Productive Performance of Mexican Creole Pullets and Immature Males Fed Different Levels of Metabolizable Energy and Crude Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Period and Place
2.2. Birds and Management
2.3. Experimental Diets
2.4. Productive Performance
2.5. Carcass Yield
2.6. Digestive Organs and Abdominal Fat
2.7. Whole Body Composition
2.8. Nutrient Utilisation
2.9. Statistical Analysis
3. Results
3.1. Productive Performance
3.2. Carcass Yield
3.3. Digestive Organs and Abdominal Fat
3.4. Whole Body Composition
3.5. Nutrient Utilisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mata-Estrada, A.; González-Cerón, F.; Pro-Martínez, A.; Torres-Hernández, G.; Bautista-Ortega, J.; Becerril-Pérez, C.M.; Vargas-Galicia, A.J.; Sosa-Montes, E. Comparison of four nonlinear growth models in Creole chickens of Mexico. Poult. Sci. 2020, 99, 1995–2000. [Google Scholar] [CrossRef]
- Kingori, A.M.; Tuitoek, J.K.; Muiruri, H.K.; Wachira, A.M. Protein requirements of growing indigenous chickens during the 14–21 weeks growing period. S. Afr. J. Anim. Sci. 2003, 33, 78–82. [Google Scholar] [CrossRef]
- Nahashon, S.N.; Aggrey, S.E.; Adefope, N.A.; Amenyenu, A.; Wright, D. Gompertz-Laird model prediction of optimum utilization of crude protein and metabolizable energy by French guinea fowl broilers. Poult. Sci. 2010, 89, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Baas-Osorio, A.; Sarmiento-Franco, L.; Santos-Ricalde, R.; Segura-Correa, J.C. Estimation of the requirement of Metabolizable Energy and Crude Protein for growing in Rhode Island red chickens, under tropical conditions of Southeastern Mexico. Trop. Subtrop. Agroecosystems 2019, 22, 487–497. Available online: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2773/1265 (accessed on 30 September 2021).
- Ravindran, V. Main ingredients used in poultry feed formulations. In Poultry Development Review; FAO: Rome, Italy, 2013; pp. 67–69. [Google Scholar]
- Perween, S.; Kumar, K.; Chandramoni Kumar, S.; Singh, P.K.; Kumar, M.; Dey, A. Effect of feeding different dietary levels of energy and protein on growth performance and immune status of Vanaraja chicken in the tropic. Vet. World 2016, 9, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Gous, R.M. Nutritional limitations on growth and development in poultry. Livest. Sci. 2010, 130, 25–32. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Matus-Aragón, M.A.; González-Cerón, F.; Salinas-Ruiz, J.; Sosa-Montes, E.; Pro-Martínez, A.; Hernández-Mendo, O.; Cuca-García, J.M.; Chan-Díaz, D.J. Productive performance of Mexican Creole chickens from hatching to 12 weeks of age fed diets with different concentrations of metabolizable energy and crude protein. Anim. Biosci. 2021, 34, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- Van Harn, J.; Dijkslag, M.A.; Van Krimpen, M.M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef]
- Official Diary of the Federation. Official Mexican Standard, NOM-033-SAG/ZOO-2014. Methods to Kill Domestic and Wild Animals; Official Diary of the Federation: Mexico City, Mexico, 2015. [Google Scholar]
- Mera-Zúñiga, F.; Pro-Martínez, A.; Zamora-Natera, J.F.; Sosa-Montes, E.; Guerrero-Rodríguez, J.D.; Mendoza-Pedroza, S.I.; Cuca-García, J.M.; López-Romero, R.M.; Chan-Díaz, D.; Becerril-Pérez, C.M.; et al. Soybean meal substitution by dehulled lupine (Lupinus angustifolius) with enzymes in broiler diets. Asian-Australas. J. Anim. Sci. 2019, 32, 564–573. [Google Scholar] [CrossRef]
- Aletor, V.A.; Hamid, I.I.; Nies, E.; Pfeffer, E. Low-protein amino acid-supplemented diets in broiler chickens: Effects on performance, carcase characteristics, whole-body composition and efficiencies of nutrient utilisation. J. Sci. Food Agric. 2000, 80, 547–554. [Google Scholar] [CrossRef]
- Kamran, Z.; Sarwar, M.; Nisa, M.U.; Nadeem, M.A.; Mahmood, S. Effect of low levels of dietary crude protein with constant metabolizable energy on nitrogen excretion, litter composition and blood parameters of broilers. Int. J. Agric. Biol. 2010, 12, 401–405. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- SAS Institute Inc. Base SAS ® 9.4 Procedures Guide; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- The GLIMMIX Procedure: Kenward-Roger Degrees of Freedom Approximation. SAS/STAT User’s Guide, 1997. Available online: https://documentation.sas.com/doc/es/statcdc/14.2/statug/statug_glimmix_details40.htm (accessed on 13 May 2021).
- Leeson, S.; Summers, J.D. Nutrition of the Chicken, 4th ed.; University of Guelph: Guelph, ON, Canada, 2001. [Google Scholar]
- Classen, H.L. Diet energy and feed intake in chickens. Anim. Feed. Sci. Tech. 2017, 233, 13–21. [Google Scholar] [CrossRef]
- Lemme, A.; Ravindran, V.; Bryden, W.L. Ileal digestibility of amino acids in feed ingredients for broilers. World Poultry. Sci. J. 2004, 60, 423–437. [Google Scholar] [CrossRef]
- Apajalahti, J.; Vienola, K. Interaction between chicken intestinal microbiota and protein digestion. Anim. Feed. Sci. Tech. 2016, 221, 323–330. [Google Scholar] [CrossRef] [Green Version]
- De Cesare, A.; do Valle, I.F.; Sala, C.; Sirri, F.; Astolfi, A.; Castellani, G.; Manfreda, G. Effect of a low protein diet on chicken ceca microbiome and productive performances. Poult. Sci. 2019, 98, 3963–3976. [Google Scholar] [CrossRef]
- Si, J.; Fritts, C.A.; Burnham, D.J.; Waldroup, P.W. Relationship of dietary lysine level to the concentration of all essential amino acids in broiler diets. Poult. Sci. 2001, 80, 1472–1479. [Google Scholar] [CrossRef]
- Vieira, S.L.; Lemme, A.; Goldenberg, D.B.; Brugalli, I. Responses of growing broilers to diets with Increased Sulfur Amino Acids to Lysine Ratios at Two Dietary Protein Levels. Poult. Sci. 2004, 83, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Nitsan, Z.; Dunnington, E.A.; Siegel, P.B. Organ Growth and Digestive Enzyme Levels to Fifteen Days of Age in Lines of Chickens Differing in Body Weight. Poult. Sci. 1991, 70, 2040–2048. [Google Scholar] [CrossRef]
- Baéza, E.; Le Bihan-Duval, E. Chicken lines divergent for low or high abdominal fat deposition: A relevant model to study the regulation of energy metabolism. Animal 2013, 7, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Segura-Correa, J.C.; Jerez-Salas, M.P.; Sarmiento-Franco, L.; Santos-Ricalde, R. Indicadores de producción de huevo de gallinas Criollas en el trópico de México [Spanish]. Arch. Zootec. 2007, 56, 309–317. [Google Scholar]
- Pál, L.; Grossmann, R.; Dublecz, K.; Husvéth, F.; Wágner, L.; Bartos, A.; Kovács, G. Effects of glucagon and insulin on plasma glucose, triglyceride triglyceride-rich lipoprotein concentrations in laying hens fed diets containing different types of fats. Poult. Sci. 2002, 81, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Wang, W.W.; Zhang, H.J.; Wang, J.; Chen, Y.; Wu, S.G.; Guang-hai, Q. Conjugated linoleic acid regulates lipid metabolism through the expression of selected hepatic genes in laying hens. Poult. Sci. 2019, 98, 4632–4639. [Google Scholar] [CrossRef]
- Caldas, J.V.; Boonsinchai, N.; Wang, J.; England, J.A.; Coon, C.N. The dynamics of body composition and body energy content in broilers. Poult. Sci. 2019, 98, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Langslow, D.R.; Lewis, R.J. Alterations with age in composition and lipolytic activity of adipose tissue from male and female chickens. Br. Poul. Sci. 1974, 15, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Marx, S.D.; Soares, J.M.; Prestes, R.C.; Schnitzler, E.; Oliveira, C.S.; Demiate, I.M.; Backes, G.T.; Steffens, J. Influence of sex on the physical-chemical characteristics of abdominal chicken fat. Braz. J. Poultry. Sci. 2016, 18, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Filho, S.T.S.; Lima, E.D.; de Oliveira, D.H.; de Abreu, M.L.T.; Rosa, P.V.; de Laurentiz, A.C.; Naves, L.D.; Rodrigues, P.B. Supplemental L-arginine improves feed conversion and modulates lipid metabolism in male and female broilers from 29 to 42 days of age. Animal 2021, 15, 100120. [Google Scholar] [CrossRef] [PubMed]
- Samadi Liebert, F. Estimation of nitrogen maintenance requirements and potential for nitrogen deposition in fast-growing chickens depending on age and sex. Poult. Sci. 2006, 85, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
Ingredients (g/kg) | ME 1/CP 2 Concentrations of Diets | |||
---|---|---|---|---|
12.55/200 | 11.92/190 | 11.30/180 | 10.67/170 | |
Maize | 556.82 | 567.43 | 521.19 | 495.13 |
Soybean meal | 240.37 | 198.27 | 148.99 | 141.54 |
Yellow corn DDGS 3 | 60.00 | 60.00 | 60.00 | 57.01 |
Canola meal | 60.00 | 60.00 | 60.00 | 57.01 |
Soybean oil | 29.44 | 10.01 | 5.02 | 4.76 |
Wheat bran | 20.00 | 68.94 | 167.36 | 158.98 |
Calcium carbonate | 13.17 | 13.28 | 13.32 | 12.64 |
Dicalcium phosphate | 9.10 | 9.13 | 9.07 | 8.61 |
Mineral-vitamin premix 4 | 5.02 | 5.02 | 5.02 | 4.76 |
Sodium chloride | 3.07 | 2.63 | 2.11 | 2.00 |
DL-Methionine | 1.17 | 1.39 | 1.65 | 1.57 |
L-Lysine | 0.69 | 1.73 | 2.88 | 2.74 |
Sodium bicarbonate | 0.63 | 1.22 | 1.92 | 1.84 |
L-Threonine | 0.52 | 0.95 | 1.47 | 1.41 |
Oat straw 5 | 0.000 | 0.000 | 0.000 | 50.00 |
Calculated nutrient composition (g/kg) | ||||
Metabolizable energy (MJ/kg) | 12.55 | 11.92 | 11.30 | 10.67 |
Crude protein | 200 | 190 | 180 | 170 |
Energy: protein ratio | 0.06 | 0.06 | 0.06 | 0.06 |
Dry matter | 888 | 886 | 886 | 888 |
Crude fiber | 32 | 37 | 45 | 62 |
Calcium | 10 | 10 | 10 | 11 |
Available phosphorus | 4.5 | 4.5 | 4.5 | 4.4 |
Lysine | 10.8 | 10.5 | 10.5 | 10.5 |
Methionine | 4.7 | 4.0 | 4.0 | 4.1 |
Methionine + Cystine | 8.0 | 8.2 | 8.0 | 8.0 |
Threonine | 7.5 | 7.8 | 7.5 | 7.5 |
Tryptophan | 2.8 | 2.8 | 2.8 | 1.9 |
Variable | Diet of 1 ME/ 2 CP | SEM | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
12.55/200 | 11.92/190 | 11.30/180 | 10.67/170 | Female | Male | Diet | Sex | Diet × Sex | |||
Initial body weight (g/bird) | 1172.8 | 1172.0 | 1193.7 | 1167.6 | 29.8 | 1167.0 | 1186.1 | 22.3 | 0.4972 | 0.5198 | 0.1211 |
Feed intake (g/bird) | 5262.7 | 5400.9 | 5744.7 | 6085.7 | 155.1 | 5124.8 | 6122.1 | 149.7 | <0.0001 | <0.0001 | <0.0001 |
Final body weight (g/bird) | 1896.9 | 1925.5 | 1943.1 | 1924.8 | 29.8 | 1868.7 | 1976.5 | 24.1 | 0.4972 | 0.0001 | 0.0037 |
Body weight gain (g/bird) | 724.1 | 753.5 | 749.4 | 757.2 | 24.3 | 701.7 | 790.4 | 22.8 | 0.6899 | 0.0067 | 0.0005 |
Feed conversion ratio (g/g) | 7.31 b | 7.38 b | 8.07 a | 8.21 a | 0.26 | 7.56 | 7.92 | 0.25 | 0.0002 | 0.1973 | 0.6406 |
Variable | Diet of 1 ME/ 2 CP | SEM | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
12.55/200 | 11.92/190 | 11.30/180 | 10.67/170 | Female | Male | Diet | Sex | Diet × Sex | |||
Carcase weight (g) | 1136.37 | 12,226.12 | 1232.56 | 1247.44 | 52.84 | 872.72 b | 1548.53 a | 37.36 | 0.4450 | <0.0001 | 0.0988 |
Carcase yield (%) | 62.66 | 64.43 | 65.15 | 65.05 | 1.48 | 56.90 b | 71.74 a | 1.05 | 0.6151 | <0.0001 | 0.9346 |
Breast weight (g) | 274.06 | 297.44 | 313.19 | 295.19 | 14.31 | 237.91 b | 352.03 a | 10.12 | 0.2980 | <0.0001 | 0.2664 |
Breast yield (%) | 24.71 | 25.40 | 26.27 | 24.27 | 0.71 | 27.64 a | 22.68 b | 0.50 | 0.2278 | <0.0001 | 0.4511 |
Leg weight (g) | 188.31 | 213.12 | 194.81 | 196.25 | 10.64 | 132.19 b | 264.06 a | 7.52 | 0.4057 | <0.0001 | 0.2608 |
Leg yield (%) | 16.45 ab | 17.25 a | 15.49 bc | 15.35 c | 0.37 | 15.29 b | 16.98 a | 0.26 | 0.0018 | <0.0001 | 0.3587 |
Thigh weight (g) | 194.44 | 203.87 | 206.00 | 214.69 | 10.05 | 155.47 b | 254.03 a | 7.11 | 0.5657 | <0.0001 | 0.1541 |
Thigh yield (%) | 17.34 | 17.00 | 16.89 | 17.33 | 0.45 | 17.87 a | 16.41 b | 0.32 | 0.8559 | 0.0024 | 0.7537 |
Wings weight (g) | 137.37 | 147.37 | 143.69 | 158.44 | 5.88 | 118.06 b | 175.37 a | 4.16 | 0.0937 | <0.0001 | 0.1828 |
Wings yield (%) | 12.40 | 12.44 | 12.22 | 13.04 | 0.27 | 13.69 a | 11.36 b | 0.19 | 0.1570 | <0.0001 | 0.2789 |
Variable | Diet of 1 ME/ 2 CP | SEM | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
12.55/200 | 11.92/190 | 11.30/180 | 10.67/170 | Female | Male | Diet | Sex | Diet × Sex | |||
Relative empty weight (g/kg body weight) | |||||||||||
Crop | 4.19 | 3.41 | 3.45 | 3.57 | 0.43 | 3.63 | 3.68 | 0.30 | 0.5412 | 0.9018 | 0.3147 |
Proventriculus | 3.39 | 3.89 | 3.45 | 3.46 | 0.20 | 3.85 a | 3.25 b | 0.14 | 0.3017 | 0.0050 | 0.4363 |
Gizzard | 15.82 | 16.76 | 17.59 | 18.65 | 1.02 | 17.46 | 16.95 | 0.72 | 0.2588 | 0.6181 | 0.3042 |
Small intestine | 15.57 | 16.84 | 17.00 | 14.73 | 0.78 | 18.51 a | 13.56 b | 0.55 | 0.1385 | <0.0001 | 0.1143 |
Caeca | 2.79 | 3.37 | 2.76 | 3.42 | 0.23 | 3.65 a | 2.51 b | 0.16 | 0.0787 | <0.0001 | 0.3840 |
Relative weight (g/kg body weight) | |||||||||||
Liver | 22.31 | 22.24 | 21.96 | 20.55 | 0.93 | 23.58 a | 19.96 b | 0.66 | 0.5095 | 0.0003 | 0.3560 |
Pancreas | 1.96 | 1.86 | 1.90 | 2.08 | 0.14 | 2.02 | 1.88 | 0.10 | 0.7328 | 0.3460 | 0.7606 |
Abdominal fat | 23.99 | 13.92 | 9.22 | 11.87 | 3.18 | 27.71 | 1.79 | 2.25 | 0.0110 | <0.0001 | 0.0097 |
Relative length (cm/kg body weight) | |||||||||||
Small intestine | 76.81 | 75.34 | 75.31 | 72.06 | 2.00 | 83.04 a | 66.72 b | 1.42 | 0.4008 | <0.0001 | 0.1807 |
Caeca | 7.56 | 8.11 | 7.74 | 7.89 | 0.25 | 8.81 a | 6.84 b | 0.18 | 0.4782 | <0.0001 | 0.0706 |
Variable | Diet of 1 ME/ 2 CP | SEM | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
12.55/200 | 11.92/190 | 11.30/180 | 10.67/170 | Female | Male | Diet | Sex | Diet × Sex | |||
Moisture (g/kg) | 668.21 | 639.22 | 649.59 | 660.96 | 13.97 | 618.62 b | 690.38 a | 9.87 | 0.4908 | <0.0001 | 0.0794 |
3 DM (g/kg) | 331.79 | 360.78 | 350.41 | 339.04 | 13.97 | 381.38 a | 309.62 b | 9.87 | 0.4908 | <0.0001 | 0.0794 |
CP (g/kg) | 169.52 | 187.47 | 196.32 | 182.62 | 7.85 | 178.91 | 189.06 | 5.50 | 0.1404 | 0.2104 | 0.2390 |
Fat (g/kg) | 26.60 | 24.50 | 20.80 | 21.30 | 2.60 | 34.90 a | 11.70 b | 1.80 | 0.3441 | <0.0001 | 0.1019 |
Ash (g/kg) | 100.52 | 100.46 | 103.22 | 101.82 | 5.73 | 85.04 b | 117.97 a | 4.05 | 0.9839 | <0.0001 | 0.5188 |
4 GE (MJ/kg of DM) | 36.37 | 38.64 | 37.72 | 34.61 | 1.99 | 40.92 a | 32.94 b | 1.41 | 0.5335 | 0.0006 | 0.1226 |
Variable | Diet of 1 ME/ 2 CP | SEM | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
12.55/200 | 11.92/190 | 11.30/180 | 10.67/170 | Female | Male | Diet | Sex | Diet × Sex | |||
CP retention (g/bird) | 61.32 | 69.12 | 71.33 | 56.90 | 12.59 | 67.03 | 62.31 | 8.90 | 0.8353 | 0.7115 | 0.1759 |
Fat retention (g/bird) | 124.69 | 118.97 | 84.73 | 82.73 | 14.30 | 170.07 | 35.49 | 10.11 | 0.0970 | <0.0001 | 0.0297 |
3 GE retention (MJ/bird) | 23.62 | 24.12 | 22.90 | 19.62 | 1.73 | 25.95 a | 19.18 b | 1.22 | 0.2793 | 0.0008 | 0.0681 |
CP retention efficiency (%) | 5.31 | 6.24 | 6.65 | 6.00 | 1.31 | 6.72 | 5.38 | 0.92 | 0.9064 | 0.3182 | 0.1352 |
GE retention efficiency (%) | 24.06 | 24.67 | 22.67 | 21.68 | 2.15 | 28.86 a | 17.68 b | 1.52 | 0.7593 | <0.0001 | 0.1457 |
Nitrogen excretion (g/bird) | 168.00 | 172.76 | 181.68 | 139.24 | 11.71 | 147.68 b | 183.15 a | 8.28 | 0.0914 | 0.0064 | 0.9011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matus-Aragón, M.Á.; Salinas-Ruiz, J.; González-Cerón, F.; Sosa-Montes, E.; Pro-Martínez, A.; Hernández-Mendo, O.; Cuca-García, J.M.; Mendoza-Pedroza, S.I.; Hernández-Blancas, B. Productive Performance of Mexican Creole Pullets and Immature Males Fed Different Levels of Metabolizable Energy and Crude Protein. Poultry 2022, 1, 3-13. https://doi.org/10.3390/poultry1010002
Matus-Aragón MÁ, Salinas-Ruiz J, González-Cerón F, Sosa-Montes E, Pro-Martínez A, Hernández-Mendo O, Cuca-García JM, Mendoza-Pedroza SI, Hernández-Blancas B. Productive Performance of Mexican Creole Pullets and Immature Males Fed Different Levels of Metabolizable Energy and Crude Protein. Poultry. 2022; 1(1):3-13. https://doi.org/10.3390/poultry1010002
Chicago/Turabian StyleMatus-Aragón, Miguel Ángel, Josafhat Salinas-Ruiz, Fernando González-Cerón, Eliseo Sosa-Montes, Arturo Pro-Martínez, Omar Hernández-Mendo, Juan Manuel Cuca-García, Sergio Iban Mendoza-Pedroza, and Berenice Hernández-Blancas. 2022. "Productive Performance of Mexican Creole Pullets and Immature Males Fed Different Levels of Metabolizable Energy and Crude Protein" Poultry 1, no. 1: 3-13. https://doi.org/10.3390/poultry1010002
APA StyleMatus-Aragón, M. Á., Salinas-Ruiz, J., González-Cerón, F., Sosa-Montes, E., Pro-Martínez, A., Hernández-Mendo, O., Cuca-García, J. M., Mendoza-Pedroza, S. I., & Hernández-Blancas, B. (2022). Productive Performance of Mexican Creole Pullets and Immature Males Fed Different Levels of Metabolizable Energy and Crude Protein. Poultry, 1(1), 3-13. https://doi.org/10.3390/poultry1010002