessment: Hardening and smart operational enhancement strategies. Proc. IEEE 2017, 105, 1202–1213. [Google Scholar] [CrossRef]
- Wanik, D.W.; Parent, J.; Anagnostou, E.; Hartman, B. Using vegetation management and LiDAR-derived tree height data to improve outage predictions for electric utilities. Electr. Power Syst. Res. 2017, 146, 236–245. [Google Scholar] [CrossRef]
- Liu, W.; Ding, F.; Zhao, C. Dynamic restoration strategy for distribution system resilience enhancement. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020; pp. 1–5. [Google Scholar]
- Xu, L.; Feng, K.; Lin, N.; Perera, A.; Poor, H.V.; Xie, L.; Ji, C.; Sun, X.A.; Guo, Q.; O’Malley, M. Resilience of renewable power systems under climate risks. Nat. Rev. Electr. Eng. 2024, 1, 53–66. [Google Scholar] [CrossRef]
- Unlu, A.; Dorado-Rojas, S.A.; Pena, M.; Wang, Z. Weather-Informed Forecasting for Time Series Optimal Power Flow of Transmission Systems with Large Renewable Share. IEEE Access 2024, 12, 92652–92662. [Google Scholar] [CrossRef]
- Jawad, M.; Nadeem, M.S.A.; Shim, S.O.; Khan, I.R.; Shaheen, A.; Habib, N.; Hussain, L.; Aziz, W. Machine learning based cost effective electricity load forecasting model using correlated meteorological parameters. IEEE Access 2020, 8, 146847–146864. [Google Scholar] [CrossRef]
- Tsioumpri, E.; Stephen, B.; McArthur, S.D. Weather related fault prediction in minimally monitored distribution networks. Energies 2021, 14, 2053. [Google Scholar] [CrossRef]
- Wanik, D.; Anagnostou, E.; Hartman, B.; Frediani, M.; Astitha, M. Storm outage modeling for an electric distribution network in Northeastern USA. Nat. Hazards 2015, 79, 1359–1384. [Google Scholar] [CrossRef]
- Zenkner, G.; Navarro-Martinez, S. A flexible and lightweight deep learning weather forecasting model. Appl. Intell. 2023, 53, 24991–25002. [Google Scholar] [CrossRef]
- Xie, J.; Alvarez-Fernandez, I.; Sun, W. A review of machine learning applications in power system resilience. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5. [Google Scholar]
- Hou, G.; Muraleetharan, K.K. Modeling the Resilience of Power Distribution Systems Subjected to Extreme Winds Considering Tree Failures: An Integrated Framework. Int. J. Disaster Risk Sci. 2023, 14, 194–208. [Google Scholar] [CrossRef]
- Barnes, A.; Nagarajan, H.; Yamangil, E.; Bent, R.; Backhaus, S. Resilient design of large-scale distribution feeders with networked microgrids. Electr. Power Syst. Res. 2019, 171, 150–157. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Ju, P.; Li, H. A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures. Renew. Sustain. Energy Rev. 2022, 156, 111945. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, Q.; Wang, D.; Huang, G.; Liang, S. Fragility Analysis of Transmission Towers Subjected to Downburst Winds. Appl. Sci. 2023, 13, 9167. [Google Scholar] [CrossRef]
- Ma, S.; Chen, B.; Wang, Z. Resilience enhancement strategy for distribution systems under extreme weather events. IEEE Trans. Smart Grid 2016, 9, 1442–1451. [Google Scholar] [CrossRef]
- Sang, Y.; Xue, J.; Sahraei-Ardakani, M.; Ou, G. An integrated preventive operation framework for power systems during hurricanes. IEEE Syst. J. 2019, 14, 3245–3255. [Google Scholar] [CrossRef]
- Omogoye, O.S.; Folly, K.A.; Awodele, K.O. Enhancing the distribution power system resilience against hurricane events using a bayesian network line outage prediction model. J. Eng. 2021, 2021, 731–744. [Google Scholar] [CrossRef]
- Kebede, F.S.; Olivier, J.C.; Bourguet, S.; Machmoum, M. Reliability evaluation of renewable power systems through distribution network power outage modelling. Energies 2021, 14, 3225. [Google Scholar] [CrossRef]
- Jonathan, P.; Randell, D.; Wadsworth, J.; Tawn, J. Uncertainties in return values from extreme value analysis of peaks over threshold using the generalised Pareto distribution. Ocean. Eng. 2021, 220, 107725. [Google Scholar] [CrossRef]
- Hu, X.; Fang, G.; Yang, J.; Zhao, L.; Ge, Y. Simplified models for uncertainty quantification of extreme events using Monte Carlo technique. Reliab. Eng. Syst. Saf. 2023, 230, 108935. [Google Scholar] [CrossRef]
- Guikema, S.D.; Nateghi, R.; Quiring, S.M.; Staid, A.; Reilly, A.C.; Gao, M. Predicting hurricane power outages to support storm response planning. IEEE Access 2014, 2, 1364–1373. [Google Scholar] [CrossRef]
- Cerrai, D.; Wanik, D.W.; Bhuiyan, M.A.E.; Zhang, X.; Yang, J.; Frediani, M.E.; Anagnostou, E.N. Predicting storm outages through new representations of weather and vegetation. IEEE Access 2019, 7, 29639–29654. [Google Scholar] [CrossRef]
- Yang, F.; Watson, P.; Koukoula, M.; Anagnostou, E.N. Enhancing weather-related power outage prediction by event severity classification. IEEE Access 2020, 8, 60029–60042. [Google Scholar] [CrossRef]
- Toubeau, J.F.; Pardoen, L.; Hubert, L.; Marenne, N.; Sprooten, J.; De Grève, Z.; Vallée, F. Machine learning-assisted outage planning for maintenance activities in power systems with renewables. Energy 2022, 238, 121993. [Google Scholar] [CrossRef]
- AlHaddad, U.; Basuhail, A.; Khemakhem, M.; Eassa, F.E.; Jambi, K. Towards sustainable energy grids: A machine learning-based ensemble methods approach for outages estimation in extreme weather events. Sustainability 2023, 15, 12622. [Google Scholar] [CrossRef]
- Atrigna, M.; Buonanno, A.; Carli, R.; Cavone, G.; Scarabaggio, P.; Valenti, M.; Graditi, G.; Dotoli, M. A machine learning approach to fault prediction of power distribution grids under heatwaves. IEEE Trans. Ind. Appl. 2023, 59, 4835–4845. [Google Scholar] [CrossRef]
- Tervo, R.; Láng, I.; Jung, A.; Mäkelä, A. Predicting power outages caused by extratropical storms. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–26. [Google Scholar] [CrossRef]
- Li, B.; Chen, Y.; Huang, S.; Guan, H.; Xiong, Y.; Mei, S. A Bayesian network model for predicting outages of distribution system caused by hurricanes. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5. [Google Scholar]
- Melagoda, A.; Karunarathna, T.; Nisaharan, G.; Amarasinghe, P.; Abeygunawardane, S. Application of machine learning algorithms for predicting vegetation related outages in power distribution systems. In Proceedings of the 2021 3rd International Conference on Electrical Engineering (EECon), Colombo, Sri Lanka, 24 September 2021; pp. 25–30. [Google Scholar]
- Jeong, S.H.; Elnashai, A.S. Probabilistic fragility analysis parameterized by fundamental response quantities. Eng. Struct. 2007, 29, 1238–1251. [Google Scholar] [CrossRef]
- Serrano-Fontova, A.; Li, H.; Liao, Z.; Jamieson, M.R.; Serrano, R.; Parisio, A.; Panteli, M. A comprehensive review and comparison of the fragility curves used for resilience assessments in power systems. IEEE Access 2023, 11, 108050–108067. [Google Scholar] [CrossRef]
- Kirsty, M.; Bell, K. Wind related faults on the GB transmission network. In Proceedings of the Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7–10 July 2014; pp. 1–6. [Google Scholar]
- Dunn, S.; Wilkinson, S.; Alderson, D.; Fowler, H.; Galasso, C. Fragility curves for assessing the resilience of electricity networks constructed from an extensive fault database. Nat. Hazards Rev. 2018, 19, 04017019. [Google Scholar] [CrossRef]
- Zhu, X.; Ou, G.; Jafarishiadeh, F.; Sahraei-Ardakani, M. A data generation engine and workflow for power network damage and loss estimation under hurricane. In Proceedings of the 2022 North American Power Symposium (NAPS), Salt Lake City, UT, USA, 9–11 October 2022; pp. 1–5. [Google Scholar]
- Hughes, W. Integrating Physics-Based and Data-Driven Models for Community Resilience Assessment Under Wind Storms. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2023. [Google Scholar]
- Gupta, A.K.; Verma, K. Assessment of Infrastructural and Operational Resilience of Transmission Lines During Dynamic Meteorological Hazard. In Proceedings of the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 6–8 July 2023; pp. 1–5. [Google Scholar]
- Raj, S.V.; Kumar, M.; Bhatia, U. Fragility curves for power transmission towers in Odisha, India, based on observed damage during 2019 cyclone fani. arXiv 2021, arXiv:2107.06072. [Google Scholar]
- Bhattacharya, P.; Bhattacharjee, R. A study on Weibull distribution for estimating the parameters. Wind Eng. 2009, 33, 469–476. [Google Scholar] [CrossRef]
- Panteli, M.; Pickering, C.; Wilkinson, S.; Dawson, R.; Mancarella, P. Power system resilience to extreme weather: Fragility modeling, probabilistic impact assessment, and adaptation measures. IEEE Trans. Power Syst. 2016, 32, 3747–3757. [Google Scholar] [CrossRef]
- Papoulis, A. Probability and Statistics; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN model-based approach in classification. In Proceedings of the On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, 3–7 November 2003; Proceedings. Springer: Berlin/Heidelberg, Germany, 2003; pp. 986–996. [Google Scholar]
- Wazirali, R. An improved intrusion detection system based on KNN hyperparameter tuning and cross-validation. Arab. J. Sci. Eng. 2020, 45, 10859–10873. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Contreras, P.; Orellana-Alvear, J.; Muñoz, P.; Bendix, J.; Célleri, R. Influence of random forest hyperparameterization on short-term runoff forecasting in an andean mountain catchment. Atmosphere 2021, 12, 238. [Google Scholar] [CrossRef]
- Deisenroth, M.P.; Faisal, A.A.; Ong, C.S. Mathematics for Machine Learning; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Sun, J.; Zheng, C.; Li, X.; Zhou, Y. Analysis of the Distance Between Two Classes for Tuning SVM Hyperparameters. IEEE Trans. Neural Netw. 2010, 21, 305–318. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Mantovani, R.G.; Horváth, T.; Cerri, R.; Junior, S.B.; Vanschoren, J.; de Carvalho, A.d.L. An empirical study on hyperparameter tuning of decision trees. arXiv 2018, arXiv:1812.02207. [Google Scholar]
- Bentéjac, C.; Csörgo, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- van Hoof, J.; Vanschoren, J. Hyperboost: Hyperparameter optimization by gradient boosting surrogate models. arXiv 2021, arXiv:2101.02289. [Google Scholar]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2. [Google Scholar]
- Nickisch, H.; Rasmussen, C.E. Approximations for binary Gaussian process classification. J. Mach. Learn. Res. 2008, 9, 2035–2078. [Google Scholar]
- Bauer, E.; Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 1999, 36, 105–139. [Google Scholar] [CrossRef]
- Cawood, P.; Van Zyl, T. Evaluating state-of-the-art, forecasting ensembles and meta-learning strategies for model fusion. Forecasting 2022, 4, 732–751. [Google Scholar] [CrossRef]
- Montavon, G.; Samek, W.; Müller, K.R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 2017, 105, 2295–2329. [Google Scholar] [CrossRef]
- Unlu, A.; Peña, M. Combined MIMO Deep Learning Method for ACOPF with High Wind Power Integration. Energies 2024, 17, 796. [Google Scholar] [CrossRef]
- Berrar, D.; Ranganathan, S.; Nakai, K.; Schönbach, C.; Gribskov, M. Cross-validation. In Encyclopedia of Bioinformatics and Computational Biology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 542–545. [Google Scholar]
- Yan, T.; Shen, S.L.; Zhou, A.; Chen, X. Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm. J. Rock Mech. Geotech. Eng. 2022, 14, 1292–1303. [Google Scholar] [CrossRef]
- Goutte, C.; Gaussier, E. A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Proceedings of the European Conference on Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Wardhani, N.W.S.; Rochayani, M.Y.; Iriany, A.; Sulistyono, A.D.; Lestantyo, P. Cross-validation metrics for evaluating classification performance on imbalanced data. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019; pp. 14–18. [Google Scholar]
- Zhu, T.; Lin, Y.; Liu, Y. Synthetic minority oversampling technique for multiclass imbalance problems. Pattern Recognit. 2017, 72, 327–340. [Google Scholar] [CrossRef]
Model | Parameter | Values |
---|---|---|
KNN | number of neighbors: | 5, 10, 15 |
weights: | uniform, distance | |
p: | 1, 2 | |
RF | number of estimators: | 100, 200 |
max. depth: | 10, 20 | |
min. sample split: | 2, 5 | |
min. sample leaf: | 1, 2 | |
SVM | C: | 0.1, 1, 10, 100 |
gamma: | 1, 0.1, 0.01, 0.001 | |
kernel: | rbf | |
DT | max. depth: | 10, 20, 30, 40, 50 |
min. samples split: | 2, 5, 10 | |
min. samples leaf: | 1, 2, 4 | |
GBM | number of estimators: | 100, 200, 300 |
learning rate: | 0.01, 0.1, 0.2 | |
max. depth: | 3, 4, 5 | |
GP | kernel constant value: | 0.1, 1, 10 |
kernel length scale: | 0.1, 1, 10 | |
Ensemble | RF hyperparameters: | Best hyperparameters found |
SVM hyperparameters: | Best hyperparameters found | |
GP hyperparameters: | Best hyperparameters found |
Type | Description |
---|---|
Dense Layer | 256 neurons, ReLU activation |
Dropout Layer | Dropout rate: 0.2 |
Dense Layer | 128 neurons, ReLU activation |
Dropout Layer | Dropout rate: 0.2 |
Dense Layer | 64 neurons, ReLU activation |
Dropout Layer | Dropout rate: 0.2 |
Dense Layer | 32 neurons, ReLU activation |
Output Layer | 1 neuron, Sigmoid activation |
Optimizer | Adam optimizer, learning rate = 0.001 |
Loss Function | Binary cross-entropy |
Epochs | 100 |
Early stopping | Applied |
Model | Mean Accuracy (CV) | Std (CV) | Test Accuracy |
---|---|---|---|
KNN | 0.8128 | 0.0329 | 0.7600 |
RF | 0.8204 | 0.0266 | 0.7300 |
SVM | 0.8096 | 0.0260 | 0.8067 |
DT | 0.7792 | 0.0179 | 0.6733 |
GBM | 0.7998 | 0.0125 | 0.7533 |
GP | 0.8063 | 0.0299 | 0.8067 |
Ensemble | 0.8106 | 0.0232 | 0.8200 |
DNN | 0.8020 | 0.0297 | 0.7933 |
Model | Precision* | Recall* | F1-Score* | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
KNN | 0.80 | 0.82 | 0.81 | 0.69 | 0.66 | 0.67 |
RF | 0.78 | 0.80 | 0.79 | 0.65 | 0.62 | 0.64 |
SVM | 0.87 | 0.81 | 0.84 | 0.71 | 0.80 | 0.76 |
DT | 0.74 | 0.74 | 0.74 | 0.56 | 0.55 | 0.56 |
GBM | 0.82 | 0.78 | 0.80 | 0.66 | 0.71 | 0.68 |
GP | 0.87 | 0.81 | 0.84 | 0.71 | 0.80 | 0.76 |
Ensemble | 0.88 | 0.83 | 0.85 | 0.74 | 0.80 | 0.77 |
DNN | 0.83 | 0.84 | 0.84 | 0.73 | 0.71 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unlu, A.; Peña, M. Assessment of Line Outage Prediction Using Ensemble Learning and Gaussian Processes During Extreme Meteorological Events. Wind 2024, 4, 342-362. https://doi.org/10.3390/wind4040017
Unlu A, Peña M. Assessment of Line Outage Prediction Using Ensemble Learning and Gaussian Processes During Extreme Meteorological Events. Wind. 2024; 4(4):342-362. https://doi.org/10.3390/wind4040017
Chicago/Turabian StyleUnlu, Altan, and Malaquias Peña. 2024. "Assessment of Line Outage Prediction Using Ensemble Learning and Gaussian Processes During Extreme Meteorological Events" Wind 4, no. 4: 342-362. https://doi.org/10.3390/wind4040017
APA StyleUnlu, A., & Peña, M. (2024). Assessment of Line Outage Prediction Using Ensemble Learning and Gaussian Processes During Extreme Meteorological Events. Wind, 4(4), 342-362. https://doi.org/10.3390/wind4040017