Systematic Biases in Tropical Drought Monitoring: Rethinking SPI Application in Mesoamerica’s Humid Regions
Abstract
1. Introduction
- Examine the climatic differences between temperate and tropical regions that affect drought index performance.
- Analyze the performance of SPI-based drought classifications in Mexico’s humid tropics by comparing them with observed water balance conditions.
- Identify systematic biases in SPI application at different time scales in tropical environments.
- Define time scale limits that should be considered to avoid biases in tropical drought monitoring.
- Provide recommendations for adapting the SPI to better reflect tropical drought conditions.
2. Materials and Methods
2.1. Study Area and Climatic Context
2.2. Data Sources
2.2.1. Mexico Drought Monitor
2.2.2. Meteorological Data
2.3. Methods
2.3.1. Conceptual Framework
2.3.2. Water Balance (S) Calculations
2.4. Standardized Precipitation Index (SPI)
- SPI ≥ −0.5: Near normal to wet conditions
- −1.0 ≤ SPI < −0.5: Mild drought
- −1.5 ≤ SPI < −1.0: Moderate drought
- −2.0 ≤ SPI < −1.5: Severe drought
- SPI < −2.0: Extreme drought
2.5. Comparative Analysis Framework
2.5.1. Mexico Drought Monitor vs. Water Surplus
2.5.2. Climatic Conditions Comparison
2.5.3. Heteroscedasticity Assessment
2.5.4. Gamma Distribution Parameter Analysis
2.5.5. False Drought Classification Analysis
3. Results
3.1. Mexico Drought Monitor vs. In Situ Water Balance Data
3.2. Critical Climatic Differences Between Temperate and Tropical Regions Rainy Seasons
3.3. Mathematical Analysis of SPI Performance
3.4. Station-Specific Drought Index Performance
4. Discussion
4.1. Implications for Tropical Drought Monitoring
4.2. Study Limitations
4.3. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PDSI | Palmer Drought Severity Index |
SPI | Standardized Precipitation Index |
ITCZ | Intertropical Convergence Zone |
NASH | North Atlantic Subtropical High |
PET | Potential Evapotranspiration |
AET | Actual Evapotranspiration |
HI | Heteroscedasticity Index |
MLE | Maximum Likelihood Estimation |
References
- CRED EM-DAT. The International Disasters Database of the Centre for Research on the Epidemiology of Disasters. Available online: https://public.emdat.be/ (accessed on 25 January 2024).
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. In Drought: A Global Assessment; Routledge: London, UK, 2000; pp. 3–18. [Google Scholar]
- Esparza, M. Drought and Water Shortages in Mexico. Current Status and Future Prospects. Secuencia 2014, 89, 193–219. [Google Scholar]
- Graniel, C.E.; Irany, V.M.; Gonzalez Hita, L. Dinámica de La Interfase Salina y Calidad Del Agua En La Costa Nororiental de Yucatán. Artic. Investig. 2004, 3, 15–25. [Google Scholar]
- Hayes, M.J. Drought Indices. In Van Nostrand’s Scientific Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 978-0-471-74398-9. [Google Scholar]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; US Department of Commerce; Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; Volume 17, pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Tatli, H. Multivariate-Drought Indices—Case Studies with Observations and Outputs of NCAR CCSM-4 Ensemble Models. Theor. Appl. Climatol. 2021, 146, 257–275. [Google Scholar] [CrossRef]
- Guttman, N.B. Comparing the Palmer Drought Index and the Standardized Precipitation Index. J. Am. Water Resour. Assoc. 1998, 34, 113–121. [Google Scholar] [CrossRef]
- Hidalgo, H.G.; Alfaro, E.J.; Amador, J.A.; Bastidas, Á. Precursors of Quasi-Decadal Dry-Spells in the Central America Dry Corridor. Clim. Dyn. 2019, 53, 1307–1322. [Google Scholar] [CrossRef]
- Giddings, L.; Soto, M.; Rutherford, B.M.; Maarouf, A. Standardized Precipitation Index Zones for México. Atmosfera 2005, 18, 33–56. [Google Scholar]
- Fernandes, F.A.C.; Santos, L.O.F.D.; Nunes, N.D.C.; Machado, N.G.; Biudes, M.S. Quantifying Droughts in Mato Grosso with SPI and SPEI: Exploring Connections to Tropical Sea Surface Temperatures. Theor. Appl. Climatol. 2024, 155, 9751–9766. [Google Scholar] [CrossRef]
- Aguilar-Barajas, I.; Sisto, N.P.; Magaña-Rueda, V.; Ramírez, A.I.; Mahlknecht, J. Drought Policy in Mexico: A Long, Slow March toward an Integrated and Preventive Management Model. Water Policy 2016, 18, 107–121. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global Warming and 21st Century Drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef]
- Williams, A.P.; Cook, E.R.; Smerdon, J.E.; Cook, B.I.; Abatzoglou, J.T.; Bolles, K.; Baek, S.H.; Badger, A.M.; Livneh, B. Large Contribution from Anthropogenic Warming to an Emerging North American Megadrought. Science 2020, 368, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate Change and Drought: A Perspective on Drought Indices. Curr. Clim. Change Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Sanz Donaire, J.J. El Índice Xerocórico. Un Indicador Geográfico de La Sequía Pluviométrica (España y Polonia). Estud. Geogr. 2007, 68, 679–708. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology; Academic Press: Cambridge, MA, USA, 2013; Volume 88. [Google Scholar]
- Dai, A. Characteristics and Trends in Various Forms of the Palmer Drought Severity Index During 1900–2008. J. Geophys. Res. 2011, 116, D12115. [Google Scholar] [CrossRef]
- Walker, C.C.; Schneider, T. Eddy Influences on Hadley Circulations: Simulations with an Idealized GCM. J. Atmospheric Sci. 2006, 63, 3333–3350. [Google Scholar] [CrossRef]
- Waliser, D.E.; Gautier, C. A Satellite-Derived Climatology of the ITCZ. J. Clim. 1993, 6, 2162–2174. [Google Scholar] [CrossRef]
- Romatschke, U.; Houze, R.A. Extreme Summer Convection in South America. J. Clim. 2010, 23, 3761–3791. [Google Scholar] [CrossRef]
- Khouakhi, A.; Villarini, G.; Vecchi, G.A. Contribution of Tropical Cyclones to Rainfall at the Global Scale. J. Clim. 2017, 30, 359–372. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Arnold, S.R.; Taylor, C.M. Observations of Increased Tropical Rainfall Preceded by Air Passage over Forests. Nature 2012, 489, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Papin, P.P.; Bosart, L.F.; Torn, R.D. A Climatology of Central American Gyres. Mon. Weather Rev. 2017, 145, 1983–2000. [Google Scholar] [CrossRef]
- Adams, D.K.; Comrie, A.C. The North American Monsoon. Bull. Am. Meteorol. Soc. 1997, 78, 2197–2213. [Google Scholar] [CrossRef]
- Feldmann, M.; Emanuel, K.; Zhu, L.; Lohmann, U. Estimation of Atlantic Tropical Cyclone Rainfall Frequency in the United States. J. Appl. Meteorol. Climatol. 2019, 58, 1853–1866. [Google Scholar] [CrossRef]
- Chen, L.; Ford, T.W.; Swenson, E. The Role of the Circulation Patterns in Projected Changes in Spring and Summer Precipitation Extremes in the U.S. Midwest. J. Clim. 2023, 36, 1943–1956. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M. Atmosphere and Ocean Origins of North American Droughts. J. Clim. 2014, 27, 4581–4606. [Google Scholar] [CrossRef]
- Ashfaq, M.; Shi, Y.; Tung, W.; Trapp, R.J.; Gao, X.; Pal, J.S.; Diffenbaugh, N.S. Suppression of South Asian Summer Monsoon Precipitation in the 21st Century. Geophys. Res. Lett. 2009, 36, 2008GL036500. [Google Scholar] [CrossRef]
- Zeng, D.; Yuan, X. The Important Role of Reduced Moisture Supplies from the Monsoon Region in the Formation of Spring and Summer Droughts over Northeast China. J. Clim. 2024, 37, 1703–1722. [Google Scholar] [CrossRef]
- Fang, Y.; Leung, L.R.; Wolfe, B.T.; Detto, M.; Knox, R.G.; McDowell, N.G.; Grossiord, C.; Xu, C.; Christoffersen, B.O.; Gentine, P.; et al. Disentangling the Effects of Vapor Pressure Deficit and Soil Water Availability on Canopy Conductance in a Seasonal Tropical Forest During the 2015 El Niño Drought. J. Geophys. Res. Atmos. 2021, 126, e2021JD035004. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guide to Climatological Practices; WMO: Geneva, Switzerland, 2023; Volume 100. [Google Scholar]
- Neri, C.; Magaña, V. Estimation of Vulnerability and Risk to Meteorological Drought in Mexico. Weather Clim. Soc. 2016, 8, 95–110. [Google Scholar] [CrossRef]
- Geiger, R. Klassifikation Der Klimate Nach, W. Köppen [Classification of Climates According to W. Köppen]. In Astronomie und Geophysik; Landolt-Börnstein-Zahlenwerte Funkt. Aus Phys. Chem. Astron. Geophys. Tech. Alte Ser. [Landolt-Börnstein-Fig. Funct. Phys. Chem. Astron. Geophys. Technol. Old Ser]; Springer: Berlin/Heidelberg, Germany, 1954; Volume 3, Part III; pp. 603–607. [Google Scholar]
- Vidal, R. Las Regiones Climáticas de México; Temas selectos de la Geografía de México; Instituto de Geografía UNAM: México, DF, Mexico, 2005. [Google Scholar]
- García-Franco, J.L.; Chadwick, R.; Gray, L.J.; Osprey, S.; Adams, D.K. Revisiting Mechanisms of the Mesoamerican Midsummer Drought. Clim. Dyn. 2023, 60, 549–569. [Google Scholar] [CrossRef]
- Martinez, C.; Kushnir, Y.; Goddard, L.; Ting, M. Interannual Variability of the Early and Late-Rainy Seasons in the Caribbean. Clim. Dyn. 2020, 55, 1563–1583. [Google Scholar] [CrossRef]
- Romero, D.; Torres-Irineo, E.; Kern, S.; Orellana, R.; Hernandez-Cerda, M.E. Determination of the Soil Moisture Recession Constant from Satellite Data: A Case Study of the Yucatan Peninsula. Int. J. Remote Sens. 2017, 38, 5793–5813. [Google Scholar] [CrossRef]
- Servicio Meteorológico Nacional Monitor de Sequía en México. Available online: https://smn.cna.gob.mx/es/climatologia/monitor-de-sequia/monitor-de-sequia-en-mexico (accessed on 10 April 2025).
- Arguez, A.; Vose, R.S. The Definition of the Standard WMO Climate Normal. Bull. Am. Meteorol. Soc. 2011, 92, 699–704. [Google Scholar] [CrossRef]
- Durre, I.; Menne, M.J.; Gleason, B.E.; Houston, T.G.; Vose, R.S. Comprehensive Automated Quality Assurance of Daily Surface Observations. J. Appl. Meteorol. Climatol. 2010, 49, 1615–1633. [Google Scholar] [CrossRef]
- Durre, I.; Squires, M.F.; Vose, R.S.; Yin, X.; Arguez, A.; Applequist, S. NOAA’s 1981-2010 U.S. Climate Normals: Monthly Precipitation, Snowfall, and Snow Depth. J. Appl. Meteorol. Climatol. 2013, 52, 2377–2395. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Korzeniewski, B.; McNeal, S.; Thomas, K.; Yin, X.; Anthony, S.; Ray, R.; Vose, R.S.; Gleason, B.E.; et al. Global Historical Climatology Network-Daily (GHCN-Daily), Version 3. NOAA Natl. Clim. Data Cent. 2012, 10, V5D21VHZ. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th Century Drought in the United States at Multiple Time Scales; Colorado State University: Fort Collins, CO, USA, 1997. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Ma, Y.-J.; Shi, F.-Z.; Hu, X.; Li, X.-Y. Threshold Vegetation Greenness under Water Balance in Different Desert Areas over the Silk Road Economic Belt. Remote Sens. 2020, 12, 2452. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Monteith, J.L. Evaporation and Environment. In Proceedings of the Symposia of the Society for Experimental Biology; Cambridge University Press (CUP): Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A Review of Remote Sensing Based Actual Evapotranspiration Estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- He, G.; Zhao, Y.; Wang, J.; Gao, X.; He, F.; Li, H.; Zhai, J.; Wang, Q.; Zhu, Y. Attribution Analysis Based on Budyko Hypothesis for Land Evapotranspiration Change in the Loess Plateau, China. J. Arid Land 2019, 11, 939–953. [Google Scholar] [CrossRef]
- Cramer, W.; Kicklighter, D.W.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A.L.; ThE. Participants OF. ThE. Potsdam NpP. Model Intercomparison. Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Overview and Key Results. Glob. Change Biol. 1999, 5, 1–15. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A New Global 0.5° Gridded Dataset (1901–2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil Water Balance and Ecosystem Response to Climate Change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index: User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Amsterdam, The Netherlands; Cambridge, MA, USA, 2019; ISBN 978-0-12-815823-4. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. Fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M. SPEI: Calculation of the Standardized Precipitation-Evapotranspiration Index. 2025. Available online: https://cran.r-project.org/web//packages//SPEI/SPEI.pdf (accessed on 9 April 2025).
- Scarpati, O.E.; Spescha, L.B.; Lay, J.A.F.; Capriolo, A.D. Soil Water Surplus in Salado River Basin and Its Variability during the Last Forty Years (Buenos Aires Province, Argentina). Water 2011, 3, 132–145. [Google Scholar] [CrossRef]
- Casagrande, E.; Recanati, F.; Rulli, M.C.; Bevacqua, D.; Melià, P. Water Balance Partitioning for Ecosystem Service Assessment. A Case Study in the Amazon. Ecol. Indic. 2021, 121, 107155. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, C.; Zhou, J.; Li, Q. The Association of Drought with Different Precipitation Grades in the Inner Mongolia Region of Northern China. Water 2024, 16, 3292. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econom. J. Econom. Soc. 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econom. J. Econom. Soc. 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G.; Lombardo, F. Untenable Nonstationarity: An Assessment of the Fitness for Purpose of Trend Tests in Hydrology. Adv. Water Resour. 2018, 111, 132–155. [Google Scholar] [CrossRef]
- Husak, G.J.; Michaelsen, J.; Funk, C. Use of the Gamma Distribution to Represent Monthly Rainfall in Africa for Drought Monitoring Applications. Int. J. Climatol. 2007, 27, 935–944. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Quesada-Hernández, L.E.; Calvo-Solano, O.D.; Hidalgo, H.G.; Pérez-Briceño, P.M.; Alfaro, E.J. Dynamical Delimitation of the Central American Dry Corridor (CADC) Using Drought Indices and Aridity Values. Prog. Phys. Geogr. 2019, 43, 627–642. [Google Scholar] [CrossRef]
- Gómez Díaz, J.D.; Monterroso Rivas, A.I.; Lechuga Gayosso, L.M. Frecuencia y severidad de la sequía en la Península de Yucatán como instrumento para el ordenamiento del territorio. In Clima, Sociedad, Riesgos y Ordenación del Territorio; Asociación Española de Climatología: Sevilla, Spain, 2016; pp. 525–533. ISBN 978-84-16724-19-2. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little Change in Global Drought over the Past 60 Years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Van Loon, A.F. Hydrological Drought Explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Blain, G.C.; De Avila, A.M.H.; Pereira, V.R. Using the Normality Assumption to Calculate Probability-based Standardized Drought Indices: Selection Criteria with Emphases on Typical Events. Int. J. Climatol. 2018, 38, e418–e436. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Livada, I.; Assimakopoulos, V.D. Spatial and Temporal Analysis of Drought in Greece Using the Standardized Precipitation Index (SPI). Theor. Appl. Climatol. 2007, 89, 143–153. [Google Scholar] [CrossRef]
- Le, M.H.; Perez, G.C.; Solomatine, D.; Nguyen, L.B. Meteorological Drought Forecasting Based on Climate Signals Using Artificial Neural Network—A Case Study in Khanhhoa Province Vietnam. Procedia Eng. 2016, 154, 1169–1175. [Google Scholar] [CrossRef]
- Valdés-Rodríguez, O.A.; Salas-Martínez, F.; Palacios-Wassenaar, O.; Marquez, A. Assessment of Corn Grain Production Under Drought Conditions in Eastern Mexico Through the North American Drought Monitor. Atmosphere 2025, 16, 193. [Google Scholar] [CrossRef]
- Hayes, M.; Svoboda, M.; Wall, N.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding the Drought Phenomenon: The Role of Definitions. Plan. Drought Reduct. Soc. Vulnerability 2019, 10, 11–27. [Google Scholar] [CrossRef]
- Prasanna, V. Regional Climate Change Scenarios over South Asia in the CMIP5 Coupled Climate Model Simulations. Meteorol. Atmos. Phys. 2015, 127, 561–578. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global Scale Climate–Crop Yield Relationships and the Impacts of Recent Warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected Changes in Drought Occurrence under Future Global Warming from Multi-Model, Multi-Scenario, IPCC AR4 Simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B.; Saunders, M.A. A Drought Climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- McKee, T.B. Drought Monitoring with Multiple Time Scales. In Proceedings of the 9th Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically Sensitive Mapping of Climatological Temperature and Precipitation across the Conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guidelines on the Definition and Characterization of Extreme Weather and Climate Events; World Meteorological Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Lu, J.; Carbone, G.J.; Gao, P. Detrending Crop Yield Data for Spatial Visualization of Drought Impacts in the United States, 1895–2014. Agric. For. Meteorol. 2017, 237–238, 196–208. [Google Scholar] [CrossRef]
- Zhai, J.; Mondal, S.K.; Fischer, T.; Wang, Y.; Su, B.; Huang, J.; Tao, H.; Wang, G.; Ullah, W.; Uddin, M.J. Future Drought Characteristics through a Multi-Model Ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts ABC 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Cammalleri, C.; Naumann, G.; Mentaschi, L.; Formetta, G.; Forzieri, G.; Gosling, S.; Bisselink, B.; De Roo, A.; Feyen, L. Global Warming and Drought Impacts in the EU; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Zhang, R.; Chen, Z.-Y.; Xu, L.-J.; Ou, C.-Q. Meteorological Drought Forecasting Based on a Statistical Model with Machine Learning Techniques in Shaanxi Province, China. Sci. Total Environ. 2019, 665, 338–346. [Google Scholar] [CrossRef]
Station | State | Climate | Data Period | Years of Available Data |
---|---|---|---|---|
Felipe Carrillo Puerto | Quintana Roo—MX | Aw | 1952–2019 | 65 |
Ciudad Alemán | Veracruz—MX | Am | 1951–2020 | 70 |
Boca del Cerro | Tabasco—MX | Af | 1948–2019 | 68 |
Garden City | Kansas—USA | Cfa | 1950–2015 | 71 |
Newton | Iowa—USA | Dfa | 1893–2016 | 76 |
Stanley | North Dakota—USA | Dfb | 1938–2016 | 74 |
Fort Collins | Colorado—USA | 1998–2024 | 26 |
Water Balance Threshold (mm) | Drought Index | ||||
---|---|---|---|---|---|
Abnormally Dry | Moderate Drought | Severe Drought | Extreme Drought | Exceptional Drought | |
100 | 1054 | 537 | 218 | 56 | 5 |
200 | 327 | 184 | 79 | 29 | 0 |
300 | 130 | 59 | 34 | 6 | 0 |
400 | 63 | 22 | 15 | 4 | 0 |
500 | 58 | 36 | 15 | 8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, D.; Alfaro, E.J. Systematic Biases in Tropical Drought Monitoring: Rethinking SPI Application in Mesoamerica’s Humid Regions. Meteorology 2025, 4, 18. https://doi.org/10.3390/meteorology4030018
Romero D, Alfaro EJ. Systematic Biases in Tropical Drought Monitoring: Rethinking SPI Application in Mesoamerica’s Humid Regions. Meteorology. 2025; 4(3):18. https://doi.org/10.3390/meteorology4030018
Chicago/Turabian StyleRomero, David, and Eric J. Alfaro. 2025. "Systematic Biases in Tropical Drought Monitoring: Rethinking SPI Application in Mesoamerica’s Humid Regions" Meteorology 4, no. 3: 18. https://doi.org/10.3390/meteorology4030018
APA StyleRomero, D., & Alfaro, E. J. (2025). Systematic Biases in Tropical Drought Monitoring: Rethinking SPI Application in Mesoamerica’s Humid Regions. Meteorology, 4(3), 18. https://doi.org/10.3390/meteorology4030018