Defatted Black Soldier Fly Larvae Meal as an Alternative to Soybean Meal for Broiler Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Meal Sample and Experimental Diets
2.2. Birds, Management and Sample Collection
2.3. Laboratory Analysis
2.4. Calculations
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Statistical Database. Available online: https://www.fao.org/statistics/en/ (accessed on 13 May 2022).
- National Research Council (NRC). Nutrient Requirements of Poultry, 10th ed.; National Academy Press: Washington, DC, USA, 1994.
- European Soy Monitor. Researched by B. Kuepper and M. Riemersma of Profundo. IDH, The Sustainable Trade Initiative and IUCN. National Committee of the Netherlands. Available online: https://www.idhsustainabletrade.com/uploaded/2019/04/European-Soy-Monitor.pdf (accessed on 20 May 2022).
- Grossi, S.; Massa, V.; Giorgino, A.; Rossi, L.; Dell’Anno, M.; Pinotti, L.; Avidano, F.; Compiani, R.; Rossi, C.A.S. Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming. Sustainability 2022, 14, 4908. [Google Scholar] [CrossRef]
- Abdulla, J.M.; Rose, S.P.; Mackenzie, A.M.; Ivanova, S.G.; Staykova, G.P.; Pirgozliev, V.R. Nutritional value of raw and micronised field beans (Vicia faba L. var. minor) with and without enzyme supplementation containing tannase for growing chickens. Arch. Anim. Nutr. 2016, 70, 350–363. [Google Scholar] [CrossRef]
- Whiting, I.; Pirgozliev, V.; Rose, S.P.; Karadas, F.; Mirza, M.W.; Sharpe, A. The temperature of storage of a batch of wheat distillers dried grains with solubles samples on their nutritive value for broilers. Br. Poult. Sci. 2018, 59, 76–80. [Google Scholar] [CrossRef]
- Karkelanov, N.; Chobanova, S.; Dimitrova, K.; Whiting, I.M.; Rose, S.P.; Pirgozliev, V. Feeding value of de-hulled sunflower seed meal for broilers. Acta Agrophys. 2020, 27, 31–38. [Google Scholar] [CrossRef]
- Watts, E.S.; Rose, S.P.; Mackenzie, A.M.; Pirgozliev, V.R. Investigations into the chemical composition and nutritional value of single-cultivar rapeseed meals for broiler chickens. Arch. Anim. Nutr. 2021, 75, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Józefiak, A.; Benzertiha, A.; Kieronczyk, B.; Lukomska, A.; Wesollowska, I.; Rawski, M. Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals 2020, 10, 577. [Google Scholar] [CrossRef]
- Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Homska, N.; Jankowski, J.; Ognik, K.; Józefiak, A.; Mazurkiewicz, J.; Józefiak, D. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. Anim. Nutr. 2022, 11, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Petkov, E.; Ignatova, M.; Popova, T. Layers’ performance and egg hatchability as affected by the dietary inclusion of two meals of black soldier fly (Hermetia illucens). J. Insects Food Feed. 2022, 8, 1077–1084. [Google Scholar] [CrossRef]
- Liceaga, A.M. Processing insects for use in the food and feed industry. Curr. Opin. Insect. Sci. 2021, 48, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Józefiak, A.; Engberg, R.M. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci. 2017, 26, 87–99. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kieronczyk, B.; Rawski, M.; Jozefiak, A.; Kozłowski, K.; Jankowski, J.; Józefiak, D. Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals 2019, 9, 1128. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed. 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Onsongo, V.O.; Osuga, I.M.; Gachuiri, C.K.; Wachira, A.M.; Miano, D.M.; Tanga, C.M.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Bovera, F.; Loponte, R.; Pero, M.E.; Cutrignelli, M.I.; Calabrò, S.; Musco, N.; Vassalotti, G.; Panettieri, V.; Lombardi, P.; Piccolo, G.; et al. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci. 2018, 120, 86–93. [Google Scholar] [CrossRef]
- Cutrignelli, M.I.; Messina, M.; Tulli, F.; Randazzo, B.; Olivotto, I.; Gasco, L.; Loponte, R.; Bovera, F. Evaluation of an insect meal of the Black Soldier Fly (Hermetia illucens) as soybean substitute: Intestinal morphometry, enzymatic and microbial activity in laying hens. Res. Vet. Sci. 2018, 117, 209–215. [Google Scholar] [CrossRef]
- European Commission (EC). No 1069/2009 of the European Parliament and the Council of 21 October 2009 Laying down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation); European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Commission (EC). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes; European Union: Brussels, Belgium, 2010. [Google Scholar]
- AOAC (Association of Analytical Communities). Official Method of Analysis, 934.01, Vacuum Oven, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC (Association of Analytical Communities). Official Method of Analysis, 990.03, Protein (Crude) in Animal Feed, Combustion Method, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC (Association of Analytical Communities). Official Method of Analysis, 945.16, Oil in Cereal Adjuncts, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Pirgozliev, V.; Mansbridge, S.C.; Rose, S.P.; Mackenzie, A.M.; Beccaccia, A.; Karadas, F.; Ivanova, S.G.; Staykova, G.P.; Oluwatosin, O.O.; Bravo, D. Dietary essential oils improve feed efficiency and hepatic antioxidant content of broiler chickens. Animal 2019, 13, 502–508. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Priyankarage, N.; Rose, S.P.; Silva, S.S.P.; Pirgozliev, V.R. The efficiency of energy retention of broiler chickens and turkeys fed on diets with different lysine concentrations. Br. Poult. Sci. 2008, 49, 721–730. [Google Scholar] [CrossRef]
- Abdulla, J.M.; Rose, S.P.; Mackenzie, A.M.; Pirgozliev, V. Variability of amino acid digestibility in different field bean cultivars for broilers. Br. Poult. Sci. 2021, 62, 596–600. [Google Scholar] [CrossRef]
- Leone, J.L. Collaborative study of the quantitative determination of titanium dioxide in cheese. J. Assoc. Off. Anal. Chem. 1973, 56, 535–537. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Roth, A.; Febel, E.; Fijalkowska, M.; Schmitt, E.; Arsiwalla, T.; Zibek, S. New methods for high-accuracy insect chitin measurement. J. Sci. Food Agric. 2018, 98, 5069–5073. [Google Scholar] [CrossRef]
- Hill, F.W.; Anderson, D.L. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; DalleZotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Morel, P.C.H.; Potter, M.A.; Ravindran, V. The apparent metabolisable energy and ileal amino digestibility of black soldier fly (Hermetia illucens) larvae meal for broiler chickens. Br. Poult. Sci. 2023, 64, 377–383. [Google Scholar] [CrossRef]
- Matin, N.; Utterback, P.; Parsons, C. True Metabolisable Energy and Amino Acid Digestibility of Black Soldier Fly Larvae Meals, Cricket Meal, and Mealworms Using a Precision-Fed Rooster Assay. Poult. Sci. 2021, 100, 101146. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Pirgozliev, V.; Mirza, M.W.; Rose, S.P. Does the effect of pelleting depend on the wheat sample when fed to chickens? Animal 2016, 10, 571–577. [Google Scholar] [CrossRef]
- Yang, Z.; Pirgozliev, V.R.; Rose, S.P.; Woods, S.; Yang, H.M.; Wang, Z.Y.; Bedford, M.R. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poult. Sci. 2020, 99, 320–330. [Google Scholar] [CrossRef]
- Lalev, M.; Hristakieva, P.; Mincheva, N.; Oblakova, M.; Ivanova, I. Insect meal as alternative protein ingredient in broiler feed. Bulg. J. Agric. Sci. 2022, 28, 743–751. [Google Scholar]
- Lalev, M.; Mincheva, N.; Oblakova, M.; Hristakieva, P.; Ivanova, I.; Atanassov, A.; Petrova, A. Effects of insect and probiotic-based diets on turkeys’ production, health, and immune parameters. Bulg. J. Agric. Sci. 2020, 26, 1254–1265. [Google Scholar]
- Popova, T.; Petkov, E.; Ignatova, M. Effect of black soldier fly (Hermetia illucens) meals in the diet on the growth performance and carcass composition in broilers. J. Insects Food Feed. 2021, 7, 369–376. [Google Scholar] [CrossRef]
- Popova, T.L.; Petkov, E.; Ignatova, M. Effect of black soldier fly (Hermetia illucens) meals on the meat quality in broilers. Agric. Food Sci. 2020, 29, 177–188. [Google Scholar] [CrossRef]
- Moula, N.; Detilleux, J. A meta-analysis of the effects of insects in feed on poultry growth performances. Animals 2019, 9, 201. [Google Scholar] [CrossRef]
- Suzuki, M.; Fujimoto, W.; Goto, M.; Morimatsu, M.; Syuto, B.; Toshihiko, I. Cellular expression of gut chitinase mRNA in the gastrointestinal tract of mice and chickens. J. Histochem. Cytochem. 2002, 50, 1081–1089. [Google Scholar] [CrossRef]
- Hossain, S.; Blair, R. Chitin utilisation by broilers and its effects on body composition and blood metabolites. Br. Poult. Sci. 2007, 48, 33–38. [Google Scholar] [CrossRef]
- Ijaiya, A.T.; Eko, E.O. Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on performance, carcass characteristics and haematological parameters of finishing broiler chicken. Pak. J. Nutr. 2009, 8, 850–855. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.P.; van den Broek, L.A.; Fogliano, V.; Lakemond, C.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Hakansson, J. Factors affecting the digestibility of fats and fatty acids in chicks and hens. Swed. J. Agric. Res. 1974, 4, 33–47. [Google Scholar]
- Kierończyk, B.; Rawski, M.; Józefiak, A.; Mazurkiewicz, J.; Świątkiewicz, S.; Siwek, M.; Bednarczyk, M.; Szumacher-Strabel, M.; Cieślak, A.; Benzertiha, A.; et al. Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech. 2018, 240, 170–183. [Google Scholar] [CrossRef]
- Lokman, I.H.; Ibitoye, E.B.; Hezmee, M.N.M.; Goh, Y.M.; Zuki, A.B.Z.; Jimoh, A.A. Effects of chitin and chitosan from cricket and shrimp on growth and carcass performance of broiler chickens. Trop. Anim. Health Prod. 2019, 51, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Longvah, T.; Mangthya, K.; Ramulu, P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011, 128, 400–403. [Google Scholar] [CrossRef]
- Gariglio, M.; Dabbou, S.; Biasato, I.; Capucchio, M.T.; Colombino, E.; Hernandez, F.; Madrid Sanchez, J.; Martinez, S.; Gai, F.; Caimi, C.; et al. Nutritional effects of the dietary inclusion of partially defatted Hermetia illucens larva meal in Muscovy duck. J. Anim. Sci. Biotechnol. 2019, 10, 37. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L.; et al. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Moniello, G.; Ariano, A.; Panettieri, V.; Tulli, F.; Olivotto, I.; Messina, M.; Randazzo, B.; Severino, L.; Piccolo, G.; Musco, N.; et al. Intestinal morphometry, enzymatic and microbial activity in laying hens fed different levels of a Hermetia illucens larvae meal and toxic elements content of the insect meal and diets. Animals 2019, 9, 86. [Google Scholar] [CrossRef]
- Laudadio, V.; Passantino, L.; Perillo, A.; Loprestu, G.; Passantino, A.; Khan, R.U.; Tufarelli, V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 2012, 91, 265–270. [Google Scholar] [CrossRef]
- Biasato, I.; Ferrocino, I.; Dabbou, S.; Evangelista, R.; Gai, F.; Gasco, L.; Cocolin, L.; Capucchio, M.T.; Schiavone, A. Black soldier fly and gut health in broiler chickens: Insights into the relationship between cecal microbiota and intestinal mucin composition. J. Anim. Sci. Biotechnol. 2020, 11, 11. [Google Scholar] [CrossRef]
- Creighton, T.E. Proteins, 2nd ed; Freeman: New York, NY, USA, 1993. [Google Scholar]
- Bergeron, A.N.; Boney, J.W.; Moritz, J.S. The effects of diet formulation and thermal processes associated with pelleting on 18-day broiler performance and digestible amino acid concentration. J. Appl. Poult. Res. 2018, 27, 540–549. [Google Scholar] [CrossRef]
- Vieira, S.L.; Lima, I.L. Live performance, water intake and excreta characteristics of broilers fed all vegetable diets based on corn and soybean meal. Int. J. Poult. Sci. 2005, 4, 365–368. [Google Scholar]
- Youssef, I.M.; Beineke, A.; Rohn, K.; Kamphues, J. Effects of high dietary levels of soybean meal and its constituents (potassium, oligosaccharides) on foot pad dermatitis in growing turkeys housed on dry and wet litter. Arch. Anim. Nutr. 2011, 65, 148–162. [Google Scholar] [CrossRef]
- Smith, A.; Rose, S.P.; Wells, R.G.; Pirgozliev, V. Effect of excess dietary sodium, potassium, calcium and phosphorus on excreta moisture of laying hens. Br. Poult. Sci. 2000, 41, 598–607. [Google Scholar] [CrossRef]
- Mirza, M.W.; Pirgozliev, V.; Rose, S.P.; Sparks, N.H.C. Dietary modelling of nutrient densities: Effect and response in different growing phases on growth performance, nutrient digestibility, litter quality and leg health in turkey production. Worlds Poult. Sci. J. 2016, 6, 161–190. [Google Scholar]
- The Poultry Site. Chinese Appetite for Chicken Paws Proves a Boon for US Poultry Industry. 2021. Available online: https://www.thepoultrysite.com/news/2021/07 (accessed on 10 May 2023).
- Pirgozliev, V.; Rose, S.P.; Ivanova, S. Feed additives in poultry nutrition. Bulg. J. Agric. Sci. 2019, 25, 8–11. [Google Scholar]
- Oso, A.O.; Williams, G.A.; Oluwatosin, O.O.; Bamgbose, A.M.; Adebayo, A.O.; Olowofeso, O.; Pirgozliev, V.; Adegbenjo, A.A.; Osho, S.O.; Alabi, J.O.; et al. Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest. Sci. 2017, 198, 58–64. [Google Scholar] [CrossRef]
- Pirgozliev, V.R.; Mansbridge, S.C.; Whiting, I.M.; Abdulla, J.M.; Rose, S.P.; Kljak, K.; Johnson, A.; Drijfhout, F.; Atanasov, A.G. The Benefits of Exogenous Xylanase in Wheat–Soy Based Broiler Chicken Diets, Consisting of Different Soluble Non-Starch Polysaccharides Content. Poultry 2023, 2, 123–133. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research*. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
Proximate and Carbohydrate Composition (g/kg) | Indispensable Amino Acids (g/kg) a | ||
---|---|---|---|
Dry matter | 963 | Arginine | 25.3 |
Gross energy (MJ/kg) | 22.04 | Histidine | 19.9 |
Crude protein (N × 6.25) | 512.0 | Isoleucine | 22.5 |
Crude fat | 171.0 | Leucine | 33.6 |
Crude ash | 85.0 | Lysine | 32.6 |
Acid detergent fibre | 82.0 | Methionine | 9.4 |
Neutral detergent fibre | 319.0 | Phenylalanine | 20.5 |
Lignin | 26.7 | Threonine | 20.8 |
Chitin | 55.3 | Valine | 31.5 |
Minerals | Dispensable amino acids (g/kg) a | ||
Calcium (g/kg) | 9.0 | Alanine | 32.0 |
Phosphorus | 6.9 | Aspartic acid | 48.1 |
Available phosphorus (g/kg) | 5.2 | Cystine | 4.1 |
Heavy metals a | Glycine | 27.7 | |
Arsenic, mg/kg | <0.1 | Glutamic acid | 59.9 |
Cadmium, mg/kg | 0.08 | Proline | 28.2 |
Lead, mg/kg | 0.07 | Serine | 24.1 |
Mercury, mg/kg | <0.01 | Tyrosine | 36.0 |
Ingredients (g/kg) | Control | Insect Meal |
---|---|---|
Maize | 317.00 | 290.00 |
Wheat | 280.00 | 400.85 |
Sunflower meal (36% CP) | 80.00 | 80.00 |
Soybean meal (46% CP) | 230.00 | 0.00 |
Insect meal | 0.00 | 160.00 |
Lysine | 2.90 | 3.60 |
Methionine | 1.40 | 1.10 |
Threonine | 0.85 | 1.10 |
NaCL | 2.50 | 2.50 |
Sodium bicarbonate | 2.00 | 2.00 |
Vitamin and mineral premix a | 2.00 | 2.00 |
Choline chloride | 1.85 | 1.85 |
Monocalcium phosphate | 5.50 | 6.00 |
Calcium carbonate | 15.00 | 14.00 |
Vegetable oil | 54.00 | 30.00 |
Titanium dioxide | 5.00 | 5.00 |
100 | 100 | |
Calculated analysis (as fed): | ||
Crude protein g/kg | 195 | 195 |
Metabolisable energy MJ/kg | 12.05 | 12.05 |
Crude fat g/kg | 75.7 | 35.4 |
Ca g/kg | 8.5 | 8.2 |
Available P g/kg | 5.5 | 5.7 |
Na g/kg | 2.0 | 2.0 |
K g/kg | 8.4 | 4.0 |
Available lysine g/kg | 10.7 | 10.7 |
Available methionine g/kg | 4.3 | 4.3 |
Analysed composition (as fed): | ||
Gross energy (MJ/kg) | 17.06 | 16.66 |
Dry matter (g/kg) | 920 | 917 |
Crude protein (g/kg) | 181 | 196 |
Fat (g/kg) | 66 | 31 |
Acid detergent fibre (g/kg) | 76.0 | 69.0 |
Neutral detergent fibre (g/kg) | 157.5 | 189.0 |
Acid detergent lignin (g/kg) | 36.1 | 25.8 |
Item Treatment | BW (g/b 10 d) | BW (g/b 28 d) | FI (g/b/d) | WG (g/b/d) | FCR (g:g) | AMEn (MJ/kg) | AMEn Intake (MJ/b/d) | AMEn:GE | ECR |
---|---|---|---|---|---|---|---|---|---|
SBM | 175 | 929 | 69.3 | 39.9 | 1.760 | 13.27 | 0.92 | 0.778 | 24.10 |
BSFL | 179 | 775 | 68.1 | 33.1 | 2.094 | 12.47 | 0.85 | 0.748 | 27.13 |
SEM | 9.0 | 34.5 | 2.31 | 1.86 | 0.0707 | 0.118 | 0.027 | 0.0070 | 0.978 |
Probabilities | |||||||||
p-value | 0.779 | 0.005 | 0.710 | 0.018 | 0.003 | <0.001 | 0.078 | 0.007 | 0.039 |
Item Treatment | NDi | NDt | DMD | FD | ADFD | NDFD | EM | EW | ED |
---|---|---|---|---|---|---|---|---|---|
SBM | 0.642 | 0.679 | 0.779 | 0.970 | 0.454 | 0.499 | 0.802 | 157.8 | 30.1 |
BSFL | 0.699 | 0.711 | 0.750 | 0.917 | 0.255 | 0.470 | 0.753 | 121.1 | 29.8 |
SEM | 0.0258 | 0.0203 | 0.0090 | 0.0075 | 0.0251 | 0.0181 | 0.0091 | 10.14 | 1.67 |
Probabilities | |||||||||
p-value | 0.133 | 0.280 | 0.031 | <0.001 | <0.001 | 0.275 | <0.001 | 0.018 | 0.893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chobanova, S.; Karkelanov, N.; Mansbridge, S.C.; Whiting, I.M.; Simic, A.; Rose, S.P.; Pirgozliev, V.R. Defatted Black Soldier Fly Larvae Meal as an Alternative to Soybean Meal for Broiler Chickens. Poultry 2023, 2, 430-441. https://doi.org/10.3390/poultry2030032
Chobanova S, Karkelanov N, Mansbridge SC, Whiting IM, Simic A, Rose SP, Pirgozliev VR. Defatted Black Soldier Fly Larvae Meal as an Alternative to Soybean Meal for Broiler Chickens. Poultry. 2023; 2(3):430-441. https://doi.org/10.3390/poultry2030032
Chicago/Turabian StyleChobanova, Sashka, Nikolay Karkelanov, Stephen Charles Mansbridge, Isobel Margaret Whiting, Antonija Simic, Stephen Paul Rose, and Vasil Radoslavov Pirgozliev. 2023. "Defatted Black Soldier Fly Larvae Meal as an Alternative to Soybean Meal for Broiler Chickens" Poultry 2, no. 3: 430-441. https://doi.org/10.3390/poultry2030032
APA StyleChobanova, S., Karkelanov, N., Mansbridge, S. C., Whiting, I. M., Simic, A., Rose, S. P., & Pirgozliev, V. R. (2023). Defatted Black Soldier Fly Larvae Meal as an Alternative to Soybean Meal for Broiler Chickens. Poultry, 2(3), 430-441. https://doi.org/10.3390/poultry2030032