Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part I: Thermal Dehydration and Decomposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Powder Preparations
2.3. Scanning Electron Microscopy (SEM)
2.4. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Ambient and Heating Experiments
3. Results and Discussion
3.1. Aluminas: Boehmite, Gamma, Alpha
3.2. Metallic Aluminum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR-Al | As-received aluminum |
AA-Al | Artificially aged aluminum |
BET | Bruneauer-Emmett-Teller |
DTGS | Deuterated Triglycine Sulfate |
DRIFTS | Diffuse Reflectance Infrared Fourier Transform spectroscopy |
MCT | Mercury Cadmium Telluride |
NA-Al | Naturally aged aluminum |
RH | Relative Humidity |
WI-Al | Water-immersed aluminum |
XPS | X-ray Photoelectron Spectroscopy |
Appendix A
Sample | Surface Area (m2/g) | Average Particle Size (d50, nm) |
---|---|---|
Boehmite | 153.7007 | 50 |
Alpha | 17.0227 | 300 |
Gamma | 139.4133 | 50 |
Aluminum | 0.2277 | 20 (µm) |
References
- Pines, H.; Haag, W.O. Alumina: Catalyst and support I. Alumina, its intrinsic acidity and catalytic activity. J. Am. Chem. Soc. 1960, 82, 2471–2483. [Google Scholar] [CrossRef]
- Morterra, C.; Magnacca, G. A case study: Surface chemistry and surface structure of catalytic aluminas as studied by vibrational spectroscopy of adsorbed species. Catal. Today 1996, 27, 497–532. [Google Scholar] [CrossRef]
- Busca, G. Catalytic materials based on silica and aluminum: Structural features and generation of surface acidity. Prog. Mater. Sci. 2019, 104, 215–219. [Google Scholar] [CrossRef]
- Pang, W.; Li, Y.; DeLuca, L.T.; Liang, D.; Qin, Z.; Liu, X.; Xu, H.; Fan, X. Effect of metal nanopowders on the performace of solid rocket propellants: A review. Nanomaterials 2021, 11, 2749. [Google Scholar] [CrossRef]
- Babuk, V.; Dolotkazin, I.; Gamsov, A.; Glebov, A.; DeLuca, L.T.; Galfetti, L. Nanoaluminum as a solid propellant fuel. J. Propul. Power 2009, 25, 482–489. [Google Scholar] [CrossRef]
- Ingenito, A.; Bruno, C. Using aluminum for space propulsion. J. Propul. Power 2004, 20, 1056–1063. [Google Scholar] [CrossRef]
- Maile, F.J.; Pfaff, G.; Reynders, P. Effect pigments—Past, present and future. Prog. Org. Coat 2005, 54, 150–163. [Google Scholar] [CrossRef]
- Morterra, C.; Cerrato, G.; Visca, M.; Lenti, D.M. Surface characterization of some TiO2-based pigments. Part 3. Coating of the pigments. J. Mater. Chem. 1992, 2, 341–355. [Google Scholar] [CrossRef]
- Ariffin, N.; Abdullah, M.M.A.B.; Postawa, P.; Zamree AbdRahim, S.; Mohd Arif Zainol, M.R.R.; Jaya, R.P.; Śliwa, A.; Omar, M.F.; Wysłocki, J.J.; Błoch, K.; et al. Effect of aluminium powder on kaolin-based geopolymer characteristic and removal of Cu2+. Materials 2021, 14, 814. [Google Scholar] [CrossRef]
- Köhler, M.; Fiebig, S.; Hensel, J.; Dilger, K. Wire and arc additive manufacturing of aluminum components. Metals 2019, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Shinkaryov, A.S.; Cherkasova, M.V.; Pelevin, I.A.; Ozherelkov, D.Y.; Chernyshikhin, S.V.; Kharitonova, N.A.; Gromov, A.A.; Nalivaiko, A.Y. Aluminum Powder Preparation for Additive Manufacturing Using Electrostatic Classification. Coatings 2021, 11, 629. [Google Scholar] [CrossRef]
- Popov, V.V.; Grilli, M.L.; Koptyug, A.; Jaworska, L.; Katz-Demyanetz, A.; Klobčar, D.; Balos, S.; Postolnyi, B.O.; Goel, S. Powder bed fusion additive manufacturing using critical raw materials: A review. Materials 2021, 14, 909. [Google Scholar] [CrossRef] [PubMed]
- Grilli, M.L.; Valerini, D.; Rizzo, A.; Yilmaz, M.; Song, C.; Hu, G.; Mikhaylov, A.; Chierchia, R.; Rinaldi, A. A comparative study of the mechanical and tribological Properties of thin Al2O3 coatings fabricated by atomic layer deposition and radio frequency sputtering. Phys. Status Solidi (A) 2021, 219, 2100398. [Google Scholar] [CrossRef]
- Rutkowska, I.; Marchewka, J.; Jeleń, P.; Odziomek, M.; Korpyś, M.; Paczkowska, J.; Sitarz, M. Chemical and Structural Characterization of Amorphous and Crystalline Alumina Obtained by Alternative Sol–Gel Preparation Routes. Materials 2021, 14, 1761. [Google Scholar] [CrossRef]
- Bauer, D.M.; Schwarzenbock, E.; Ludwig, I.; Schupp, N.; Palm, F.; Witt, G. Investigations on aging behaviour of aluminum powders during a lifetime simulation for the LBM process. In Proceedings of the European Congress and Exhibition on Powder Metallurgy, Hamburg, Germany, 9–13 October 2016. [Google Scholar]
- Peng, X.; Kong, L.; Fuh, J.Y.H.; Wang, H. A review of post-processing technologies in additive manufacturing. J. Manuf. Mater. Process 2021, 2, 38. [Google Scholar] [CrossRef]
- Peri, J.B.; Hannan, J. Surface hydroxyl groups on gamma-alumina. J. Phys. Chem. 1960, 64, 1526–1530. [Google Scholar] [CrossRef]
- Peri, J.B. A model for the surface of gamma-alumina. J. Phys. Chem. 1969, 69, 220–230. [Google Scholar] [CrossRef]
- Tsyganenko, A.A.; Filimonov, V.N. Infrared spectra of surface hydroxyls groups and crystalline structure of oxides. Spectrosc. Lett. 1972, 5, 477–487. [Google Scholar] [CrossRef]
- Knozinger, H.; Ratnasamy, P. Catalytic aluminas: Surface models and characterization of surface sites. Catal. Rev. Sci. Eng. 1978, 17, 31–70. [Google Scholar] [CrossRef]
- Busca, G.; Lorenzelli, V.; Ramis, G.; Willey, R.J. Surface Sites on spinel-type and corundum type metal oxide powders. Langmuir 1993, 9, 1492–1499. [Google Scholar] [CrossRef]
- Morterra, C.; Coluccia, S.; Ghiotti, G.; Zecchina, A. An IR spectroscopic characterization of alpha aluminum surface properties, carbon dioxide adsorption. J. Phys. Chem. 1977, 104, 275–290. [Google Scholar]
- Morterra, C.; Emanual, E.; Cerrato, G.; Magnacca, G. Infrared Study of some surface properties of boehmite. J. Chem. Soc. Faraday Trans. 1992, 104, 339–348. [Google Scholar] [CrossRef]
- Morterra, C.; Bolis, V.; Magnacca, G. IR spectroscopic and microcalorimetric characterization of lewis acid sites on Al2O3 using adsorbed CO. Langmuir 1994, 10, 1812–1824. [Google Scholar] [CrossRef]
- Kubaschewski, O.; Hopkins, B.E. Oxidation of Aluminum. In Oxidation of Metals and Alloys; Butterworths: Oxford, UK, 2007; pp. 32–58. [Google Scholar]
- Hunter, M.S.; Fowle, P. Natural and Thermally Formed Oxide Films on Aluminum. J. Electrochem. Soc. 1956, 103, 482–485. [Google Scholar] [CrossRef]
- Diggle, J.W.; Vijh, A.K. The Aluminum-Water System. In Oxides and Oxide Films; Dekker: New York, NY, USA, 1976; pp. 32–58. [Google Scholar]
- Anderson, I.E.; Foley, J.C. Determining the role of surfaces and interfaces in the powder metallurgy processing of aluminum alloy powders. Surf. Interface. Anal. 2001, 31, 599–608. [Google Scholar] [CrossRef]
- Ludwig, B.; Miller, T.F. Rheological and surface chemical characterization of alkoxysilane treated, fine aluminum powders showing enhanced flowability and fluidization behavior for delivery applications. Powder Technol. 2015, 283, 380–388. [Google Scholar] [CrossRef]
- Ludwig, B.; Gray, J.L. The effect of gas phase polydimethylsiloxane surface treatment of metallic aluminum particles: Surface characterization and flow behavior. Particuology 2017, 30, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Fripiat, J.J.; Bosmans, H.J.; Rouxhet, P.G. Proton mobility in solids. I. Hydrogenic vibration modes and proton delocalization in boehmite. J. Phys. Chem. 1967, 71, 1097–1111. [Google Scholar] [CrossRef]
- Ballinger, T.H.; Yates, J.T., Jr. IR spectroscopic detection of lewis acid sites on alumina using adsorbed carbon monoxide. Correlation with aluminum-hydroxyl group removal. Langmuir 1991, 7, 3014–3045. [Google Scholar] [CrossRef]
- Digne, M.; Sautet, P.; Raybaud, P.; Euzen, P.; Toulhoat, H. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. Langmuir 1991, 7, 3014–3045. [Google Scholar] [CrossRef]
- Hart, R.K. The oxidation of aluminium in dry and humid oxygen atmospheres. Proc. R. Soc. A Math. Phys. Eng. Sci. 1956, 236, 66–68. [Google Scholar]
- Liu, X. DRIFTS study of surface of γ-alumina and its dehydroxylation. J. Phys. Chem. C 2000, 112, 5066–5073. [Google Scholar] [CrossRef]
- Mao, C.F.; Vannice, M.A. High surface area alpha-aluminas III. Oxidation of ethylene, ethylene oxide, and acetaldehyde over silver dispersed on high surface area alpha-alumina. Appl. Catal. A Gen. 1995, 122, 61–76. [Google Scholar] [CrossRef]
- Shirai, T.; Ishizaki, C.; Ishizaki, K. Tetrahedral aluminum ions on high purity sub-micron. alpha-alumina powder surfaces. J. Ceram. Soc. 2006, 114, 415–417. [Google Scholar] [CrossRef] [Green Version]
- Obzbilen, S. Satellite formation mechanism in gas atomized powders. Powder Metall. 1999, 42, 70–78. [Google Scholar] [CrossRef]
- Rothbauer, R.; Zigan, F. Refinement of the structure of bayerite including a proposal for the H positions. Z. Kristallogr. Krist. 1967, 125, 317–331. [Google Scholar]
- Phambu, N.; Humbert, B.; Burneau, A. Relation between the infrared spectra and the lateral specific surface areas of gibbsite samples. Langmuir 2000, 16, 6200–6207. [Google Scholar] [CrossRef]
- Hart, R.K. The formation of films on aluminum immersed in water. J. Chem. Soc. Faraday Trans. 1957, 53, 1020–1027. [Google Scholar] [CrossRef]
- Kimura, F.; Yamaguchi, E.; Horie, N.; Suzuki, G.; Kajihara, Y. Formation of boehmite crystals on microblasted aluminum surface to enhance performance of metal–polymer direct joining. Matt. Lett. 2020, 260, 126963. [Google Scholar] [CrossRef]
- Ma, R.; Jiang, Q.; Chen, J. The superhydrophobic surface constructed with boehmite micro-nanostructure. J. Mater. Sci. 2020, 55, 5795–5807. [Google Scholar] [CrossRef]
- Sato, T. The dehydration of aluminum tri-hydrate. J. Appl. Chem. 1959, 9, 331–340. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig, B.; Burke, T.T. Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part I: Thermal Dehydration and Decomposition. Powders 2022, 1, 47-61. https://doi.org/10.3390/powders1010005
Ludwig B, Burke TT. Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part I: Thermal Dehydration and Decomposition. Powders. 2022; 1(1):47-61. https://doi.org/10.3390/powders1010005
Chicago/Turabian StyleLudwig, Bellamarie, and Taryn T. Burke. 2022. "Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part I: Thermal Dehydration and Decomposition" Powders 1, no. 1: 47-61. https://doi.org/10.3390/powders1010005
APA StyleLudwig, B., & Burke, T. T. (2022). Infrared Spectroscopy Studies of Aluminum Oxide and Metallic Aluminum Powders, Part I: Thermal Dehydration and Decomposition. Powders, 1(1), 47-61. https://doi.org/10.3390/powders1010005