Pangenome Analysis Reveals a High Degree of Genetic Diversity in Gardnerella vaginalis: An In Silico Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome Information
2.2. Phylogenomic Analysis and Phylogenetic Reconstruction
2.3. Genomic Plasticity via Identification of Genomic Islands
2.4. Gene Synteny
2.5. Prediction of Orthologous Genes and Pangenome Development
2.6. Orthology Assignments and Functional Annotation
3. Results
3.1. Phylogenetic Analysis
3.2. Genomic Plasticity
3.3. Gene Synteny
3.4. Pangenome Development
3.5. Orthologous Genes Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenwood, J.R.; Pickett, M.J. Transfer of Haemophilus vaginalis Gardner and Dukes to a new genus, Gardnerella: G. vaginalis (Gardner and Dukes) comb. nov. Int. J. Syst. Bacteriol. 1980, 30, 170–178. [Google Scholar] [CrossRef]
- Leopold, S. Heretofore undescribed organism isolated from the genitourinary system. U. S. Armed Forces Med. J. 1953, 4, 263–266. [Google Scholar] [PubMed]
- Gardner, H.L.; Dukes, C.D. Haemophilus vaginalis vaginitis: A newly defined specific infection previously classified “nonspecific” vaginitis. Am. J. Obstet. Gynecol. 1955, 69, 962–976. [Google Scholar] [CrossRef] [PubMed]
- Piot, P.; van Dyck, E.; Peeters, M.; Hale, J.; Totten, P.A.; Holmes, K.K. Biotypes of Gardnerella vaginalis. J. Clin. Microbiol. 1984, 20, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F. Gardnerella vaginalis y mobiluncus en la etiología de la vaginosis bacteriana. Rev. Costarric Cienc Méd. 1998, 19, 107–116. [Google Scholar]
- Vaneechoutte, M.; Guschin, A.; Van Simaey, L.; Gansemans, Y.; Van Nieuwerburgh, F.; Cools, P. Emended description of Gardnerella vaginalis and description of Gardnerella leopoldii sp. nov., Gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int. J. Syst. Evol. Microbiol. 2019, 69, 679–687. [Google Scholar] [CrossRef]
- Patterson, J.L.; Stull-Lane, A.; Girerd, P.H.; Jefferson, K.K. Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes. Microbiology 2010, 156 Pt 2, 392–399. [Google Scholar] [CrossRef]
- Lopes Dos Santos Santiago, G.; Deschaght, P.; El Aila, N.; Kiama, T.N.; Verstraelen, H.; Jefferson, K.K.; Temmerman, M.; Vaneechoutte, M. Gardnerella vaginalis comprises three distinct genotypes of which only two produce sialidase. Am. J. Obstet. Gynecol. 2011, 204, 450.e1–450.e7. [Google Scholar] [CrossRef]
- Briselden, A.M.; Moncla, B.J.; Stevens, C.E.; Hillier, S.L. Sialidases (neuraminidases) in bacterial vaginosis and bacterial vaginosis-associated microflora. J. Clin. Microbiol. 1992, 30, 663–666. [Google Scholar] [CrossRef]
- Cauci, S.; Thorsen, P.; Schendel, D.E.; Bremmelgaard, A.; Quadrifoglio, F.; Guaschino, S. Determination of Immunoglobulin A against Gardnerella vaginalis Hemolysin, Sialidase, and Prolidase Activities in Vaginal Fluid: Implications for Adverse Pregnancy Outcomes. J. Clin. Microbiol. 2003, 41, 435. [Google Scholar] [CrossRef]
- Pleckaityte, M.; Janulaitiene, M.; Lasickiene, R.; Zvirbliene, A. Genetic and biochemical diversity of Gardnerella vaginalis strains isolated from women with bacterial vaginosis. FEMS Immunol. Med. Microbiol. 2012, 65, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Gelber, S.E.; Aguilar, J.L.; Lewis, K.L.T.; Ratner, A.J. Functional and phylogenetic characterization of vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J. Bacteriol. 2008, 190, 3896–3903. [Google Scholar] [CrossRef] [PubMed]
- Cauci, S.; Monte, R.; Ropele, M.; Missero, C.; Not, T.; Quadrifoglio, F.; Menestrina, G. Pore-forming and haemolytic properties of the Gardnerella vaginalis cytolysin. Mol. Microbiol. 1993, 9, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Bautista, C.T.; Wurapa, E.; Sateren, W.B.; Morris, S.; Hollingsworth, B.; Sanchez, J.L. Bacterial vaginosis: A synthesis of the literature on etiology, prevalence, risk factors, and relationship with chlamydia and gonorrhea infections. Mil Med Res. 2016, 13, 4. [Google Scholar] [CrossRef]
- Ingianni, A.; Petruzzelli, S.; Morandotti, G.; Pompei, R. Genotypic differentiation of Gardnerella vaginalis by amplified ribosomal DNA restriction analysis (ARDRA). FEMS Immunol. Med. Microbiol. 1997, 18, 61–66. [Google Scholar] [CrossRef]
- Schellenberg, J.J.; Jayaprakash, T.P.; Gamage, N.W.; Patterson, M.H.; Vaneechoutte, M.; Hill, J.E. Gardnerella vaginalis Subgroups Defined by cpn60 Sequencing and Sialidase Activity in Isolates from Canada, Belgium and Kenya. PLoS ONE 2016, 11, e0146510. [Google Scholar] [CrossRef]
- Ahmed, A.; Earl, J.; Retchless, A.; Hillier, S.L.; Rabe, L.K.; Cherpes, T.L.; Powell, E.; Janto, B.; Eutsey, R.; Hiller, N.L.; et al. Comparative genomic analyses of 17 clinical isolates of Gardnerella vaginalis provide evidence of multiple genetically isolated clades consistent with subspeciation into genovars. J. Bacteriol. 2012, 194, 3922–3937. [Google Scholar] [CrossRef]
- Leite, S.R.R.D.F.; Amorim, M.M.R.D.; Calábria, W.B.; Leite, T.N.D.F.; Oliveira, V.S.D.; Ferreira Júnior, J.A.A.; Ximenes, R.A.D. A Perfil clínico e microbiológico de mulheres com vaginose bacteriana. Rev. Bras. De Ginecol. E Obs. 2010, 32, 82–87. [Google Scholar] [CrossRef]
- Wilson, J. Managing recurrent bacterial vaginosis. Sex. Transm. Infect. 2004, 80, 8–11. [Google Scholar] [CrossRef]
- Schwebke, J.R. Gynecologic consequences of bacterial vaginosis. Obstet. Gynecol. Clin. N. Am. 2003, 30, 685–694. [Google Scholar] [CrossRef]
- Fethers, K.; Morris, M. Is bacterial vaginosis a sexually transmitted infection. Sex. Transm. Infect. 2001, 77, 390. [Google Scholar] [CrossRef]
- Tanaka, V.; Fagundes, L.J.; Catapan, A.; Gotlieb, S.L.D.; Belda, W., Jr.; Arnone, M.; Soreano, R.; Moraes, F.R. Epidemiological profile of women with bacterial vaginosis treated at a clinic for sexually transmitted diseases in the city of Sao Paulo, SP. An. Bras. Dermatol. 2007, 82, 41–46. [Google Scholar] [CrossRef]
- Formana, D.; de Martel, C.; Lacey, C.J.; Soerjomatarama, I.; Lortet-Tieulent, J.; Bruni, L.; Vignat, J.; Ferlay, J.; Bray, F.; Plummer, M.; et al. Global Burden of Human Papillomavirus and Related Diseases. Vaccine 2012, 30 (Suppl. S5), F12–F23. [Google Scholar] [CrossRef]
- Workowski, K.A.; Bachmann, L.H. Centers for Disease Control and Prevention’s Sexually Transmitted Diseases Infection Guidelines. Clin. Infect. Dis. 2022, 74 (Suppl. S2), S89–S94. [Google Scholar] [CrossRef] [PubMed]
- Lukic, A.; Napoli, A.; Santino, I.; Bianchi, P.; Nobili, F.; Ciampittiello, G.; Nardone, M.R.; Santomauro, M.; Di Properzio, M.; Caserta, D. Cervicovaginal bacteria and fungi in pregnant diabetic and non-diabetic women: A multicenter observational cohort study. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2303–2315. [Google Scholar] [PubMed]
- Bradshaw, C.S.; Morton, A.N.; Hocking, J.; Garland, S.M.; Morris, M.B.; Moss, L.M.; Horvath, L.B.; Kuzevska, I.; Fairley, C.K. High recurrence rates of bacterial vaginosis over the course of 12 months after oral metronidazole therapy and factors associated with recurrence. J. Infect. Dis. 2006, 193, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Marion, L.L.; Meeks, G.R. Ectopic pregnancy: History, incidence, epidemiology, and risk factors. Clin. Obstet. Gynecol. 2012, 55, 376–386. [Google Scholar] [CrossRef]
- Holzman, C.; Leventhal, J.M.; Qiu, H.; Jones, N.M.; Wang, J. Factors Linked to Bacterial Vaginosis in Nonpregnant Women. Am. J. Public Health 2011, 91, 1664–1670. [Google Scholar] [CrossRef]
- Marrazzo, J.M.; Wiesenfeld, H.C.; Murray, P.J.; Busse, B.; Meyn, L.; Krohn, M.; Hillier, S.L. Risk Factors for Cervicitis among Women with Bacterial Vaginosis. J. Infect. Dis. 2006, 193, 617–624. [Google Scholar] [CrossRef]
- Small, S.A.; Luster, T. Adolescent Sexual Activity: An Ecological, Risk-Factor Approach. J. Marriage Fam. 1994, 56, 181. [Google Scholar] [CrossRef]
- Anand, K.V.; Pimple, S.A.; Mishra, G.A.; Sahare, R.V.; Pathuthara, S.; Deodhar, K.K.; Shastri, S.S. Reliability of conventional Papanicolaou smear in diagnosing bacterial vaginosis among women with clinical genital infection. South Asian J. Cancer 2020, 9, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Wang, C.C.; Zhang, X.J.; Gao, G.P.; Tong, F.; Li, X.; Hou, S.; Sun, L.; Sun, Y.-H. Risk factors for bacterial vaginosis: Results from a cross-sectional study having a sample of 53,652 women. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Denney, J.M.; Culhane, J.F. Bacterial vaginosis: A problematic infection from both a perinatal and neonatal perspective. Semin. Fetal Neonatal Med. 2009, 14, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Adinkra, P.; Lamont, R.F. Adverse obstetric sequelae of bacterial vaginosis. Hosp. Med. 2000, 61, 475–477. [Google Scholar] [CrossRef]
- Molteni, B.; D’Antuono, A.; Bandini, P.; Sintini, G.; Barcellona, E.; Agnello, A.; Milani, M. Efficacy and tolerability of a new chlorhexidine-based vaginal gel in vaginal infections. Curr. Med. Res. Opin. 2004, 20, 849–853. [Google Scholar] [CrossRef]
- Miko, E.; Barakonyi, A. The Role of Hydrogen-Peroxide (H2O2) Produced by Vaginal Microbiota in Female Reproductive Health. Antioxidants 2023, 12, 1055. [Google Scholar] [CrossRef]
- Verstraelen, H.; Verhelst, R.; Roelens, K.; Temmerman, M. Antiseptics and disinfectants for the treatment of bacterial vaginosis: A systematic review. BMC Infect. Dis. 2012, 12, 148. [Google Scholar] [CrossRef]
- Turovskiy, Y.; Sutyak Noll, K.; Chikindas, M.L. The aetiology of bacterial vaginosis. J. Appl. Microbiol. 2011, 110, 1105–1128. [Google Scholar] [CrossRef]
- Petrova, M.I.; Lievens, E.; Malik, S.; Imholz, N.; Lebeer, S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front. Physiol. 2015, 6, 81. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Maddison, W.P.; Donoghue, M.J.; Maddison, D.R. Outgroup Analysis and Parsimony. Syst. Biol. 1984, 33, 83–103. [Google Scholar] [CrossRef]
- Ågren, J.; Sundström, A.; Håfström, T.; Segerman, B. Gegenees: Fragmented Alignment of Multiple Genomes for Determining Phylogenomic Distances and Genetic Signatures Unique for Specified Target Groups. PLoS ONE 2012, 7, e39107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Chiou, C.S.; Chen, C.C. PGAdb-builder: A web service tool for creating pan-genome allele database for molecular fine typing. Sci. Rep. 2016, 6, 36213. [Google Scholar] [CrossRef]
- Rodrigues, T.C.V.; Jaiswal, A.K.; De Sarom, A.; Oliveira, L.D.C.; Oliveira, C.J.F.; Ghosh, P.; Tiwari, S.; Miranda, F.M.; de Jesus Benevides, L.; de Carvalho Azevedo, V.A.; et al. Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: A causative agent of pneumonia. R. Soc. Open Sci. 2019, 6, 1909070. [Google Scholar] [CrossRef]
- Soares, S.C.; Geyik, H.; Ramos, R.T.J.; de Sá, P.H.C.G.; Barbosa, E.G.V.; Baumbach, J.; Figueiredo, H.C.P.; Miyoshi, A.; Tauch, A.; Silva, A.; et al. GIPSy: Genomic island prediction software. J. Biotechnol. 2016, 232, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef]
- Darling, A.E.; Mau, B.; Perna, N.T. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- Enright, A.J.; Van Dongen, S.; Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002, 30, 1575–1584. [Google Scholar] [CrossRef]
- Medini, D.; Donati, C.; Tettelin, H.; Masignani, V.; Rappuoli, R. The microbial pan-genome. Curr. Opin. Genet. Dev. 2005, 15, 589–594. [Google Scholar] [CrossRef]
- Boto, L. Horizontal gene transfer in evolution: Facts and challenges. Proc. R. Soc. B Biol. Sci. 2010, 277, 819. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.C.; Silva, A.; Trost, E.; Blom, J.; Ramos, R.; Carneiro, A.; Ali, A.; Santos, A.R.; Pinto, A.C.; Diniz, C.; et al. The Pan-Genome of the Animal Pathogen Corynebacterium pseudotuberculosis Reveals Differences in Genome Plasticity between the Biovar ovis and equi Strains. PLoS ONE 2013, 8, e53818. [Google Scholar] [CrossRef] [PubMed]
- Carlos Guimaraes, L.; Benevides de Jesus, L.; Vinicius Canario Viana, M.; Silva, A.; Thiago Juca Ramos, R.; de Castro Soares, S.; Azevedo, V. Inside the Pan-genome—Methods and Software Overview. Curr. Genom. 2015, 16, 245. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015, 43, D261–D269. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Koonin, E.V.; Lipman, D.J. A genomic perspective on protein families. Science 1997, 278, 631–637. [Google Scholar] [CrossRef]
- Tarracchini, C.; Lugli, G.A.; Mancabelli, L.; Milani, C.; Turroni, F.; Ventura, M. Assessing the Genomic Variability of Gardnerella vaginalis through Comparative Genomic Analyses: Evolutionary and Ecological Implications. Appl. Environ. Microbiol. 2020, 87, 1–16. [Google Scholar] [CrossRef]
- Bohr, L.L.; Mortimer, T.D.; Pepperell, C.S. Lateral Gene Transfer Shapes Diversity of Gardnerella spp. Front. Cell Infect. Microbiol. 2020, 10, 293. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, Y.; Yu, X.Y.; Pan, X.; Zhang, Y.; Tu, J.; Song, Y.-H. Ribosome biogenesis in disease: New players and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Epum, E.A.; Haber, J.E. DNA replication: The recombination connection. Trends Cell Biol. 2022, 32, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, D. Repair pathway choice for double-strand breaks. Essays Biochem. 2020, 64, 765–777. [Google Scholar] [CrossRef] [PubMed]
Organism | Strain | Assembly Level | Size (Mb) | GC% | Genbank Access | Extraction Location |
---|---|---|---|---|---|---|
Gardnerella vaginalis | NCTC10287 | Complete | 1.67 | 41.4 | GCA_900637625.1 | - |
Gardnerella vaginalis | GV37 | Complete | 1.75 | 41.8 | GCA_001953155.1 | Paris, France |
Gardnerella vaginalis | FDAARGOS_568 | Complete | 1.72 | 41.3 | GCA_003812765.1 | - |
Gardnerella vaginalis | 409-05 | Complete | 1.62 | 42 | GCA_000025205.1 | - |
Gardnerella vaginalis | ATCC 14018/ JCM 11026 | Complete | 1.67 | 41.4 | GCA_001042655.1 | - |
Gardnerella vaginalis | ATCC 14019 | Complete | 1.67 | 41.4 | GCA_000159155.2 | - |
Gardnerella vaginalis | HMP9231 | Complete | 1.73 | 41.4 | GCA_000213955.1 | - |
Gardnerella vaginalis | DSM 4944 | Chromosome | 1.68 | 41.3 | GCA_900105405.1 | - |
Gardnerella vaginalis | UMB0913 | Scaffold | 1.51 | 42.1 | GCA_002861145.1 | Maywood, United States of America |
Gardnerella vaginalis | UMB0736 | Scaffold | 1.73 | 41.1 | GCA_013315025.1 | Maywood, United States of America |
Gardnerella vaginalis | UMB0298 | Scaffold | 1.68 | 41.2 | GCA_002861975.1 | Maywood, United States of America |
Gardnerella vaginalis | JCP7672 | Scaffold | 1.69 | 41.2 | GCA_000414645.1 | - |
Gardnerella vaginalis | JCP8108 | Scaffold | 1.67 | 41.1 | GCA_000414525.1 | - |
Gardnerella vaginalis | UMB0833 | Scaffold | 1.62 | 42.1 | GCA_002861885.1 | Maywood, United States of America |
Gardnerella vaginalis | JCP7659 | Scaffold | 1.54 | 41.9 | GCA_000414665.1 | - |
Gardnerella vaginalis | JCP8070 | Scaffold | 1.48 | 42.2 | GCA_000414545.1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felice, A.G.; Sousa, E.G.; Dominici, F.V.; Azevedo, V.A.d.C.; Soares, S.d.C. Pangenome Analysis Reveals a High Degree of Genetic Diversity in Gardnerella vaginalis: An In Silico Approach. Venereology 2023, 2, 132-146. https://doi.org/10.3390/venereology2040012
Felice AG, Sousa EG, Dominici FV, Azevedo VAdC, Soares SdC. Pangenome Analysis Reveals a High Degree of Genetic Diversity in Gardnerella vaginalis: An In Silico Approach. Venereology. 2023; 2(4):132-146. https://doi.org/10.3390/venereology2040012
Chicago/Turabian StyleFelice, Andrei Giacchetto, Eduarda Guimarães Sousa, Fabiana Vieira Dominici, Vasco Ariston de Carvalho Azevedo, and Siomar de Castro Soares. 2023. "Pangenome Analysis Reveals a High Degree of Genetic Diversity in Gardnerella vaginalis: An In Silico Approach" Venereology 2, no. 4: 132-146. https://doi.org/10.3390/venereology2040012
APA StyleFelice, A. G., Sousa, E. G., Dominici, F. V., Azevedo, V. A. d. C., & Soares, S. d. C. (2023). Pangenome Analysis Reveals a High Degree of Genetic Diversity in Gardnerella vaginalis: An In Silico Approach. Venereology, 2(4), 132-146. https://doi.org/10.3390/venereology2040012