Antimicrobial Dilution Susceptibility Testing of Erysipelothrix rhusiopathiae According to CLSI Document VET06 Reveals High Resistance against Penicillin G, Erythromycin and Enrofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. E. rhusiopathiae Isolates
2.2. Identification and Serotyping of Isolates
2.3. Antimicrobial Susceptibility Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eriksson, H. Erysipelas. In Diseases of Poultry, 14th ed.; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2020; pp. 1010–1018. [Google Scholar]
- Opriessnig, T.; Forde, T.; Shimoji, Y. Erysipelothrix spp.: Past, present, and future directions in vaccine research. Front. Vet. Sci 2020, 7, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farfour, E.; Leto, J.; Barritault, M.; Barberis, C.; Meyer, J.; Dauphin, B.; Le Guern, A.S.; Leflèche, A.; Badell, E.; Guiso, N.; et al. Evaluation of the Andromas matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of aerobically growing Gram-positive bacilli. J. Clin. Microbiol. 2012, 50, 2702–2707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukthir, S.; Common, H.; Arvieux, C.; Cattoir, V.; Patrat-Delon, S.; Jolivet-Gougeon, A. A recurrent prosthetic joint infection caused by Erysipelothrix rhusiopathiae: Case report and literature review. J. Med. Microbiol. 2022, 71, 001580. [Google Scholar] [CrossRef]
- Takahashi, T.; Fujisawa, T.; Tamura, Y.; Suzuki, S.; Muramatsu, M.; Sawada, T.; Benno, Y.; Mitsuoka, T. DNA relatedness among Erysipelothrix rhusiopathiae strains representing all twenty-three serovars and Erysipelothrix tonsillarum. Int. J. Syst. Bacteriol. 1992, 42, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafez, H.M.; Mazaheri, A.; Prusas, C.; Boehland, K.; Poeppel, M.; Schulze, D. Aktuelle Geflügelkrankheiten bei Legehennen im Zusammenhang mit alternativen Haltungssystemen. Tieraerztl. Prax. 2001, 29, 168–174. [Google Scholar]
- Mazaheri, A.; Philipp, H.; Bonsack, H.; Voss, M. Investigation of the vertical transmission of Erysipelothrix rhusiopathiae in laying hens. Avian Dis. 2006, 50, 306–308. [Google Scholar] [CrossRef]
- Eriksson, H.; Jansson, D.; Johansson, K.; Baverud, V.; Chirico, J.; Aspan, A. Characterization of Erysipelothrix rhusiopathiae isolates from poultry, pigs, emus, the poultry red mite and other animals. Vet. Microbiol. 2009, 137, 98–104. [Google Scholar] [CrossRef]
- Eriksson, H.; Nyman, A.-K.; Fellström, C.; Wallgren, P. Erysipelas in laying hens is asscociated with housing system. Vet. Rec. 2013, 173, 18. [Google Scholar] [CrossRef]
- Eriksson, H.; Bagge, E.; Baverud, V.; Fellström, C.; Jansson, D.S. Erysipelothrix rhusiopathiae contamination in the poultry house environment during erysipelas outbreaks in organic laying hen flocks. Avian Pathol. 2014, 43, 231–237. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Methods for Antimicrobial Susceptibility Testing of Infrequently isolated or fastidious bacteria isolated from animals, 1st ed.; Wayne, P.A., Ed.; CLSI supplement VET06; Clinical and Laboratory Standards Institute: Wayne, IL, USA, 2017. [Google Scholar]
- Shimoji, Y.; Shiraiwa, K.; Tominaga, H.; Nishikawa, S.; Eguchi, M.; Hikono, H.; Ogawa, Y. Development of a multiplex PCR-based assay for rapid serotyping of Erysipelothrix species. J. Clin. Microbiol. 2020, 58, e00315-20. [Google Scholar] [CrossRef]
- Zloch, A.; Kuchling, S.; Hess, M.; Hess, C. Influence of alternative husbandry systems on postmortem findings and prevalence of important bacteria and parasites in layers monitored from end of rearing until slaughter. Vet. Rec. 2018, 182, 350. [Google Scholar] [CrossRef]
- Bisgaard, M.; Norrung, V.; Tornoe, N. Erysipelas in poultry. Prevalence of serotypres and epidemiological investigations. Avian Pathol. 1980, 9, 355–362. [Google Scholar] [CrossRef]
- Crespo, R.; Bland, M.; Opriessnig, T. Use of commercial swine live attenuated vaccine to control an Erysipelothrix rhusiopathiae outbreak in commercial cage-free layer chickens. Avian Dis. 2019, 63, 520–524. [Google Scholar] [CrossRef]
- Nakazawa, H.; Hayashidani, H.; Higashi, J.; Kaneko, K.; Takahashi, T.; Ogawa, M. Occurrence of Erysipelothrix spp. in broiler chickens at an abattoir. J. Food Prot. 1998, 61, 807–909. [Google Scholar] [CrossRef]
- Eamens, G.J.; Turner, M.J.; Catt, R.E. Serotypes of Erysipelothrix rhusiopathiae in Australian pigs, small ruminants, poultry, and captive wild birds and animals. Aust. Vet. J. 1988, 65, 249–252. [Google Scholar] [CrossRef]
- Fidalgo, S.G.; Longbottom, C.J.; Riley, T.V. Susceptibility of Erysipelothrix rhusiopathiae to antimicrobial agents and home disinfectants. Pathology 2002, 34, 462–465. [Google Scholar] [CrossRef]
- Bush, K. Past and present perspectives of ß-lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.E.; Ng, L.S.; Tan, T.Y. Evaluation of Enterococcus faecalis clinical isolates with “penicillin-resistant, ampicillin-susceptible” phenotype as reported by Vitek-2 Compact system. Pathology 2014, 46, 544–550. [Google Scholar] [CrossRef]
- Conceicao, N.; da Silva, L.E.P.; da Costa Darini, A.L.; Pitondo-Silva, A.; de Oliveira, A.G. Penicillin-resistant, ampicillin-susceptible Enterococcus faecalis of hospital origin: Pbp4 gene polymorphism and genetic diversity. Infect. Genet. Evol. 2014, 28, 289–295. [Google Scholar] [CrossRef]
- Condeicao, N.; Rodrigues, W.F.; de Oliveira, K.L.P.; da Silva, L.E.P.; de Souza, L.R.C.; da de Cunha Hueb Barata Oliveira, C.; de Oliveira, A.G. Beta-lactams susceptibility testing of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis isolates: A comparative assessment of Etest and disk diffusion methods against broth dilution. Ann. Clin. Microbiol. 2020, 19, 43. [Google Scholar] [CrossRef]
- Corea, F.E.L.; Zanella, R.C.; Cassiolato, A.P.; Paiva, A.D.; Okura, M.H.; Coneicao, N.; Oliveira, A.G. Penicillin-resistant, ampicillin-susceptible Enterococcus faecalis isolates are uncommon in non-clinical sources. Environ. Microbiol. Rep. 2022, 14, 230–238. [Google Scholar] [CrossRef]
- Takahasi, T.; Sawada, T.; Ohmae, K.; Terakado, N.; Muramatus, M.; Seto, K.; Maruyama, T.; Kanzaki, M. Antibiotic resistance of Erysipelothrix rhusiopathiae isolated from pigs with chronic swine erysipelas. Antimicrob. Agents Chemother. 1984, 25, 385–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.W.; Zhang, A.Y.; Yang, C.M.; Pan, Y.; Guan, Z.B.; Lei, C.W.; Peng, L.Y.; Li, Q.Z.; Wang, H.N. First report on macrolide resistance gene erm(T) harbored by a novel small plasmid from Erysipelothrix rhusiopathiae. Antimicrob. Agents Chemother. 2015, 59, 2462–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, J.; Li, Y.X.; Xu, C.W.; Sie, X.J.; Li, P.; Ma, G.X.; Lei, C.W.; Liu, J.X.; Zhang, A.Y. Genome sequence of multidrug-resistant Erysipelothrix rhusiopathiae ZJ carrying several acquired antimicrobial resistance genes. J. Glob. Antimicrob. Resist. 2020, 21, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lv, C.; Zhao, Y.; Zhu, W.; Liu, L.; Wang, T.; Kang, C.; Yang, Y.; Sun, X.; Zhang, Q.; et al. Characterization of Erysipelothrix rhusiopathiae isolates from diseased pigs in 15 Chinese provinces from 2012 to 2018. Microorganisms 2021, 9, 2615. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kijima, M.; Yoshimura, H.; Takahasi, T. Antimicrobial susceptibilities of Erysipelothrix rhusiopathiae isolated from pigs with swine erysipelas in Japan, 1988–1998. J. Vet. Med. B Infect. Dis. Vet. Public Health 2001, 48, 115–126. [Google Scholar] [CrossRef]
- Chuma, T.; Kawamoto, T.; Shahada, F.; Fujimoto, H.; Okamoto, K. Antimicrobial susceptibility of Erysipelothrix rhusiopathiae isolated from pigs in Southern Japan with a modified agar dilution method. J. Vet. Med. Sci. 2010, 72, 643–645. [Google Scholar] [CrossRef] [Green Version]
No. | Isolate | Origin | Serovar | MALDI Score | Antimicrobial Substance | |||||
---|---|---|---|---|---|---|---|---|---|---|
PEN b) | AMP c) | CEF d) | ERY e) | CLI f) | ENRO g) | |||||
1 | PA03/01999 a) | Laying hens | 5 | 2.23 | S | S | S | S | S | S |
2 | PA04/02665 | Laying hens | 1b | 2.01 | S | S | S | R | R | R |
3 | PA04/02706 | Laying hens | 1b | 2.26 | S | S | S | S | S | S |
4 | PA04/03029 | Laying hens | 5 | 2.17 | S | S | S | S | R | R |
5 | PA04/03411 | Laying hens | 1b | 2.23 | S | S | S | R | R | I |
6 | PA04/03467 | Laying hens | 5 | 2.11 | S | S | S | R | R | R |
7 | PA04/03961 | Laying hens | 2 | 2.03 | R | S | S | R | R | R |
8 | PA04/04254 | Laying hens | 5 | 2.32 | R | S | S | R | R | R |
9 | PA06/02766 | Laying hens | 1b | 2.05 | S | S | S | R | R | R |
10 | PA06/02769 | Laying hens | 1b | 2.22 | S | S | S | R | R | R |
11 | PA06/06830 | No information | 5 | 2.23 | S | S | S | R | R | R |
12 | PA11/02519 | Turkeys | 5 | 2.18 | S | S | S | R | R | R |
13 | PA12/01398 | Turkeys | 5 | 2.09 | S | S | S | R | R | R |
14 | PA12/13711 | Turkeys | 5 | 2.21 | S | S | S | R | R | I |
15 | PA13/11559 | Turkey | 5 | 2.13 | R | R | R | S | R | I |
16 | PA13/19126 | Turkeys | 5 | 2.10 | R | R | R | R | R | R |
17 | PA13/20681 | Laying hens | 1b | 2.30 | S | S | S | R | S | S |
18 | PA14/03494 | Laying hens | 1b | 2.17 | R | S | S | S | S | I |
19 | PA16/05917 | Laying hens | 1b | 2.02 | S | S | S | I | S | S |
20 | PA16/20064 | Turkeys | 1b | 2.17 | R | R | R | R | R | R |
21 | PA16/23313 | Turkeys | 5 | 2.22 | S | S | S | R | S | R |
22 | PA17/06068 | Laying hens | 1b | 2.15 | S | S | S | R | S | R |
23 | PA17/13772 | Turkeys | 1b | 2.09 | R | S | S | R | I | I |
24 | PA17/22701 | Laying hens | 1b | 2.14 | R | S | S | R | S | R |
25 | PA17/22709 | Turkeys | 1b | 2.28 | R | R | S | R | S | R |
26 | PA17/25575 | Turkeys | 5 | 2.28 | R | R | S | R | S | R |
27 | PA20/24032 | Geese | 5 | 2.08 | S | S | S | R | S | I |
28 | PA21/01504 | Turkeys | 5 | 2.19 | R | R | S | R | S | R |
29 | PA21/05003 | Laying hens | 5 | 2.03 | R | S | S | R | S | R |
30 | PA21/18180 | Turkeys | 5 | 2.21 | S | S | S | I | S | S |
Class | Antimicrobial Substance | Concentration (µg/mL) | No. of Strains S/I/R a) | ||||||
---|---|---|---|---|---|---|---|---|---|
Penicillins | Penicillin G | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 17/n.d. b)/13 |
Ampicillin | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 24/n.d./4 | |
Cephalosporins (3rd generation) | Ceftiofur | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 27/3/0 | |
Macrolides | Erythromycin | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 5/2/23 | |
Fluoroquinolones | Enrofloxacin | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 6/6/18 | |
Lincosamides | Clindamycin | 0.125 | 0.25 | 0.5 | 1 | 2 | 27/1/2 |
Resistance Pattern | Antimicrobial Substances | No. of Isolates |
1 | PEN-AMP-CEF-ERY-CLI-ENRO | 2 |
2 | PEN-AMP-ERY-ENRO | 3 |
3 | PEN-AMP-CEF-ENRO | 1 |
4 | PEN-ERY-ENRO | 5 |
5 | PEN-ERY | 1 |
6 | PEN-ENRO | 1 |
7 | ERY-ENRO | 7 |
8 | ERY-ENRO | 3 |
9 | ERY | 1 |
10 | ENRO | 2 |
11 | ERY | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hess, C.; Bilic, I.; Jandreski-Cvetkovic, D.; Hess, M. Antimicrobial Dilution Susceptibility Testing of Erysipelothrix rhusiopathiae According to CLSI Document VET06 Reveals High Resistance against Penicillin G, Erythromycin and Enrofloxacin. Poultry 2023, 2, 54-62. https://doi.org/10.3390/poultry2010007
Hess C, Bilic I, Jandreski-Cvetkovic D, Hess M. Antimicrobial Dilution Susceptibility Testing of Erysipelothrix rhusiopathiae According to CLSI Document VET06 Reveals High Resistance against Penicillin G, Erythromycin and Enrofloxacin. Poultry. 2023; 2(1):54-62. https://doi.org/10.3390/poultry2010007
Chicago/Turabian StyleHess, Claudia, Ivana Bilic, Delfina Jandreski-Cvetkovic, and Michael Hess. 2023. "Antimicrobial Dilution Susceptibility Testing of Erysipelothrix rhusiopathiae According to CLSI Document VET06 Reveals High Resistance against Penicillin G, Erythromycin and Enrofloxacin" Poultry 2, no. 1: 54-62. https://doi.org/10.3390/poultry2010007
APA StyleHess, C., Bilic, I., Jandreski-Cvetkovic, D., & Hess, M. (2023). Antimicrobial Dilution Susceptibility Testing of Erysipelothrix rhusiopathiae According to CLSI Document VET06 Reveals High Resistance against Penicillin G, Erythromycin and Enrofloxacin. Poultry, 2(1), 54-62. https://doi.org/10.3390/poultry2010007