Interaction between Plants and Growth-Promoting Rhizobacteria (PGPR) for Sustainable Development
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Conflicts of Interest
List of Contributions
- Al Amin, A.; Ali, M.H.; Islam, M.M.; Chakraborty, S.; Kabir, M.H.; Khokon, M.A.R. Variations in Morpho-Cultural Characteristics and Pathogenicity of Fusarium moniliforme of Bakanae Disease of Rice and Evaluation of In Vitro Growth Suppression Potential of Some Bioagents. Bacteria 2024, 3, 1–14. https://doi.org/10.3390/bacteria3010001.
- Khoshru, B.; Mitra, D.; Nosratabad, A.F.; Reyhanitabar, A.; Mandal, L.; Farda, B.; Djebaili, R.; Pellegrini, M.; Guerra-Sierra, B.E.; Senapati, A.; et al. Enhancing Manganese Availability for Plants through Microbial Potential: A Sustainable Approach for Improving Soil Health and Food Security. Bacteria 2023, 2, 129–141. https://doi.org/10.3390/bacteria2030010.
- Boya, S.; Puttaswamy, P.; Mahadevappa, N.; Sharma, B.; Othumbamkat, R. Enumerating Indigenous Arbuscular Mycorrhizal Fungi (AMF) Associated with Three Permanent Preservation Plots of Tropical Forests in Bangalore, Karnataka, India. Bacteria 2023, 2, 70–80. https://doi.org/10.3390/bacteria2010006.
- Hasan, A.; Tabassum, B.; Hashim, M.; Khan, N. Role of Plant Growth Promoting Rhizobacteria (PGPR) as a Plant Growth Enhancer for Sustainable Agriculture: A Review. Bacteria 2024, 3, 59–75. https://doi.org/10.3390/bacteria3020005.
- Singh, S.; Chhabra, R.; Sharma, A.; Bisht, A. Harnessing the Power of Zinc-Solubilizing Bacteria: A Catalyst for a Sustainable Agrosystem. Bacteria 2024, 3, 15–29. https://doi.org/10.3390/bacteria3010002.
- Khoshru, B.; Nosratabad, A.F.; Mitra, D.; Chaithra, M.; Danesh, Y.R.; Boyno, G.; Chattaraj, S.; Priyadarshini, A.; Anđelković, S.; Pellegrini, M.; et al. Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production. Bacteria 2023, 2, 98–115. https://doi.org/10.3390/bacteria2020008.
References
- Sánchez, J.A. Nature’s Tapestry: Uncovering the Beauty and Importance of Biodiversity; Universidad de los Andes: Bogotá, Colombia, 2023. [Google Scholar]
- Timmis, K.; Ramos, J.L. The soil crisis: The need to treat as a global health problem and the pivotal role of microbes in prophylaxis and therapy. Microb. Biotechnol. 2021, 14, 769–797. [Google Scholar] [CrossRef] [PubMed]
- Khoshru, B.; Mitra, D.; Khoshmanzar, E.; Myo, E.M.; Uniyal, N.; Mahakur, B.; Mohapatra, P.K.; Panneerselvam, P.; Boutaj, H.; Alizadeh, M.; et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: An economic valuable resource for the agriculture revival under stressful conditions. J. Plant Nutr. 2020, 43, 3062–3092. [Google Scholar] [CrossRef]
- Mitra, D.; Anđelković, S.; Panneerselvam, P.; Senapati, A.; Vasić, T.; Ganeshamurthy, A.N.; Chauhan, M.; Uniyal, N.; Mahakur, B.; Radha, T.K. Phosphate-solubilizing microbes and biocontrol agent for plant nutrition and protection: Current perspective. Commun. Soil Sci. Plant Anal. 2020, 51, 645–657. [Google Scholar] [CrossRef]
- Sarker, A.; Ansary, M.W.; Hossain, M.N.; Islam, T. Prospect and challenges for sustainable management of climate change-associated stresses to soil and plant health by beneficial rhizobacteria. Stresses 2021, 1, 200–222. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; You, M.P.; Barbetti, M.J.; Chen, Y. Pathogen biocontrol using plant growth-promoting bacteria (PGPR): Role of bacterial diversity. Microorganisms 2021, 9, 1988. [Google Scholar] [CrossRef]
- Guzmán-Guzmán, P.; del Carmen Orozco-Mosqueda, M.; Loeza-Lara, P.D.; Santoyo, G. Synergistic mechanisms between plant growth-promoting bacteria and Trichoderma to control plant diseases. In Biocontrol Agents for Improved Agriculture; Academic Press: Cambridge, MA, USA, 2024; pp. 121–142. [Google Scholar]
- Panneerselvam, P.; Senapati, A.; Kumar, U.; Sharma, L.; Lepcha, P.; Prabhukarthikeyan, S.R.; Jahan, A.; Parameshwaran, C.; Govindharaj, G.P.; Lenka, S.; et al. Antagonistic and plant-growth promoting novel Bacillus species from long-term organic farming soils from Sikkim, India. 3 Biotech 2019, 9, 416. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Nazari, M.; Antar, M.; Msimbira, L.A.; Naamala, J.; Lyu, D.; Rabileh, M.; Zajonc, J.; Smith, D.L. PGPR in agriculture: A sustainable approach to increasing climate change resilience. Front. Sustain. Food Syst. 2021, 5, 667546. [Google Scholar] [CrossRef]
- Agbodjato, N.A.; Babalola, O.O. Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ 2024, 12, e16836. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, L.A.; Santos, C.H.; Frezarin, E.T.; Sales, L.R.; Rigobelo, E.C. Plant growth-promoting rhizobacteria for sustainable agricultural production. Microorganisms 2023, 11, 1088. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Mitra, D.; Rodriguez, A.M.; Cota, F.I.; Khoshru, B.; Panneerselvam, P.; Moradi, S.; Sagarika, M.S.; Anđelković, S.; de los Santos-Villalobos, S.; Mohapatra, P.K. Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria. Physiol. Mol. Plant Pathol. 2021, 115, 101679. [Google Scholar] [CrossRef]
- Khoso, M.A.; Wagan, S.; Alam, I.; Hussain, A.; Ali, Q.; Saha, S.; Poudel, T.R.; Manghwar, H.; Liu, F. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress 2023, 11, 100341. [Google Scholar] [CrossRef]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Umar, O.B.; Ranti, L.A.; Abdulbaki, A.S.; Bola, A.L.; Abdulhamid, A.K.; Biola, M.R.; Victor, K.O. Stresses in plants: Biotic and abiotic. In Current Trends in Wheat Research; BoD—Books on Demand: Norderstedt, Germany, 2021; pp. 1–8. [Google Scholar]
- Tortella, G.; Rubilar, O.; Pieretti, J.C.; Fincheira, P.; de Melo Santana, B.; Fernández-Baldo, M.A.; Benavides-Mendoza, A.; Seabra, A.B. Nanoparticles as a promising strategy to mitigate biotic stress in agriculture. Antibiotics 2023, 12, 338. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, D.; Pellegrini, M.; Guerra-Sierra, B.E. Interaction between Plants and Growth-Promoting Rhizobacteria (PGPR) for Sustainable Development. Bacteria 2024, 3, 136-140. https://doi.org/10.3390/bacteria3030009
Mitra D, Pellegrini M, Guerra-Sierra BE. Interaction between Plants and Growth-Promoting Rhizobacteria (PGPR) for Sustainable Development. Bacteria. 2024; 3(3):136-140. https://doi.org/10.3390/bacteria3030009
Chicago/Turabian StyleMitra, Debasis, Marika Pellegrini, and Beatriz E. Guerra-Sierra. 2024. "Interaction between Plants and Growth-Promoting Rhizobacteria (PGPR) for Sustainable Development" Bacteria 3, no. 3: 136-140. https://doi.org/10.3390/bacteria3030009
APA StyleMitra, D., Pellegrini, M., & Guerra-Sierra, B. E. (2024). Interaction between Plants and Growth-Promoting Rhizobacteria (PGPR) for Sustainable Development. Bacteria, 3(3), 136-140. https://doi.org/10.3390/bacteria3030009