Muscle Diseases of Metabolic and Endocrine Derivation
Abstract
:1. Introduction
2. Carbohydrate Metabolism
3. Deficiencies in Enzymes Involved in Carbohydrate Metabolism
3.1. Muscle Phosphorylase
3.2. Acid Maltase Deficiency
3.3. Debrancher Enzyme Deficiency
3.4. Phosphofructokinase Deficiency
3.5. Phosphoglucomutase
3.6. Phosphoglycerate Mutase
3.7. Lactate Dehydrogenase
3.8. Phosphoglycerate Kinase
3.9. Brancher Enzyme Deficiency
3.10. Aldolase Deficiency
4. Defects of Lipid Metabolism
5. Type I Lipid Storage Disease—Carnitine Deficiency
6. Congenital Ichthyosis—Associated Myopathy
7. Carnitine Palmityl Transferase Deficiency
8. Disorders of Purine Nuclide Metabolism
Myoadenylate Deaminase Deficiency
9. Endocrine/Metabolic-Related Myopathy
9.1. Thyroid Function-Related Myopathy
9.2. Hyperthyroid Periodic Paralysis
9.3. Hypothyroid Myopathy
10. Periodic Paralysis
11. Corticosteroid Excess
12. Parathormone
12.1. Hyperparathyroidism
12.2. Hypoparathroidism
13. Vitamin D Deficiency and Hypophosphatemia
14. Carcinoid Syndrome
15. Acromegaly
16. Amyloidosis
17. Hypermetabolic States
Luft’s Syndrome
18. Mitochondrial Myopathy
19. Megaconial Mitochondrial Myopathy
20. Multiple acyl-CoA Dehydrogenation and CoQ10 Deficiency
21. Barth Syndrome
22. Chronic Progressive External Ophthalmoplegia (CPEO or PEO)
23. Kearns–Sayre Syndrome (KSS)
24. Pearson Syndrome
25. Leigh Syndrome or MILS
26. Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP)
27. Mitochondrial DNA Depletion Syndromes (MDDS)
28. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like Episodes (MELAS)
29. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)
30. Myoclonus Epilepsy with Ragged Red Fibers (MERRF)
31. Thymidine Kinase Elated Mitochondrial DNA Depletion Syndrome
32. Adenylosuccinate Synthetase 1 Myopathy
33. Multisystem Diseases Associated with Myopathy
34. Workup
35. Potential Treatments
36. Future Expectations
37. Summary
Funding
Conflicts of Interest
References
- Landon, D.N. Skeletal muscle–normal morphology, development and innervation. In Skeletal Muscle Pathology; Mastaglia, F.L., Walton, J., Eds.; Churchill Livingston: Edinburgh, Scotland, 1982; pp. 1–87. [Google Scholar]
- Cullen, M.J.; Mastaglia, F.L. Pathological reactions of skeletal muscle. In Skeletal Muscle Pathology; Mastaglia, F.L., Walton, J., Eds.; Churchill Livingston: Edinburgh, Scotland, 1982; pp. 88–139. [Google Scholar]
- Bogdanovich, S.; Gardner, B.B.; McNally, E.M. Abnormal muscle pathology and physiology. In Cardioskeletal Myopathies in Children and Young Adults; Jefferies, J.L., Blaxall, B.C., Robbins, J., Towbin, J.A., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 65–82. [Google Scholar]
- D’Amico, A.; Bertini, E. Metabolic neuropathies and myopathies. Handb. Clin. Neurol. 2013, 113, 1437–1455. [Google Scholar] [PubMed]
- DiMauro, S.; Garone, C.; Naini, A. Metabolic myopathies. Curr. Rheumatol. Rep. 2010, 12, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.; van Diggelen, O.P.; Cassandrini, D.; Gimpelev, M.; Giuffrè, B.; Donati, M.A.; Introvini, P.; Alegria, A.; Assereto, S.; Morandi, L.; et al. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology 2004, 63, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Ørngreen, M.C.; Schelhaas, J.H.; Jeppesen, T.D.; Akman, H.O.; Wevers, R.A.; Andersen, S.T.; ter Laak, H.R.; van Diggelen, O.P.; DiMauro, S.; Vissing, J. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology 2008, 70, 1876–1882. [Google Scholar] [CrossRef]
- Toscano, A.; Musumeci, O. Tarui disease and distal glycogenoses: Clinical and genetic update. Acta Myol. 2007, 26, 105–107. [Google Scholar]
- Al-Khatib, A.; Dulaney, E.; Katirji, B. Ischemic forearm exercise test. In Neuromuscular Disorders in Clinical Practice; Katriji, B., Ed.; Butterworth-Heinemann: Boston, MA, USA, 2002; pp. 74–79. [Google Scholar]
- Andersen, S.T.; Vissing, J. Carbohydrate- and protein-rich diets in McArdle disease: Effects on exercise capacity. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1359–1363. [Google Scholar] [CrossRef]
- Haller, R.G. Treatment of McArdle disease. Arch. Neurol. 2000, 57, 923–924. [Google Scholar] [CrossRef]
- Haller, R.G.; Wyrick, P.; Taivassalo, T.; Vissing, J. Aerobic conditioning: An effective therapy in McArdle’s disease. Ann. Neurol. 2006, 59, 922–928. [Google Scholar] [CrossRef]
- Quinlivan, R.M.; Beynon, R.J. Pharmacological and nutritional treatment trials in McArdle disease. Acta Myol. 2007, 26, 58–60. [Google Scholar]
- Reason, S.L.; Voermans, N.; Lucia, A.; Vissing, J.; Quinlivan, R.; Bhai, S.; Wakelin, A. Development of Continuum of Care for McArdle disease: A practical tool for clinicians and patients. Neuromusc. Disorders 2023, 33, 575–579. [Google Scholar] [CrossRef]
- Amato, A.A. Acid maltase deficiency and related myopathies. Neurol. Clin. 2000, 18, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Corzo, D.; Nicolino, M.; Byrne, B.; Mandel, H.; Hwu, W.L.; Leslie, N.; Levine, J.; Spencer, C.; McDonald, M.; et al. Recombinant human acid [alpha]-glucosidase: Major clinical benefits in infantile-onset Pompe disease. Neurology 2007, 68, 99–109. [Google Scholar] [CrossRef]
- Bembi, B.; Cerini, E.; Danesino, C.; Donati, M.A.; Gasperini, D.; Morandi, L.; Musumeci, O.; Parenti, G.; Ravaglia, S.; Seidita, F.; et al. Diagnosis of glycogenosis type II. Neurology 2008, 71 (Suppl. S2), S4–S36. [Google Scholar] [CrossRef]
- Sadeh, M.; Yosovich, K.; Dabby, R. Glycogen debrancher enzyme deficiency myopathy. J. Clin. Neuromusc. Dis. 2012, 2, 224–227. [Google Scholar] [CrossRef]
- Shen, J.; Bao, Y.; Liu, H.M.; Lee, P.; Leonard, J.V.; Chen, Y.T. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J. Clin. Investig. 1996, 98, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H. Mitapivat for phosphofructokinase deficiency. Am. J. Hematol. 2024, 99, 2045–2046. [Google Scholar] [CrossRef]
- Nakajima, H.; Raben, N.; Hamaguchi, T.; Yamasaki, T. Phosphofructokinase deficiency; past, present and future. Curr. Mol. Med. 2002, 2, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Preisler, N.; Cohen, J.; Vissing, C.R.; Madsen, K.L.; Heinicke, K.; Sharp, L.J.; Phillips, L.; Romain, N.; Park, S.U.; Newby, M.; et al. Impaired glycogen breakdown and synthesis in phosphoglucomutase 1 deficiency. Mol. Genet. Metab. 2017, 122, 117–121. [Google Scholar] [CrossRef]
- Stojkovic, T.; Vissing, J.; Petit, F.; Piraud, M.; Orngreen, M.C.; Andersen, B.; Claeys, K.G.; Wary, C.; Hogrel, J.Y.; Laforêt, P. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N. Engl. J. Med. 2009, 23, 425–427. [Google Scholar] [CrossRef]
- Tegtmeyer, L.C.; Rust, S.; van Scherpenzeel, M.; Ng, B.G.; Losfeld, M.-E.; Timal, S.; Raymond, K.; He, P.; Ichikawa, M.; Veltman, J.; et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N. Engl. J. Med. 2014, 370, 533–542. [Google Scholar] [CrossRef]
- Noel, N.; Flanagan, J.M.; Ramirez Bajo, M.J.; Kalko, S.G.; del Mar Mañú, M.; Garcia Fuster, J.L.; Perez de la Ossa, P.; Carreras, P.; Beutler, E.; Vives Corrons, J.L. Two new phosphoglycerate kinase mutation associated with chronic haemolytic anaemia and neurological dysfunction in two patients from Spain. J. Haematol. 2006, 132, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Vissing, J.; Quistorff, B.; Haller, R.G. Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency. Arch. Neurol. 2005, 62, 1440–1443. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Bordieanu, B.; Kesavan, R.; Lesner, N.P.; Venigalla, S.; Shelton, S.D.; Deberardinis, R.J.; Mishra, P. Lactate metabolism is essential in early-onset mitochondrial myopathy. Sci. Adv. 2023, 9, eadd3216. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Shen, P.; Ni, Y.; Han, X. The basic functions of phosphoglycerate kinase 1 and its roles in cancer and other diseases. Eur. J. Pharmacol. 2022, 920, 174835. [Google Scholar] [CrossRef]
- Goebel, H.H.; Shin, Y.S.; Gullotta, F.; Yokota, T.; Alroy, J.; Voit, T.; Haller, P.; Schulz, A. Adult polyglucosan body myopathy. J. Neuropathol. Exp. Neurol. 1992, 51, 24–35. [Google Scholar] [CrossRef]
- Koch, R.; Soler-Alfonso, C.; Kiely, B.; Riudavets, M.; Arakaki, N.; Mesa, L.; Sevlever, G.; Goebel, H.; Di Mauro, S. A path forward for patients with glycogen branching enzyme deficiency: Consensus on diagnosing and managing glycogen storage disease type IV. Genetics Med. 2023, 1 (Suppl. S1), 100114. [Google Scholar] [CrossRef]
- Paradas, C.; Akman, O.H.; Ionete, C.; Lau, H.; Riskind, P.N.; Jones, D.E.; Smith, T.W.; Hirano, M.; Dimauro, S. Branching enzyme deficiency: Expanding the clinical spectrum. Neurology 2014, 2 (Suppl. S10), P6–P108. [Google Scholar] [CrossRef]
- Tran, P.L.; Park, E.-J.; Hong, J.-S.; Lee, C.K.; Kang, T.; Park, J.T. Mechanism of action of three different glycogen branching enzymes and their effect on bread quality. Int. J. Biol. Macromol. 2024, 256 Pt 2, 128471. [Google Scholar] [CrossRef]
- Simons, N.; Debray, F.-G.; Schaper, N.C.; Schaper, N.C.; Kooi, M.E.; Feskens, E.J.; Hollak, C.E.; Lindeboom, L.; Koek, G.J.; Bons, J.A.; et al. Patients with aldolase b deficiency are characterized by increased intrahepatic triglyceride content. J. Clin. Endocrinol. Metab. 2019, 104, 5056–5064. [Google Scholar] [CrossRef]
- Bruno, C.; Dimauro, S. Lipid storage myopathies. Curr. Opin. Neurol. 2008, 21, 601–606. [Google Scholar] [CrossRef]
- Sadeh, M.; Dory, A.; Lev, D.; Yosovich, K.; Dabby, R. Riboflavin-responsive lipid-storage myopathy in elderly patients. J. Neurol. Sci. 2024, 456, 122808. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Zhong, Y.; Liu, Z.; Wei, L. Lipid storage myopathy due to late-onset multiple Acyl-CoA dehydrogenase deficiency with novel mutations in ETFDH: A case report. Front. Neurol. 2022, 13, 991060. [Google Scholar] [CrossRef]
- Longo, N.; Amat di San Filippo, C.; Pasquali, M. Disorders of carnitine transport and the carnitine cycle. Am. J. Med. Genet. C Semin. Med. Genet. 2006, 142, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, W.B.; Jenkens, S.M.; Boucher, P. Recognition and diagnosis of neuro-ichthyotic syndromes. Semin. Neurol. 2012, 32, 75–84. [Google Scholar] [CrossRef]
- Fischer, J.; Hotz, A.; Komlosi, K. Syndromic ichthyoses. Med. Genet. 2023, 35, 23–32. [Google Scholar] [CrossRef]
- Britton, C.H.; Schultz, R.A.; Zhang, B.; Esser, V.; Foster, D.W.; McGarry, J.D. Human liver mitochondrial carnitine palmitoyltransferase I: Characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proc. Natl. Acad. Sci. USA 1995, 92, 1984–1988. [Google Scholar] [CrossRef]
- Deschauer, M.; Wieser, T.; Zierz, S. Muscle carnitine palmityltransferase II deficiency: Clinical and molecular genetic features and diagnostic aspects. Arch. Neurol. 2005, 62, 37–41. [Google Scholar] [CrossRef]
- Elston, T.; Wang, H.; Oster, G. Energy transduction in ATP synthase. Nature 1998, 391, 510–513. [Google Scholar] [CrossRef]
- Mercelis, R.; Martin, J.J.; de Barsy, T.; Van den Berghe, G. Myoadenylate deaminase deficiency: Absence of correlation with exercise intolerance in 452 muscle biopsies. J. Neurol. 1987, 234, 385–389. [Google Scholar] [CrossRef]
- Shah, D.N.; Chorya, H.P.; Ramesh, N.N.; Gnanasekaram, S.; Patel, N.; Sethi, Y.; Kaka, N. Myopathies of endocrine origin: A review for physicians. Dis.-A-Mon. 2024, 70, 101628. [Google Scholar] [CrossRef]
- Tadisina, S.; Asad, R.; Varakantam, A.; Weide, L.; Drees, B. Thyrotoxic periodic paralysis as an ongoing diagnostic challenge: A case report and literature review. Cureus 2023, 15, e46272. [Google Scholar] [CrossRef] [PubMed]
- Arezoumand, A.; Nazari, S.; Jazi, K.; Bagherzade, M.; Riahi, M.M.; AkbariMehr, M.; Kanganee, N.; Masoumi, M. An atypical presentation of hypothyroidism with extremely exaggerated functional impairment. Clin. Case Rep. 2023, 11, e7708. [Google Scholar] [CrossRef] [PubMed]
- Holm-Yildiz, S.; Krag, T.; Witting, N.; Pedersen, B.S.; Dysgaard, T.; Sloth, L.; Pedersen, J.; Kjær, R.; Kannuberg, L.; Dahlqvist, J.; et al. Hypokalemic periodic paralysis: A 3-year follow-up study. J. Neurol. 2023, 270, 6057–6063. [Google Scholar] [CrossRef] [PubMed]
- Schulte, K.; Sheedy, M.; Feustel, K.; Scherbak, D. Newly Diagnosed Hypokalemic Periodic Paralysis Triggered by COVID-19. Cureus 2023, 15, e47906. [Google Scholar] [CrossRef]
- Vivek, A.; Sengar, P.; Chaurasia, R.N.; Pathak, A.; Kumar, A.; Singh, V.K. Hyperkalemic Periodic Paralysis in Twenty-Two Family Members Over Four Generations. Ann. Indian Acad. Neurol. 2023, 26, 595–597. [Google Scholar] [CrossRef]
- Coutinho, A.; Fonseca, N.; Novo, I.; Faria, L.; Iglesias, V. Corticosteroid-induced myopathy. Cureus 2023, 15, 49548. [Google Scholar] [CrossRef]
- Haran, M.; Schattner, A.; Kozak, N.; Mate, A.; Berrebi, A.; Shvidel, L. Acute steroid myopathy: A highly overlooked entity. Quart. J. Med. 2018, 111, 307–311. [Google Scholar] [CrossRef]
- Kochman, M. Primary hyperparathyroidism: Clinical manifestations, diagnosis and evaluation according to the Fifth International Workshop guidelines. Reumatologia 2023, 61, 256–263. [Google Scholar] [CrossRef]
- Babu, T.A.; Hashim, A.; Neyaz, Z.; Mani, V.E.; Jain, N.; Bhatia, E.; Mishra, A.; Sahoo, S.K. Nonsurgical hypoparathyroidism is associated with skeletal muscle dysfunction and restrictive lung disease. Eur. J. Endocrinol. 2023, 189, 141–148. [Google Scholar] [CrossRef]
- Girgis, C.M. Vitamin D deficiency and myopathy. In Nutrition and Skeletal Muscle; Walrand, S., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 409–418. [Google Scholar] [CrossRef]
- Rajkumar, V. Vitamin d deficiency presenting as proximal myopathy: An overlooked diagnosis—A case series and review of the literature. Eur. Med. J. 2022, 21, 248. [Google Scholar] [CrossRef]
- Ito, N.; Hidaka, N.; Kato, H. The pathophysiology of hypophosphatemia. Best Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101851. [Google Scholar] [CrossRef]
- Puente-Ruiz, N.; Docio, P.; García Unzueta, M.T.; Lavín, B.A.; Maiztegi, A.; Vega, A.I.; Piedra, M.; Riancho-Zarrabeitia, L.; Mateos, F.; Gonzalez-Lamuño, D.; et al. Uncovering genetic causes of hypophosphatemia. J. Intern. Med. 2023, 293, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Swash, M.; Fox, K.P.; Davidson, A.R. Carcinoid myopathy: Serotonin-induced muscle weakness in man? Arch. Neurol. 1975, 32, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Carra, S.; Alessi, Y.; Campolo, F.; Pandozzi, C.; Zanata, I.; Colao, A.; Faggiano, A. On Behalf Of The Nike Group. Carcinoid syndrome: Preclinical models and future therapeutic strategies. Int. J. Mol. Sci. 2023, 24, 3610. [Google Scholar] [CrossRef]
- Daniel, C.P.; Wagner, M.J.; Borne, G.E.; Borne, G.E.; Plaisance, C.J.; Ahmadzadeh, S.; Aquino, A.; Shekoohi, S.; Kaye, A.M.; Cornett, E.M.; et al. Acromegaly: Pathophysiological considerations and treatment options including the evolving role of oral somatostatin analogs. Pathophysiology 2023, 30, 377–388. [Google Scholar] [CrossRef] [PubMed]
- McInnis, R.L.; Rjoob, H.; Ohorodnyk, P.; Fraser, J.A.; Van Uum, H.H.; Bursztyn, L.L. Extraocular muscle enlargement in acromegaly. J. Neuro-Ophthalmol 2023, 43, 547–552. [Google Scholar] [CrossRef]
- McNab, T.L.; Khandwala, H.M. Acromegaly as an endocrine form of myopathy: Case report and review of literature. Endocr. Pract. 2005, 11, 18–22. [Google Scholar] [CrossRef]
- Parthiban, G.P.; Wilson, J.; Nesheiwat, J. Amyloid myopathy: A cunning masquerader. Cureus 2023, 15, e39576. [Google Scholar] [CrossRef]
- Ungericht, M.; Wanschitz, J.; Kroiss, A.S.; Röcken, C.; Schuetz, T.; Messner, M.; Zaruba, M.M.; Loescher, W.N.; Poelzl, G. Amyloid myopathy: Expanding the clinical spectrum of transthyretin amyloidosis—case report and literature review. J. Nuclear Cardiol. 2023, 30, 1420–1426. [Google Scholar] [CrossRef]
- Ganetzky, R.D.; Markhard, A.L.; Yee, I.; Clever, D.; Cahill, A.; Shah, H.; Grabarek, Z.; To, T.-L.; Mootha, V.K. Congenital hypermetabolism and uncoupled oxidative phosphorylation. N. Engl. J. Med. 2022, 387, 1395–1403. [Google Scholar] [CrossRef]
- Bergamini, C.; Bonora, E.; Moruzzi, N. Mitochondrial bioenergetics impairments in genetic and metabolic diseases. Front. Physiol. 2023, 14, 1228926. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Chapa, J.A.; Macêdo, M.B.; Lood, C. The emerging role of mitochondrial dysfunction in the pathogenesis of idiopathic inflammatory myopathies. Rambam Maimonides Med. J. 2023, 14, e0006. [Google Scholar] [CrossRef]
- Rowland, L.P.; Blake, D.M.; Hirano, M.; Di Mauro, S.; Schon, E.A.; Hays, A.P.; Devivo, D.C. Clinical syndromes associated with ragged red fibers. Rev. Neurol. 1991, 147, 467–473. [Google Scholar]
- Sproule, D.M.; Kaufmann, P. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: Basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann. N. Y. Acad. Sci. 2008, 1142, 133–158. [Google Scholar] [CrossRef] [PubMed]
- Montano, V.; Gruosso, F.; Simoncini, C.; Siciliano, G.; Mancuso, M. Clinical features of mtDNA-related syndromes in adulthood. Arch. Biochem. Biophys. 2021, 697, 108689. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.L.; Hanna, M.G.; Reichmann, H.; Bruno, C.; Penn, A.S.; Tanji, K.; Pallotti, F.; Iwata, S.; Bonilla, E.; Lach, B. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N. Engl. J. Med. 1999, 341, 1037–1044. [Google Scholar] [CrossRef]
- McFarland, R.; Taylor, R.W.; Chinnery, P.F.; Howell, N.; Turnbull, D.M. A novel sporadic mutation in cytochrome c oxidase subunit II as a cause of rhabdomyolysis. Neuromusc. Disord. 2004, 14, 162–166. [Google Scholar] [CrossRef]
- Simon, L.; Jolley, S.E.; Molina, P.E. Alcoholic myopathy: Pathophysiologic mechanisms and clinical implications. Alcohol Res. 2017, 38, 207–217. [Google Scholar]
- Urtizberea, J.A.; Severa, G.; Malfatti, E. Metabolic myopathies in the era of next-generation sequencing. Genes 2023, 14, 954. [Google Scholar] [CrossRef]
- Tobon, A. Metabolic myopathies. Continuum 2013, 19, 1571–1597. [Google Scholar] [CrossRef]
- Noury, J.B.; Zagnoli, F.; Petit, F.; Marcorelles, P.; Rannou, F. Exercise efficiency impairment in metabolic myopathies. Sci. Rep. 2020, 10, 8765. [Google Scholar] [CrossRef] [PubMed]
- Bernier, F.P.; Boneh, A.; Dennett, X.; Chow, C.W.; Cleary, M.A.; Thorburn, D.R. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 2002, 59, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 2015, 77, 753. [Google Scholar] [CrossRef] [PubMed]
- Skladal, D.; Halliday, J.; Thorburn, D.R. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 2003, 126, 1905–1912. [Google Scholar] [CrossRef]
- Elliott, H.R.; Samuels, D.C.; Eden, J.A.; Relton, C.L.; Chinnery, P.F. Pathogenic mitochondrial DNA mutations are common in the general population. Am. J. Hum. Genet. 2008, 83, 254–260. [Google Scholar] [CrossRef]
- Smelt, A.H.; Poorthuis, B.J.; Onkenhout, W.; Scholte, H.R.; Andresen, B.S.; van Duinen, D.G.; Gregersen, N.; Wintzen, A.R. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset. Ann. Neurol. 1998, 43, 540–544. [Google Scholar] [CrossRef]
- Gempel, K.; Topaloglu, H.; Talim, B.; Schneiderat, P.; Schoser, B.G.; Hans, V.H.; Pálmafy, B.; Kale, G.; Tokatli, A.; Quinzii, C.; et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 2007, 130, 2037–2044. [Google Scholar] [CrossRef]
- Horvath, R.; Schneiderat, P.; Schoser, B.G.; Gempel, K.; Neuen-Jacob, E.; Plöger, H.; Müller-Höcker, J.; Pongratz, D.E.; Naini, A.; DiMauro, S.; et al. Coenzyme Q10 deficiency and isolated myopathy. Neurology 2006, 66, 253–255. [Google Scholar] [CrossRef]
- OMIM® An Online Catalog of Human Genes and Genetic Disorders. Available online: www.omim.org (accessed on 6 February 2025).
- DiMauro, S.; Hirano, M. Mitochondrial DNA Deletion Syndromes. GeneReviews. Available online: www.ncbi.nlm.nih.gov/books/NBK1203/ (accessed on 30 January 2025).
- Lee, H.N.; Eom, S.; Kim, S.H.; Kang, H.-C.; Lee, S.L.; Kim, H.D.; Lee, Y.M. Epilepsy Characteristics and Clinical Outcome in Patients With Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes (MELAS). Pediatr. Neurol. 2016, 64, 59–65. [Google Scholar] [CrossRef]
- Gilchrist, J.M.; Sikirica, M.; Stopa, E.; Shanske, S. Adult-onset MELAS. Evidence for involvement of neurons as well as cerebral vasculature in strokelike episodes. Stroke 1996, 27, 1420–1423. [Google Scholar] [CrossRef]
- Domínguez-González, C.; Madruga-Garrido, M.; Mavillard, F.; Garone, C.; Aguirre-Rodríguez, F.J.; Donati, M.A.; Kleinsteuber, K.; Martí, I.; Martín-Hernández, E.; Morealejo-Aycinena, J.P.; et al. Deoxynucleoside Therapy for Thymidine Kinase 2–Deficient Myopathy. Ann. Neurol. 2019, 86, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-González, C.; Hernández-Laín, A.; Rivas, E.; Hernández-Voth, A.; Catalán, J.S.; Fernández-Torrón, R.; Fuiza-Luces, C.; García, J.G.; Morís, G.; Olivé, M.; et al. Late-onset thymidine kinase 2 deficiency: A review of 18 cases. Orphanet J. Rare Dis. 2019, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Hong, J.M.; Lee, J.H.; Shin, H.Y.; Kim, S.M.; Park, K.D.; Lee, J.H.; Choi, Y.C. Comparative transcriptome analysis of skeletal muscle in ADSSL1 myopathy. Neuromuscul. Disord. 2019, 29, 274–281. [Google Scholar] [CrossRef]
- Rybalka, E.; Park, H.J.; Nalini, A.; Baskar, D.; Polavarapu, K.; Durmus, H.; Xia, Y.; Wan, L.; Shieh, P.B.; Moghadaszadeh, B. Current insights in ultra-rare adenylosuccinate synthetase 1 myopathy–meeting report of the First Clinical and Scientific Conference. 3 June 2024, National Centre for Advancing Translational Science, Rockville, Maryland, the United States of America. Orphanet J. Rare Dis. 2024, 19, 438. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, J.E.; Choi, G.S.; Koo, H.; Han, S.J.; Yoo, J.H.; Choi, Y.C.; Park, K.D. Electron Microscopy Pathology of ADSSL1 Myopathy. J. Clin. Neurol. 2017, 13, 105–106. [Google Scholar] [CrossRef]
- Cakmak, E.; Bagci, G. Chanarin-Dorfman Syndrome: A comprehensive review. Liver Int. 2021, 41, 905–914. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, S.; Wang, F.; Yi, L.; Dong, M.; Huang, X. Late onset of neutral lipid storage disease due to a rare PNPLA2 mutation in a patient with myopathy and cardiomyopathy. Chin. Med. J. 2022, 135, 2389–2391. [Google Scholar] [CrossRef]
- Zeharia, A.; Shaag, A.; Houtkooper, R.H.; Hindi, T.; de Lonlay, P.; Erez, G.; Hubert, L.; Saada, A.; de Keyzer, Y.; Eshel, G.; et al. Mutations in LPIN1 Cause Recurrent Acute Myoglobinuria in Childhood. Am. J. Hum. Genet. 2008, 83, 489–494. [Google Scholar] [CrossRef]
- Tuchmann-Durand, C.; Roda, C.; Renard, P.; Mortamet, G.; Bérat, C.; Altenburger, L.; de Larauz, M.H.; Thevenet, E.; Cottart, C.; Moulin, F.; et al. Systemic corticosteroids for the treatment of acute episodes of rhabdomyolysis in lipin-1-deficient patients. J. Inherit. Metab. Dis. 2023, 2023. 46, 649–661. [Google Scholar] [CrossRef]
- Mitochondrial Medicine Society’s Committee on Diagnosis; Haas, R.H.; Parikh, S.; Falk, M.J.; Saneto, R.P.; Wolf, N.I.; Darin, N.; Wong, L.-J.; Cohen, B.H.; Naviaux, R.K. The indepth evaluation of suspected mitochondrial disease. Mol. Genet. Metab. 2008, 94, 16–37. [Google Scholar] [CrossRef]
- Tarnopolsky, M.; Stevens, L.; MacDonald, J.R.; Rodriguez, C.; Mahoney, D.; Rush, J.; Maguire, J. Diagnostic utility of a modified forearm ischemic exercise test and technical issues relevant to exercise testing. Muscle Nerve 2003, 27, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Goldstein, A.; Koenig, M.K.; Scaglia, F.; Enns, G.M.; Saneto, R.; Anselm, I.; Cohen, B.H.; Falk, M.J.; Greene, C.; et al. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet. Med. 2015, 17, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, J.; Pinho, R.; de Castro, A.P.; Vieira, N.B. McArdle’s disease: A differential diagnosis of metabolic myopathies. Cureus 2024, 16(9), e70000. [Google Scholar] [CrossRef] [PubMed]
- Giannoglou, G.D.; Chatzizisis, Y.S.; Misirli, G. The syndrome of rhabdomyolysis: Pathophysiology and diagnosis. Eur. J. Intern. Med. 2007, 18, 90–100. [Google Scholar] [CrossRef]
- Wortman, R.L.; DiMauro, S. Differentiating idiopathic inflammatory myopathies from metabolic myopathies. Rheum. Dis. Clin. N. Am. 2002, 28, 759–778.103. [Google Scholar] [CrossRef]
- Hogrel, J.-Y.; Laforet, P.; Ben Yaou, R.; Chevrot, M.; Eymard, B.; Lombes, A. A non-ischemic forearm exercise test for the screening of patients with exercise intolerance. Neurology 2001, 56, 1733–1738. [Google Scholar] [CrossRef]
- Toscano, A.; Barca, E.; Musumeci, O. Update on diagnostics of metabolic myopathies. Curr. Opin. 2017, 30, 553–562. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Parise, G.; Gibala, M.J.; Graham, T.E.; Rush, J.W. Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans. J. Physiol. 2001, 533, 881–889. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A. Metabolic Myopathies. Contin. Lifelong Learn. Neurol. 2016, 22, 1829–1851. [Google Scholar] [CrossRef]
- Parikh, S.; The Mitochondrial Medicine Society; Saneto, R.; Falk, M.J.; Anselm, I.; Cohen, B.H.; Haas, R. A modern approach to the treatment of mitochondrial disease. Curr. Treat. Options Neurol. 2009, 11, 414–430. [Google Scholar] [CrossRef]
- Camp, K.M.; Krotoski, D.; Parisi, M.A.; Gwinn, K.A.; Cohen, B.H.; Cox, C.S.; Enns, G.M.; Falk, M.J.; Goldstein, A.C.; GopalSrivastava, R.; et al. Nutritional interventions in primary mitochondrial disorders: Developing an evidence base. Mol. Genet. Metab. 2016, 119, 187–206. [Google Scholar] [CrossRef] [PubMed]
- Guémy, C.; Laforêt, P. The new horizons for treatment of Late-Onset Pompe Disease (LOPD). Rev. Neurol. 2023, 179, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Byrne, B.; Bratkovic, D.; Díaz-Manera, J.; Laforêt, P.; Mozaffar, T.; van der Ploeg, A.; Roberts, M.; Schoser, B.; Toscano, A.; Jiang, H.; et al. Cipaglucosidase alfa/miglustat versus alglucosidase alfa/placebo in late-onset Pompe disease (LOPD): PROPEL study subgroup analyses. Mol. Genet. Metab. 2022, 135, S27–S28. [Google Scholar] [CrossRef]
- Kishnani, P.S.; Nicolino, M.; Voit, T.; Rogers, R.C.; Tsai, A.C.-H.; Waterson, J.; Herman, G.E.; Amalfitano, A.; Thurberg, B.L.; Richards, S.; et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantileonset Pompe disease. J. Pediatr. 2006, 149, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Kishnani, P.S.; Sun, B.; Koeber, D.D. Gene therapy for glycogen storage diseases. Hum. Molec. Genet. 2019, 28, R31–R41. [Google Scholar] [CrossRef]
- Lim, J.-A.; Choi, S.J.; Gao, F.; Kishnani, P.S.; Baodong, S. A novel gene therapy approach for GSD III using an AAV vector encoding a bacterial glucogen debranching enzyme. Molec. Ther. Methods Clin. Develop. 2020, 18, 240–249. [Google Scholar] [CrossRef]
- Vissing, J.; Haller, R.G. The Effect of Oral Sucrose on Exercise Tolerance in Patients with McArdle’s Disease. N. Engl. J. Med. 2003, 349, 2503–2509. [Google Scholar] [CrossRef]
- Barp, A.; Bellance, R.; Malfatti, E.; Rigal, O.; Acquaviva-Bourdain, C.; Laforet, P. Late Onset Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) Myopathy Misdiagnosed as Polymyositis. Am. J. Clin. Oncol. 2019, 26, e125–e127. [Google Scholar]
- Ørngreen, M.C.; Madsen, K.L.; Preisler, N.; Andersen, G.; Vissing, J.; Laforêt, P. Bezafibrate in skeletal muscle fatty acid oxidation disorders: A randomized clinical trial. Neurology 2014, 82, 607–613. [Google Scholar] [CrossRef]
- Ng, K.W.; Chin, H.-L.; Chin, A.X.; Goh, D.L.-M. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front. Neurol. 2022, 13, 997551. [Google Scholar] [CrossRef]
- Gemelli, C.; Traverso, M.; Trevisan, L.; Fabbri, S.; Scarsi, E.; Carlini, B.; Prada, V.; Mongini, T.; Ruggiero, L.; Patrone, S.; et al. An integrated approach to the evaluation of patients with asymptomatic or minimally symptomatic hyperCKemia. Muscle Nerve 2022, 65, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Sian, V.; Johari, M.; Katayama, S.; Oghabian, A.; Jonson, P.H.; Hackman, P.; Savarese, M.; Udd, B. Revealing myopathy spectrum: Integrating transcriptional and clinical feature of human skeletal muscles with varying health conditions. Commun. Biol. 2024, 7, 438. [Google Scholar] [CrossRef] [PubMed]
- Lilleker, J.B.; Keh, Y.S.; Roncareoli, F.; Sharma, R.; Roberts, M. Metabolic myopathies: A practical approach. Pract. Neurol. 2018, 18, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, B.M. Are we rheumatologists or just internists who also care for patients with rheumatologically-related challenges? Arthritis Care Res. 2024, in press.
Phosphohexoisomerase deficiency |
Phosphofructokinase deficiency |
Mitochondrial myopathy |
Thyrotoxicosis |
Alcoholic myopathy, acute |
Myasthenia gravis, occasionally |
Muscular dystrophy, occasionally |
Polymyositis, occasionally |
Endocrine | hypothyroidism, diabetes mellitus |
Metabolic | |
Environmental | hypothermia |
Physiologic | pedal edema |
Psychologic | anorexia nervosa, |
Neurologic | Parkinsonism, pernicious anemia (vitamin B12 deficiency) |
Infectious | neurosyphilis, |
Gastrointestinal | sprue |
Medication | procainamide, propranolol, quinidine and reserpine |
Characteristic | Hypokalemic | Hyperkalemic | Normokalemic |
---|---|---|---|
Potassium level | Decreased | Increased | Normal |
Age of onset | 2nd decade | 1st decade | 1st decade |
Episode frequency | 5–15/yr | 1/week | 4–12/year |
Onset timing | Early AM in sleep | Variable | Early AM In sleep |
Episode duration | 6–48 h | 1 h | 2 h–3 weeks |
Flaccid paralysis | Severe | Moderate | Severe |
Respiration impeded | Often | Rarely | Occasionally |
Chvostek sign | Negative | Positive | Negative |
Dysfunction/Sign | Cramps | Tone | Second Wind | CPK | Respiratory | Ischemic Exercise Test | Myoglobinuria |
---|---|---|---|---|---|---|---|
Muscle phosphorylase | Present | Firm/Shortened | Present | Elevated | Striking | Abnormal | Episodic |
Acid maltase | Present | Hypotonia/Rubbery | Present | Present | Normal | Present | |
Phosphofructokinase | Present | Contractures | Rare | Elevated | Abnormal | ||
Phosphoglucomutase | Present | Hypotonia | Present | Elevated | Normal ** | Present | |
Phosphoglycerate mutase | Present | Elevated | Abnormal | Present | |||
Lactate dehydrogenase | Present | Elevated | Normal | Present | |||
Phosphoglycerate kinase | Present | Absent | Normal | Present | |||
Aldolase | Present | Present | |||||
Carnitine deficiency | Present | Elevated | Prominent | ||||
Carnitine palmityl transferase | Present | Absent | Occasional | Present | Normal | Present | |
Myoadenylate deaminase | Present | Hypotonia/Fasiculations | Present | Variable | Normal | ||
Hyperthyroidism | Rare | Fascicular twitching | Normal | Variable | |||
Hypothyroidism | Present | Myotonia/Myoedema | Present | Elevated | |||
Hypercorticalism | Slight | ||||||
Hyperparathyroidism | Present | Elevated | |||||
Hypophosphatemia, acute | Elevated | Present | |||||
Hypophosphatemia, chronic | Normal | Normal | |||||
Carcinoid syndrome | Present | ||||||
Acromegaly | Elevated | ||||||
Mitochondrial | Absent | Heaviness/Burning | Absent * | ||||
acyl-CoA dehydrogenation | Elevated |
Exercise intolerance | |
---|---|
Phosphofructokinase | childhood–adolescence onset |
Phosphoglycerate mutase | childhood–early adult onset |
Lactate dehydrogenase | in utero to adult onset |
Phosphoglycerate kinase | birth or early infancy onset |
Aldolase | childhood onset |
Carnitine palmityl transferase | infancy to late adult onset |
only after prolonged exercise | |
Hypokalemic periodic paralysis | second decade onset |
Second wind | |
Muscle phosphorylase | onset usually before age 20 |
Debrancher enzyme | infancy to 50s onset |
Phosphofructokinase | childhood–adolescence onset |
Muscle weakness | |
Muscle phosphorylase | onset usually before age 20 |
Acid maltase | infancy to middle age onset |
Debrancher muscle | infancy to late middle age onset |
Phosphoglycerate kinase | birth or early infancy onset |
Aldolase | childhood onset |
Carnitine | first 3 years of life onset; secondary—any age |
Ichthyosis-associated myopathy | adolescent to adult onset |
Carnitine palmityl transferase | infancy to late adult onset |
Myoadenylate deaminase | infancy to late adult onset |
Periodic paralysis | |
Hypokalemic, normokalemic | first decade of life |
Hypothyroid | early to mid adult onset |
Hyperkalemic | childhood to adolescence onset |
Thyroid disease | |
Hyperthyroid | early to mid-adult onset |
Hypothyroid | first decade of life onset |
Corticosteroid | all ages |
Hyperparathyroidism | middle age to late adult onset |
Hypoparathyroidism | any age, but especially childhood |
Hypophosphatemia | infancy to early childhood onset |
Carcinoid | second to third decades of life onset |
Acromegaly | third to fourth decades of life onset |
Amyloidosis | middle age to late adult onset |
Mitochondrial myopathy | any age, but especially childhood and adolescence |
Cramps | |
Muscle phosphorylase | usually <20 |
Phosphofructokinase | childhood–adolescence onset |
Phosphoglucomutase | childhood–early adult onset |
Carnitine | first 3 years of life onset; secondary, any age |
Myoadenylate deaminase | infancy to late adult onset |
Hypothyroid | first decade of life onset |
Hyperparathyroid | middle age to late adult onset |
Hypoparathyroid | infancy to early childhood onset |
Carcinoid | second and third decades of life onset |
Hypotonia | |
Acid maltase | infancy to middle age onset |
Phosphoglucomutase | childhood–early adult onset |
Brancher enzyme | in utero to adult onset |
Aldolase | childhood onset |
Myoadenylate deaminase | infancy to late adult onset |
Hypothyroid | first decade of life onset |
Carcinoid | second and third decades of life onset |
Muscle hypertrophy | |
Acid maltase | infancy to middle age onset |
Muscle phosphorylase | usually <20 |
Mitochondrial | any age, but especially childhood and adolescence |
Amyloidosis | middle age to late adult onset |
Myoedema | |
Hypothyroid | first decade of life onset |
Face and/or neck involvement | |
Carnitine | first 3 years of life onset |
Carnitine palmityl transferase | infancy to late adult onset |
Hypoparathyroidism | first decade of life onset |
Mitochondrial adenylosuccinate synthetase 1 | first decade of life onset |
CPK elevation | |
Muscle phosphorylase | usually <20—especially after exercise, with lactate and potassium |
Acid maltase | infancy to middle age onset |
Phosphofructokinase | childhood-adolescence onset |
Phosphoglycerate mutase | childhood-early adult onset |
Lactate dehydrogenase | in utero to adult onset |
Phosphoglycerate kinase | birth or early infancy onset |
Carnitine | second and third decades of life onset |
Ichthyosis-associated myopathy | adolescent to adult onset |
Carnitine palmityl transferase | infancy to late adult onset |
Myoadenylate deaminase | infancy to late adult onset |
Thyroid disease | childhood to adult onset |
paradoxical | elevated routinely in hypothyroidism, but not those with muscle disease |
Hypoparathyroidism | first decade of life onset |
Acromegaly | third to fourth decades of life onset |
Myoglobinuria | |
Muscle phosphorylase | usually <20 |
Phosphofructokinase | childhood-adolescence onset |
Phosphoglycerate mutase | childhood-early adult onset |
Lactate dehydrogenase | in utero to adult onset |
Phosphoglycerate kinase | birth or early infancy onset |
Aldolase | childhood onset |
Carnitine palmityl transferase | infancy to late adult onset—absent in 21% |
Hypophosphatemia | infancy to early childhood onset |
Prominent respiratory symptoms | |
Acid maltase | infancy to middle age onset |
Carnitine | second and third decades of life onset |
Carnitine palmityl transferase | infancy to late adult onset |
Periodic paralysis | |
Hypokalemic, normokalemic | first decade of life |
Hypothyroid | early to mid adult onset |
Hyperkalemic | childhood to adolescence onset |
Thyroid disease | childhood to adult onset |
Hemolytic anemia | |
Phosphofructokinase | childhood-adolescence onset |
Phosphoglycerate kinase | childhood-adolescence onset |
Lactate dehydrogenase | in utero to adult onset |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothschild, B. Muscle Diseases of Metabolic and Endocrine Derivation. Rheumato 2025, 5, 2. https://doi.org/10.3390/rheumato5010002
Rothschild B. Muscle Diseases of Metabolic and Endocrine Derivation. Rheumato. 2025; 5(1):2. https://doi.org/10.3390/rheumato5010002
Chicago/Turabian StyleRothschild, Bruce. 2025. "Muscle Diseases of Metabolic and Endocrine Derivation" Rheumato 5, no. 1: 2. https://doi.org/10.3390/rheumato5010002
APA StyleRothschild, B. (2025). Muscle Diseases of Metabolic and Endocrine Derivation. Rheumato, 5(1), 2. https://doi.org/10.3390/rheumato5010002