Next Issue
Volume 2, September
Previous Issue
Volume 2, March
 
 

Bacteria, Volume 2, Issue 2 (June 2023) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 2049 KiB  
Review
Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production
by Bahman Khoshru, Alireza Fallah Nosratabad, Debasis Mitra, Manju Chaithra, Younes Rezaee Danesh, Gökhan Boyno, Sourav Chattaraj, Ankita Priyadarshini, Snežana Anđelković, Marika Pellegrini, Beatriz Elena Guerra-Sierra and Somya Sinha
Bacteria 2023, 2(2), 98-115; https://doi.org/10.3390/bacteria2020008 - 10 May 2023
Cited by 13 | Viewed by 6571
Abstract
Phosphorus (P) is one of the most important elements required for crop production. The ideal soil pH for its absorption by plants is about 6.5, but in alkaline and acidic soils, most of the consumed P forms an insoluble complex with calcium, iron, [...] Read more.
Phosphorus (P) is one of the most important elements required for crop production. The ideal soil pH for its absorption by plants is about 6.5, but in alkaline and acidic soils, most of the consumed P forms an insoluble complex with calcium, iron, and aluminum elements and its availability for absorption by the plant decreases. The supply of P needed by plants is mainly achieved through chemical fertilizers; however, in addition to the high price of these fertilizers, in the long run, their destructive effects will affect the soil and the environment. The use of cheap and abundant resources such as rock phosphate (RP) can be an alternative strategy for P chemical fertilizers, but the solubilization of P of this source has been a challenge for agricultural researchers. For this, physical and chemical treatments have been used, but the solution that has recently attracted the attention of the researchers is to use the potential of rhizobacteria to solubilize RP and supply P to plants by this method. These microorganisms, via. mechanisms such as proton secretion, organic and mineral acid production, siderophore production, etc., lead to the solubilization of RP, and by releasing its P, they improve the quantitative and qualitative performance of agricultural products. In this review, addressing the potential of rhizosphere microbes (with a focus on rhizobacteria) as an eco-friendly strategy for RP solubilization, along with physical and chemical solutions, has been attempted. Full article
Show Figures

Figure 1

17 pages, 2887 KiB  
Article
The Isolation, Screening, and Characterization of Polyhydroxyalkanoate-Producing Bacteria from Hypersaline Lakes in Kenya
by Martin N. Muigano, Sylvester E. Anami, Justus M. Onguso and Godfrey M. Omare
Bacteria 2023, 2(2), 81-97; https://doi.org/10.3390/bacteria2020007 - 8 May 2023
Cited by 5 | Viewed by 5144
Abstract
Extremophilic microorganisms such as those that thrive in high-salt and high-alkaline environments are promising candidates for the recovery of useful biomaterials including polyhydroxyalkanoates (PHAs). PHAs are ideal alternatives to synthetic plastics because they are biodegradable, biocompatible, and environmentally friendly. This work was aimed [...] Read more.
Extremophilic microorganisms such as those that thrive in high-salt and high-alkaline environments are promising candidates for the recovery of useful biomaterials including polyhydroxyalkanoates (PHAs). PHAs are ideal alternatives to synthetic plastics because they are biodegradable, biocompatible, and environmentally friendly. This work was aimed at conducting a bioprospection of bacteria isolated from hypersaline-alkaliphilic lakes in Kenya for the potential production of PHAs. In the present study, 218 isolates were screened by Sudan Black B and Nile Red A staining. Of these isolates, 31 were positive for PHA production and were characterized using morphological, biochemical, and molecular methods. Through 16S rRNA sequencing, we found that the isolates belonged to the genera Arthrobacter spp., Bacillus spp., Exiguobacterium spp., Halomonas spp., Paracoccus spp., and Rhodobaca spp. Preliminary experiments revealed that Bacillus sp. JSM-1684023 isolated from Lake Magadi had the highest PHA accumulation ability, with an initial biomass-to-PHA conversion rate of 19.14% on a 2% glucose substrate. Under optimized fermentation conditions, MO22 had a maximum PHA concentration of 0.516 g/L from 1.99 g/L of cell dry weight and 25.9% PHA conversion, equivalent to a PHA yield of 0.02 g/g of biomass. The optimal PHA production media had an initial pH of 9.0, temperature of 35 °C, salinity of 3%, and an incubation period of 48 h with 2.5% sucrose and 0.1% peptone as carbon and nitrogen sources, respectively. This study suggests that bacteria isolated from hypersaline and alkaliphilic tropical lakes are promising candidates for the production of polyhydroxyalkanoates. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop