Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Meteorological Data
2.3. Land Use and Surface Characteristics
2.4. Methods
2.4.1. Homogenisation
2.4.2. Statistical Analysis
3. Results
3.1. Urban–Rural and Intra-Urban Differences in the HW Measures
3.2. Urban Heat Island Intensity and the Contribution of HWs
3.3. Factors Affecting Differences in the Occurrence of HWs, UHII, and HM
4. Discussion
4.1. Long-Term Changes in the HW Measures in Brno
4.2. Circulation Types and Their Context with HWs and UHII
4.3. Factors Affecting the Synergy between HWs and UHII
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Urbanization Prospects The 2018 Revision. UN Department of Economic and Social Affairs. 2018. Available online: https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 21 June 2022).
- UN-HABITAT. Cities and Climate Change: Global Report on Human Settlements. United Nations Human Settlements Programme. 2011. Available online: https://unhabitat.org/global-report-on-human-settlements-2011-cities-and-climate-change (accessed on 21 June 2022).
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, MA, USA; New York, NY, USA, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 5 February 2022).
- Bettencourt, L.; West, G. A unified theory of urban living. Nature 2010, 467, 912–913. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.I.; Chan, A.; Morris, K.J.K.; Ooi, M.C.G.; Oozeer, M.Y.; Abakr, Y.A.; Nadzir, M.S.M.; Mohammed, I.Y.; Al-Qrimli, H.F. Impact of urbanization level on the interactions of urban area, the urban climate, and human thermal comfort. Appl. Geogr. 2017, 79, 50–72. [Google Scholar] [CrossRef]
- Arnfield, J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Stewart, I.D. A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Clim. 2011, 31, 200–217. [Google Scholar] [CrossRef]
- Yow, D.M. Urban Heat Islands: Observations, Impacts, and Adaptation. Geogr. Compass 2007, 1, 1227–1251. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Perkins, S.E. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. Heat waves: A hot topic in climate change research. Theor. Appl. Clim. 2021, 146, 781–800. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef] [Green Version]
- EEA. Climate Change, Impacts, and Vulnerability in Europe 2016: An Indicator-Based Report; EEA Report No. 1/2017; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. 2017, 4, 296–305. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Graczyk, D.; Kundzewicz, Z.W.; Choryński, A.; Førland, E.J.; Pińskwar, I.; Szwed, M. Heat-related mortality during hot summers in Polish cities. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2018, 136, 1259–1273. [Google Scholar] [CrossRef] [Green Version]
- Urban, A.; Kyselý, J.; Plavcová, E.; Hanzlíková, H.; Štěpánek, P. Temporal changes in years of life lost associated with heat waves in the Czech Republic. Sci. Total Environ. 2020, 716, 137093. [Google Scholar] [CrossRef]
- Zanobetti, A.; O’Neill, M.S.; Gronlund, C.J.; Schwartz, J.D. Summer temperature variability and long-term survival among elderly people with chronic disease. Proc. Natl. Acad. Sci. USA 2012, 109, 6608–6613. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. Disproportionately higher exposure to urban heat in lower-income neigh-borhoods: A multi-city perspective. Environ. Res. Lett. 2019, 14, 105003. [Google Scholar] [CrossRef] [Green Version]
- Vicedo-Cabrera, A.M.; Scovronick, N.; Sera, F.; Royé, D.; Schneider, R.; Tobias, A.; Astrom, C.; Guo, Y.; Honda, Y.; Hondula, D.M.; et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Chang. 2021, 11, 492–500. [Google Scholar] [CrossRef]
- Della-Marta, P.M.; Haylock, M.R.; Luterbacher, J.; Wanner, H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. Atmos. 2007, 112, D15103. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Ganguly, A.R.; Nijssen, B.; Lettenmaier, D.P. Changes in observed climate extremes in global urban areas. Environ. Res. Lett. 2015, 10, 024005. [Google Scholar] [CrossRef]
- Zahradníček, P.; Brázdil, R.; Řehoř, J.; Lhotka, O.; Dobrovolný, P.; Štěpánek, P.; Trnka, M. Temperature extremes and circu-lation types in the Czech Republic, 1961–2020. Int. J. Climatol. 2021, 42, 4808–4829. [Google Scholar] [CrossRef]
- Robine, J.-M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.-P.; Herrmann, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The hot summer of 2010: Redrawing the tem-perature record map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, F.E.L.; Massey, N.; van Oldenborgh, G.J.; Jones, R.G.; Allen, M.R. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 2012, 39, L04702. [Google Scholar] [CrossRef] [Green Version]
- Urban, A.; Hanzlíková, H.; Kyselý, J.; Plavcová, E. Impacts of the 2015 heat waves on mortality in the Czech Republic—A comparison with previous heat waves. Int. J. Environ. Res. Public Health 2017, 14, 1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Výberči, D.; Labudová, L.; Eštóková, M.; Faško, P.; Trizna, M. Human mortality impacts of the 2015 summer heat spells in Slovakia. Theor. Appl. Climatol. 2018, 133, 925–936. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J.; Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Clim. 2017, 131, 1043–1054. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Skarbit, N.; Gál, T. Projection of intra-urban modification of night-time climate indices during the 21st century. Hung. Geogr. Bull. 2016, 65, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Bokwa, A.; Dobrovolný, P.; Gál, T.; Geletič, J.; Gulyás, A.; Hajto, M.J.; Holec, J.; Hollósi, B.; Kielar, R.; Lehnert, M.; et al. Urban climate in Central European cities and global climate change. Acta Climatol. 2018, 51–52, 7–35. [Google Scholar] [CrossRef]
- Oswald, S.M.; Hollosi, B.; Žuvela-Aloise, M.; See, L.; Guggenberger, S.; Hafner, W.; Prokop, G.; Storch, A.; Schieder, W. Using urban climate modelling and improved land use classifications to support climate change adaptation in urban environments: A case study for the city of Klagenfurt, Austria. Urban Clim. 2020, 31, 100582. [Google Scholar] [CrossRef]
- Ouzeau, G.; Soubeyroux, J.-M.; Schneider, M.; Vautard, R.; Planton, S. Heat waves analysis over France in present and future climate: Application of a new method on the EURO-CORDEX ensemble. Clim. Serv. 2016, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Kong, J.; Zhao, Y.; Carmeliet, J.; Lei, C. Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale. Sustainability 2021, 13, 10923. [Google Scholar] [CrossRef]
- Li, D.; Bou-Zeid, E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts. J. Appl. Meteorol. Clim. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Founda, D.; Santamouris, M. Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep. 2017, 7, 10973. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.W.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Savić, S.; Marković, V.; Šećerov, I.; Pavić, D.; Arsenović, D.; Milošević, D.; Dolinaj, D.; Nagy, I.; Pantelić, P. Heat wave risk assessment and mapping in urban areas: Case study for a midsized Central European city, Novi Sad (Serbia). Natural Hazards 2018, 91, 891–911. [Google Scholar] [CrossRef]
- Rasilla, D.; Allende, F.; Martilli, A.; Fernández, F. Heat Waves and Human Well-Being in Madrid (Spain). Atmosphere 2019, 10, 288. [Google Scholar] [CrossRef] [Green Version]
- An, N.; Dou, J.; González-Cruz, J.E.; Bornstein, R.; Miao, S.; Li, L. An Observational Case Study of Synergies between an Intense Heat Wave and the Urban Heat Island in Beijing. J. Appl. Meteorol. Climatol. 2020, 59, 605–620. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Bou-Zeid, E. Heatwaves and urban heat islands: A comparative analysis of multiple cities. J. Geophys. Res. Atmos. 2017, 122, 168–178. [Google Scholar] [CrossRef]
- Oliveira, A.; Lopes, A.; Correia, E.; Niza, S.; Soares, A. Heatwaves and Summer Urban Heat Islands: A Daily Cycle Approach to Unveil the Urban Thermal Signal Changes in Lisbon, Portugal. Atmosphere 2021, 12, 292. [Google Scholar] [CrossRef]
- Richard, Y.; Pohl, B.; Rega, M.; Pergaud, J.; Thevenin, T.; Emery, J.; Dudek, J.; Vairet, T.; Zito, S.; Chateau-Smith, C. Is Urban Heat Island intensity higher during hot spells and heat waves (Dijon, France, 2014–2019)? Urban Clim. 2020, 35, 100747. [Google Scholar] [CrossRef]
- Scott, A.; Waugh, D.W.; Zaitchik, B.F. Reduced Urban Heat Island intensity under warmer conditions. Environ. Res. Lett. 2018, 13, 064003. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mishra, V. Decline in surface urban heat island intensity in India during heatwaves. Environ. Res. Commun. 2019, 1, 031001. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Newman, A.J.; Huang, M.; Coon, C.; Darrow, L.A.; Strickland, M.J.; Holmes, H.A. Estimating Heat-Related Expo-sures and Urban Heat Island Impacts: A Case Study for the 2012 Chicago Heatwave. GeoHealth 2021, 6, e2021GH000535. [Google Scholar]
- Tuholske, C.; Caylor, K.; Funk, C.; Verdin, A.; Sweeney, S.; Grace, K.; Peterson, P.; Evans, T. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef]
- Středová, H.; Fukalová, P.; Rožnovský, J.; Středa, T. Specifics of temperature extremes under the conditions of urban climate. Contrib. Geophys. Geod. 2010, 40, 249–261. [Google Scholar]
- Dobrovolný, P.; Řezníčková, L.; Brázdil, R.; Krahula, L.; Zahradníček, P.; Hradil, M.; Doleželová, M.; Šálek, M.; Štěpánek, P.; Rožnovský, J.; et al. The Climate of Brno. Multilevel Analysis of Urban Climate; Masaryk University: Brno, Czech Republic, 2012; p. 200. [Google Scholar]
- Dobrovolný, P. The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability. Theor. Appl. Climatol. 2012, 112, 89–98. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities. Remote Sens. 2016, 8, 788. [Google Scholar] [CrossRef] [Green Version]
- Geletič, J.; Lehnert, M.; Savić, S.; Milošević, D. Modelled spatiotemporal variability of outdoor thermal comfort in local climate zones of the city of Brno, Czech Republic. Sci. Total Environ. 2018, 624, 385–395. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M.; Dobrovolný, P.; Žuvela-Aloise, M. Spatial modelling of summer climate indices based on local climate zones: Expected changes in the future climate of Brno, Czech Republic. Clim. Chang. 2019, 152, 487–502. [Google Scholar] [CrossRef]
- Land Survey Office Czech Republic. Geoportal ČÚZK: Orthophoto of the Czech Republic. 2021. Available online: https://geoportal.cuzk.cz/(S(wavmnql3t235lgfkt2bz0ili))/Default.aspx?lng=EN&mode=TextMeta&metadataID=CZ-CUZK-ORTOFOTO-R&metadataXSL=full&side=ortofoto (accessed on 29 June 2022).
- Hart, M.A.; Sailor, D.J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 2009, 95, 397–406. [Google Scholar] [CrossRef]
- Geletič, J.; Lehnert, M. GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Morav. Geogr. Rep. 2016, 24, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C.; Easterling, D.R.; Karl, T.R.; Groisman, P.; Nicholls, N.; Plummer, N.; Torok, S.; Auer, I.; Boehm, R.; Gullett, D.; et al. Homogeneity adjustments ofin situ atmospheric climate data: A review. Int. J. Clim. 1998, 18, 1493–1517. [Google Scholar] [CrossRef]
- Guijarro, J.A. Homogenization of Climatic Series with Climatol; Version 3.1.1; AEMET, Balearic Islands Office: Palma, Spain, 2018; 20p. [Google Scholar]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Clim. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Kyselý, J.; Huth, R. Mortality associated with heat stress in the Czech Republic in the current and future climate. Meteorol. Reports 2004, 57, 113–121. (In Czech) [Google Scholar]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef]
- Kafadar, K.; Bowman, A.W.; Azzalini, A. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-PLUS Illustrations. J. Am. Stat. Assoc. 1999, 94, 982. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975; p. 202. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Valeriánová, A.; Crhová, L.; Holtanová, E.; Kašpar, M.; Muller, M.; Pecho, J. High temperature extremes in the Czech Republic 1961–2010 and their synoptic variants. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2015, 127, 17–29. [Google Scholar] [CrossRef]
- Řehoř, J.; Brázdil, R.; Lhotka, O.; Trnka, M.; Balek, J.; Štěpánek, P.; Zahradníček, P. Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types. Atmosphere 2021, 12, 1536. [Google Scholar] [CrossRef]
- Beck, C.; Straub, A.; Breitner, S.; Cyrys, J.; Philipp, A.; Rathmann, J.; Schneider, A.; Wolf, K.; Jacobeit, J. Air temperature characteristics of local climate zones in the Augsburg urban area (Bavaria, southern Germany) under varying synoptic conditions. Urban Clim. 2018, 25, 152–166. [Google Scholar] [CrossRef]
- Li, D.; Sun, T.; Liu, M.; Wang, L.; Gao, Z. Changes in Wind Speed under Heat Waves Enhance Urban Heat Islands in the Beijing Metropolitan Area. J. Appl. Meteorol. Clim. 2016, 55, 2369–2375. [Google Scholar] [CrossRef]
- Bateni, S.M.; Entekhabi, D. Relative efficiency of land surface energy balance components. Water Resour. Res. 2012, 48, W04510. [Google Scholar] [CrossRef]
- Imran, H.M.; Kala, J.; Ng, A.W.M.; Muthukumaran, S. Effectiveness of vegetated patches as Green Infrastructure in mitigating Urban Heat Island effects during a heatwave event in the city of Melbourne. Weather Clim. Extrem. 2019, 25, 100217. [Google Scholar] [CrossRef]
- Li, H.; Wolter, M.; Wang, X.; Sodoudi, S. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2017, 134, 67–81. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Feng, J.; Yan, Z.; Miao, S.; Zhang, Y.; Xia, J. Observational and modeling study of interactions between urban heat island and heatwave in Beijing. J. Clean. Prod. 2019, 247, 119169. [Google Scholar] [CrossRef]
- Bokwa, A.; Geletič, J.; Lehnert, M.; Žuvela-Aloise, M.; Hollósi, B.; Gál, T.; Skarbit, N.; Dobrovolný, P.; Hajto, M.J.; Kielar, R.; et al. Heat load assessment in Central European cities using an urban climate model and observational monitoring data. Energy Build. 2019, 201, 53–69. [Google Scholar] [CrossRef]
NO. | CODE | TYPE | REGIME | LCZ | ALT (m) | SVF | BSF (%) | NDVI |
---|---|---|---|---|---|---|---|---|
1 | BISK | Urban | Special | 2 | 245 | 0.50 | 35.9 | 0.219 |
2 | BOTA | Urban | Special | 2 | 242 | 0.72 | 32.7 | 0.290 |
3 | FILO | Urban | Special | 5 | 234 | 0.47 | 30.0 | 0.352 |
4 | GEON | Urban | Special | B | 225 | 0.81 | 16.1 | 0.514 |
5 | KRAV | Urban | Special | 9 | 298 | 0.97 | 14.9 | 0.507 |
6 | MEND | Urban | Special | 5 | 206 | 0.65 | 18.6 | 0.413 |
7 | TROU | Rural | Standard | D | 278 | 0.84 | 5.1 | 0.430 |
8 | TURA | Rural | Standard | D | 241 | 0.98 | 4.1 | 0.429 |
9 | UKZU | Urban | Special | 5 | 214 | 0.80 | 16.2 | 0.366 |
10 | VETE | Urban | Special | 8 | 237 | 0.70 | 25.9 | 0.394 |
11 | ZABO | Urban | Standard | 5 | 236 | 0.69 | 18.1 | 0.458 |
12 | ZIDE | Urban | Special | 9 | 216 | 0.83 | 16.5 | 0.486 |
STATIONS | Ta | Tx | Tn | ||||||
---|---|---|---|---|---|---|---|---|---|
UHIINHW | UHIIHW | HM | UHIINHW | UHIIHW | HM | UHIINHW | UHIIHW | HM | |
BISK | 1.30 * | 1.63 * | 0.33 * | 2.60 * | 3.49 * | 0.89 * | 1.29 * | 1.80 * | 0.51 * |
BOTA | 0.64 * | 0.66 * | 0.02 | 1.36 * | 1.61 * | 0.25 * | 0.62 * | 0.84 * | 0.23 * |
FILO | 0.68 * | 0.80 * | 0.12 * | 1.08 * | 1.43 * | 0.35 * | 0.89 * | 1.09 * | 0.20 * |
GEON | 0.28 * | 0.26 * | −0.02 | 2.07 * | 2.54 * | 0.47 * | −0.02 | 0.10 * | 0.12 * |
KRAV | −0.22 * | 0.03 | 0.25 * | 1.28 * | 1.93 * | 0.65 * | −0.70 * | −0.59 * | 0.11 |
MEND | 1.09 * | 1.03 * | −0.06 | 1.97 * | 2.28 * | 0.31 * | 1.09 * | 1.16 * | 0.06 |
UKZU | 0.42 * | 0.38 * | −0.04 | 1.70 * | 2.27 * | 0.57 * | 0.22 * | 0.34 * | 0.12 * |
VETE | 0.83 * | 0.92 * | 0.09 | 1.87 * | 2.26 * | 0.39 * | 0.31 * | 0.49 * | 0.18 * |
ZABO | 0.68 * | 0.78 * | 0.10 | 0.83 * | 0.93 * | 0.10 * | 0.60 * | 0.64 * | 0.04 |
ZIDE | 0.44 * | 0.41 * | −0.03 | 2.24 * | 2.96 * | 0.72 * | −0.37 * | −0.30 * | 0.07 |
MEASURES | QHW | SHW | UHII_Ta | HM_Ta | UHII_Tx | HM_Tx | UHII_Tn | HM_Tn |
---|---|---|---|---|---|---|---|---|
ALT | −0.43 | −0.25 | −0.01 | 0.87 * | −0.18 | 0.15 | −0.01 | 0.45 |
SVF | −0.36 | −0.17 | −0.87 * | −0.25 | 0.15 | 0.36 | −0.93 * | −0.32 |
BSF | 0.48 | 0.34 | 0.83 * | 0.30 | 0.01 | −0.21 | 0.85 * | 0.64 * |
NDVI | −0.15 | −0.11 | −0.64 * | −0.25 | 0.08 | 0.07 | −0.76 * | −0.76 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janků, Z.; Dobrovolný, P. Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia. Meteorology 2022, 1, 477-494. https://doi.org/10.3390/meteorology1040030
Janků Z, Dobrovolný P. Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia. Meteorology. 2022; 1(4):477-494. https://doi.org/10.3390/meteorology1040030
Chicago/Turabian StyleJanků, Zdeněk, and Petr Dobrovolný. 2022. "Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia" Meteorology 1, no. 4: 477-494. https://doi.org/10.3390/meteorology1040030
APA StyleJanků, Z., & Dobrovolný, P. (2022). Heat Waves Amplify the Urban Canopy Heat Island in Brno, Czechia. Meteorology, 1(4), 477-494. https://doi.org/10.3390/meteorology1040030