Reconsidering Toxoplasmosis Prevention and Treatment Due to Its Relation to Neuropsychiatric Disturbances
Simple Summary
Abstract
1. Distribution and Global Burden of Toxoplasmosis
2. Clinical Impacts of Toxoplasmosis on Different Populations, the Pathogenesis of Infection and the Neurotropism of Toxoplasma gondii
Assumptions from the Literature Search and Discussion
- (i)
- Are Toxoplasma seropositive individuals in the general population more susceptible to underlying neuropsychiatric diseases and behavioral changes?
- (ii)
- Does prenatal exposure to Toxoplasma facilitate the occurrence of neuropsychiatric manifestations?
- (iii)
- Is there a relationship between the stage of Toxoplasma infection and the development of psychiatric disorders?
- (iv)
- Should we change attitudes toward toxoplasmosis prevention and treatment measures?
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aguirre, A.A.; Longcore, T.; Barbieri, M.; Dabritz, H.; Hill, D.; Klein, P.N.; Lepczyk, C.; Lilly, E.L.; McLeod, R.; Milcarsky, J.; et al. The One Health Approach to Toxoplasmosis: Epidemiology, Control, and Prevention Strategies. EcoHealth 2019, 16, 378–390. [Google Scholar] [PubMed]
- Torgerson, P.R.; Devleesschauwer, B.; Praet, N.; Speybroeck, N.; Willingham, A.L.; Kasuga, F.; Rokni, M.B.; Zhou, X.-N.; Fevre, E.M.; Sripa, B.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001920. [Google Scholar]
- Demar, M.; Ajzenberg, D.; Maubon, D.; Djossou, F.; Panchoe, D.; Punwasi, W.; Valery, N.; Peneau, C.; Daigre, J.-L.; Aznar, C.; et al. Fatal outbreak of human toxoplasmosis along the Maroni River: Epidemiological, clinical, and parasitological aspects. Clin. Infect. Dis. 2007, 45, e88–e95. [Google Scholar] [PubMed]
- Rougier, S.; Montoya, J.G.; Peyron, F. Lifelong Persistence of Toxoplasma Cysts: A Questionable Dogma? Trends Parasitol. 2017, 33, 414. [Google Scholar]
- Lyons, R.E.; McLeod, R.; Roberts, C.W. Toxoplasma gondii tachyzoite-bradyzoite interconversion. Trends Parasitol. 2002, 18, 198–201. [Google Scholar]
- Ross, E.C.; Olivera, G.C.; Barragan, A. Early passage of Toxoplasma gondii across the blood–brain barrier. Trend Parasitol. 2022, 38, 450–461. [Google Scholar]
- Fabiani, S.; Pinto, B.; Bonuccelli, U.; Bruschi, F. Neurobiological studies on the relationship between toxoplasmosis and neuropsychiatric diseases. J. Neurol. Sci. 2015, 351, 3–8. [Google Scholar] [CrossRef]
- Henriquez, S.; Brett, R.; Alexander, J.; Pratt, J.; Roberts, C. Neuropsychiatric disease and Toxoplasma gondii infection. Neuroimmunomodulation 2009, 16, 122–133. [Google Scholar]
- Fabiani, S.; Pinto, B.; Bruschi, F. Toxoplasmosis and neuropsychiatric diseases: Can serological studies establish a clear relationship? Neurol. Sci. 2012, 34, 417–425. [Google Scholar]
- Flegr, J. How and why Toxoplasma makes us crazy. Trends Parasitol. 2013, 29, 156–163. [Google Scholar]
- Solmi, F.; Hayes, G.L.; Kirkbride, J.B. Curiosity killed the cat: No evidence of an association between cat ownership and psychotic symptoms at ages 13 and 18 years in a UK general population cohort. Psychol. Med. 2017, 47, 1659–1667. [Google Scholar] [PubMed]
- Contopoulos-Ioannidis, D.G.; Maldonado, Y.; Montoya, J.G. Acute Toxoplasma gondii infection among family members in the United States. Emerg. Infect. Dis. 2013, 19, 1981–1984. [Google Scholar] [PubMed]
- Gershon, E.S.; Alliey-Rodriguez, N.; Liu, C. After GWAS: Searching for genetic risk for schizophrenia and bipolar disorder. Am. J. Psychiatry 2011, 168, 253–256. [Google Scholar] [PubMed]
- Durkin, M.S.; Maenner, M.J.; Baio, J.; Christensen, D.; Daniels, J.; Fitzgerald, R.; Imm, P.; Lee, L.-C.; Schieve, L.A.; Braun, K.V.N.; et al. Autism Spectrum Disorder Among US Children (2002–2010): Socioeconomic, Racial, and Ethnic Disparities. Am. J. Public Health 2017, 107, 1818–1826. [Google Scholar]
- Yolken, R.H.; Dickerson, F.B.; Torrey, E.F. Toxoplasma and schizophrenia. Parasite Immunol. 2009, 31, 706–715. [Google Scholar]
- Gogtay, N.; Vyas, N.S.; Testa, R.; Wood, S.J.; Pantelis, C. Age of onset of schizophrenia: Perspectives from structural neuroimaging studies. Schizophr. Bull. 2011, 37, 504–513. [Google Scholar]
- Brown, A.S. The risk for schizophrenia from childhood and adult infections. Am. J. Psychiatry 2008, 165, 7–10. [Google Scholar]
- Davies, G.; Welham, J.; Chant, D.; Torrey, E.F.; McGrath, J. A systematic review and metaanalysis of Northern Hemisphere season of birth studies in schizophrenia. Schizophr. Bull. 2003, 29, 587–593. [Google Scholar]
- Pedersen, C.B.; Mortensen, P.B. Why factors rooted in the family may solely explain the urban–rural differences in schizophrenia risk estimates. Epidemiol. Psichiatr. Soc. 2006, 15, 247–251. [Google Scholar]
- Torrey, E.F.; Rawlings, R.; Yolken, R.H. The antecedents of psychoses: A case–control study of selected risk factors. Schizophr. Res. 2000, 46, 17–23. [Google Scholar]
- Fond, G.; Boyer, L.; Schürhoff, F.; Berna, F.; Godin, O.; Bulzacka, E.; Andrianarisoa, M.; Brunel, L.; Aouizerate, B.; Capdevielle, D.; et al. FACE-SZ (FondaMental Academic Centers of Expertise for Schizophrenia) group. Latent toxoplasma infection in real-world schizophrenia: Results from the national FACE-SZ cohort. Schyzophrenia Res. 2018, 201, 373–380. [Google Scholar]
- Burgdorf, K.S.; Trabjerg, B.B.; Pedersen, M.G.; Nissen, J.; Banasik, K.; Pedersen, O.B.; Sørensen, E.; Nielsen, K.R.; Larsen, M.H.; Erikstrup, C.; et al. Large-scale study of Toxoplasma and Cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav. Immun. 2019, 79, 152–158. [Google Scholar] [PubMed]
- Contopoulos-Ioannidis, D.G.; Gianniki, M.; Truong, A.A.-N.; Montoya, J.G. Toxoplasmosis and Schizophrenia: A Systematic Review and Meta-Analysis of Prevalence and Associations and Future Directions. Psychiatr. Res. Clin. Pract. 2022, 4, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Galván-Ramírez, M.d.l.L.; Navarro Machuca, G.; Covarrubias Castillo, S.A.; Benavides González, J.C.; Rodríguez Pérez, L.R.; Dueñas Jiménez, S.H.; Dueñas Jiménez, J.M. Toxoplasmosis Is More Frequent in Schizophrenia Patients Than in the General Population in Mexico and Is Not Associated with More Severe Course of Schizophrenia Measured with the Brief Psychiatric Rating Scale. Pathogens 2021, 10, 820. [Google Scholar] [CrossRef]
- Banihashem, S.S.; Saber, F.Y.; Motazedian, S.; Mardani, M.; Shamsi, A.; Nazari, M.; Samani, N.; Danesh, A. Serologic evaluation of cytomegalovirus (CMV), Toxoplasma gondii and Brucella in schizophrenia patients. Casp. J. Intern. Med. 2023, 14, 560–566. [Google Scholar] [CrossRef]
- Ademe, M.; Kebede, T.; Teferra, S.; Alemayehu, M.; Girma, F.; Abebe, T. Is latent Toxoplasma gondii infection associated with the occurrence of schizophrenia? A case-control study. PLoS ONE 2022, 17, e0270377. [Google Scholar]
- Del Grande, C.; Galli, L.; Dell’Osso, L.; Bruschi, F. Is Toxoplasma gondii a Trigger of Bipolar Disorder? Pathogens 2017, 6, 3. [Google Scholar] [CrossRef]
- Delgado García, G.; Rodríguez Perdomo, E. Reactivity of toxoplasmin intradermal test in neurotic and manic-depressive patients. Rev. Cuba. Med. Trop. 1980, 32, 35–39. [Google Scholar]
- Hinze-Selch, D.; Däubener, W.; Erdag, S.; Wilms, S. The diagnosis of a personality disorder increases the likelihood for seropositivity to Toxoplasma gondii in psychiatric patients. Folia Parasitol. 2010, 57, 129–135. [Google Scholar]
- Tedla, Y.; Shibre, T.; Ali, O.; Tadele, G.; Woldeamanuel, Y.; Asrat, D.; Aseffa, A.; Mihret, W.; Abebe, M.; Alem, A. Serum antibodies to Toxoplasma gondii and Herpesvidae family viruses in individuals with schizophrenia and bipolar disorder: A case-control study. Ethiop. Med. J. 2011, 49, 211–220. [Google Scholar]
- Pearce, B.D.; Kruszon-Moran, D.; Jones, J.L. The relationship between Toxoplasma gondii infection and mood disorders in the third National Health and Nutrition Survey. Biol. Psychiatry 2012, 72, 290–295. [Google Scholar] [PubMed]
- Hamdani, N.; Doukhan, R.; Kurtlucan, O.; Tamouza, R.; Leboyer, M. Immunity, inflammation, and bipolar disorder: Diagnostic and therapeutic implications. Curr. Psychiatry Rep. 2013, 15, 387. [Google Scholar] [PubMed]
- Dickerson, F.; Stallings, C.; Origoni, A.; Vaughan, C.; Katsafanas, E.; Khushalani, S.; Yolken, R. Antibodies to Toxoplasma gondii in individuals with mania. Bipolar Disord. 2014, 16, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.R.; Beckie, T.M.; Brenner, L.A.; Beckstead, J.W.; Seyfang, A.; Postolache, T.T.; Groer, M.W. Relationship between Toxoplasma gondii and Mood Disturbance in Women Veterans. Mil. Med. 2015, 180, 621–625. [Google Scholar]
- Alvarado-Esquivel, C.; Estrada-Martìnez, S.; Pérez-Alamos, A.R. A Case-Control Seroprevalence Study on the Association Between Toxoplasma gondii Infection and Bipolar Disorder. Front. Psychiatry 2019, 10, 766. [Google Scholar] [CrossRef]
- Khademvatan, S.; Khajeddin, N.; Izadi, S.; Saki, J. Study of Toxoplasma gondii Infection in Patients with Bipolar Disorder. J. Med. Sci. 2013, 13, 215–220. [Google Scholar]
- Xiao, J.; Buka, S.L.; Cannon, T.D.; Suzuki, J.; Viscidi, R.P.; Torrey, E.F.; Yolken, R.H. Serological pattern consistent with infection with type I Toxoplasma gondii in mothers and risk of psychosis among adult offspring. Microbes Infect. 2009, 11, 1011–1018. [Google Scholar]
- Mortensen, P.B.; Pedersen, C.B.; McGrath, J.J.; Hougaard, D.M.; Nørgaard-Petersen, B.; Mors, O.; Børglum, A.D.; Yolken, R.H. Neonatal antibodies to infectious agents and risk of bipolar disorder: A population-based case-control study. Bipolar Disord. 2011, 13, 624–629. [Google Scholar]
- Freedman, D.; Bao, Y.; Shen, L.; Schaefer, C.A.; Brown, A.S. Maternal T. gondii, offspring bipolar disorder and neurocognition. Psychiatry Res. 2016, 243, 382–389. [Google Scholar]
- Poulin, R. Parasite manipulation of host behavior: An update and frequently asked questions. Adv. Study Behav. 2010, 41, 151–186. [Google Scholar] [CrossRef]
- Del Giudice, M. Invisible designers: Brain evolution through the lens of parasite manipulation. Q. Rev. Biol. 2019, 94, 249–282. [Google Scholar] [CrossRef]
- Dass, S.A.H.; Vasudevan, A.; Dutta, D.; Soh, L.J.T.; Sapolsky, R.M.; Vyas, A. Protozoan parasite Toxoplasma gondii manipulates mate choice in rats by enhancing attractiveness of males. PLoS ONE 2011, 6, e27229. [Google Scholar] [CrossRef] [PubMed]
- Brüne, M. Latent toxoplasmosis: Host-parasite interaction and psychopathology. Evol. Med. Public Health 2019, 212–213. [Google Scholar] [CrossRef]
- Borráz-León, J.I.; Rantala, M.J.; Krams, I.A.; Cerda-Molina, A.L.; Contreras-Garduño, J. Are Toxoplasma-infected subjects more attractive, symmetrical, or healthier than non-infected ones? Evidence from subjective and objective measurements. PeerJ 2022, 10, e13122. [Google Scholar] [CrossRef]
- Alvarado-Esquivel, C.; Pacheco-Vega, A.J.; Hernández-Tinoco, J.; Salcedo-Jáquez, M.; Sánchez-Anguiano, L.F.; Berumen-Segovia, L.O.; Rábago-Sanchez, E.; Liesenfeld, O. Toxoplasma gondii infection in interstate truck drivers: A case–control seroprevalence study. Parasites Vectors 2015, 5, 77. [Google Scholar] [CrossRef]
- Flegr, J.; Kuba, R. The Relation of Toxoplasma Infection and Sexual Attraction to Fear, Danger, Pain, and Submissiveness. Evol. Psychol. 2016, 14, 1474704916659746. [Google Scholar] [CrossRef]
- Stock, A.-K.; Dajkic, D.; Köhling, H.L.; von Heinegg, E.H.; Fiedler, M.; Beste, C. Humans with latent toxoplasmosis display altered reward modulation of cognitive control. Sci. Rep. 2017, 7, 10170. [Google Scholar] [CrossRef]
- Flegr, J.; Preiss, M. Friends with malefit. The effects of keeping dogs and cats, sustaining animal-related injuries and Toxoplasma infection on health and quality of life. PLoS ONE 2019, 14, e0221988. [Google Scholar] [CrossRef]
- Samojłowicz, D.; Twarowska-Małczyńska, J.; Borowska-Solonynko, A.; Poniatowski, Ł.A.; Sharma, N.; Olczak, M. Presence of Toxoplasma gondii infection in brain as a potential cause of risky behavior: A report of 102 autopsy cases. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Reed, R.G.; Karr, J.E. Cytomegalovirus and Toxoplasma gondii Serostatus Prospectively Correlated With Problems in Self-Regulation but not Executive Function Among Older Adults. Psychosom. Med. 2022, 84, 603–611. [Google Scholar]
- Mohyuddin, H.; Laffon, B.; Teixeira, J.P.; Costa, S.; Teixeira-Gomes, A.; Pásaro, E.; Constantine, N.; Dagdag, A.; Ortmeyer, H.K.; Tizenberg, B.; et al. Toxoplasma gondii IgG Serointensity Is Positively Associated With Frailty. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2023, 79, glad228. [Google Scholar] [CrossRef]
- Postolache, T.T.; Wadhawan, A.; Rujescu, D.; Hoisington, A.J.; Dagdag, A.; Baca-Garcia, E.; Lowry, C.A.; Okusaga, O.O.; Brenner, L.A. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front. Psychiatry 2021, 12, 665682. [Google Scholar] [CrossRef]
- Miman, O.; Kusbeci, O.Y.; Aktepe, O.C.; Centinkaya, Z. The probable relation between Toxoplasma gondii and Parkinson’s disease. Neurosci. Lett. 2010, 3, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Shojali, M.; Asadollahi, M.; Karimialavijeh, E. Seroprevalence of Toxoplasma gondii in Iranian patients with idiopathic Parkinson’s disease. Clin. Exp. Neuroimmunol. 2016, 7, 361–365. [Google Scholar] [CrossRef]
- Fallahi, S.; Rostami, A.; Birjandi, M.; Zebardast, N.; Kheirandish, F.; Spotin, A. Parkinson’s disease and Toxoplasma gondii infection: Sero-molecular assess the possible link among patients. Acta Trop. 2017, 173, 97–101. [Google Scholar]
- Oskouei, M.; Hamidi, F.; Talebi, M.; Farhoudi, M.; Taheraghdam, A.A.; Kazemi, T.; Sadeghi-Bazargani, H.; Fallah, E. The correlation between Toxoplasma gondii infection and Parkinson’s disease: A case-control study. J. Parasit. Dis. 2016, 40, 872–876. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alvarado-Esquivel, C.; Méndez-Hernández, E.M.; Salas-Pacheco, J.M.; Ruano-Calderón, L.Á.; Hernández-Tinoco, J.; Arias-Carrión, O.; Sánchez-Anguiano, L.F.; Castellanos-Juárez, F.X.; Sandoval-Carrillo, A.A.; Liesenfeld, O.; et al. Toxoplasma gondii exposure and Parkinson’s disease: A case–control study. BMJ Open 2017, 7, e013019. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, R.; Li, K.; Wei, W.; Zhang, Z.; Zhu, Y.; Luan, R. The Association between Toxoplasma gondii Infection and Risk of Parkinson’s Disease: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2019, 1, 8186017. [Google Scholar] [CrossRef]
- Möhle, L.; Israel, N.; Paarmann, K.; Krohn, M.; Pietkiewicz, S.; Müller, A.; Lavrik, I.N.; Buguliskis, J.S.; Schott, B.H.; Schlüter, D.; et al. Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol. Commun. 2016, 4, 25. [Google Scholar] [CrossRef]
- Prandota, J. Neuropathological changes and clinical features of autism spectrum disorder participants are similar to that reported in congenital and chronic cerebral toxoplasmosis in humans and mice. Res. Autism Spect. Disord. 2010, 4, 103–118. [Google Scholar]
- Abdoli, A.; Dalimi, A. Are there any relationships between latent Toxoplasma gondii infection, testosterone elevation, and risk of autism spectrum disorder? Front. Behav. Neurosci. 2014, 8, 339. [Google Scholar]
- Elzeky, S.M.; Nabih, N.; Abdel-Magied, A.A.; Abdelmagid, D.S.; Handoussa, A.E.; Hamouda, M.M. Seroprevalence and Genetic Characterization of Toxoplasma gondii among Children with Neurodevelopmental Disorders in Egypt. J. Trop. Med. 2022, 1, 2343679. [Google Scholar] [CrossRef]
- Hassan, Z.R.; Hassan, Z.R.; Zekry, K.M.; Zekry, K.M.; Heikal, E.A.; Heikal, E.A.; Ibrahim, H.F.; Ibrahim, H.F.; Khirala, S.K.; Khirala, S.K.; et al. Toxoplasmosis and cytomegalovirus infection and their role in Egyptian autistic children. Parasitol. Res. 2023, 122, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [PubMed]
- Spann, M.N.; Sourander, A.; Surcel, H.-M.; Salomaki, S.H.-Y.; Brown, A.S. Prenatal Toxoplasmosis Antibody and Childhood Autism. Autism Res. 2017, 10, 769–777. [Google Scholar]
- Berrébi, A.; Assouline, C.; Bessières, M.-H.; Lathière, M.; Cassaing, S.; Minville, V.; Ayoubi, J.-M. Long-term outcome of children with congenital toxoplasmosis. Am. J. Obstet. Gynecol. 2010, 203, e1–e6. [Google Scholar]
- Brown, A.S.; Derkits, E. Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. Am. J. Psychiatry 2010, 167, 261–280. [Google Scholar]
- Omar, A.; Bakar, O.C.; Adam, N.F.; Osman, H.; Osman, A.; Suleiman, A.H.; Manaf, M.R.A.; Selamat, M.I. Seropositivity and serointensity of Toxoplasma gondii antibodies and DNA among patients with schizophrenia. Korean J. Parasitol. 2015, 53, 29–34. [Google Scholar]
- Galli, L.; Del Grande, C.; Rindi, L.; Mangia, C.; Mangano, V.; Schiavi, E.; Masci, I.; Pinto, B.; Kramer, L.; Dell’Osso, L.; et al. Lack of circulating Toxoplasma gondii DNA in seropositive patients with bipolar or schizophrenia spectrum disorders. Psychiatry Res. 2019, 273, 706–711. [Google Scholar]
- Del Grande, C.; Contini, C.; Schiavi, E.; Rutigliano, G.; Maritati, M.; Seraceni, S.; Pinto, B.; Dell, L.; Bruschi, F. Bipolar Disorder With Psychotic Features and Ocular Toxoplasmosis: A Possible Pathogenetic Role of the Parasite? J. Nerv. Ment. Disord. 2016, 205, 192–195. [Google Scholar]
- Li, Y.; Viscidi, R.P.; Kannan, G.; McFarland, R.; Pletnikov, M.V.; Severance, E.G.; Yolken, R.H.; Xiao, J. Chronic Toxoplasma gondii Infection Induces Anti-N-Methyl-D-Aspartate Receptor Autoantibodies and Associated Behavioral Changes and Neuropathology. Infect. Immun. 2018, 86, e00398-18. [Google Scholar] [PubMed]
- Wang, J.-L.; Zhang, N.-Z.; Li, T.-T.; He, J.-J.; Elsheikha, H.M.; Zhu, X.-Q. Advances in the Development of Anti-Toxoplasma gondii Vaccines: Challenges, Opportunities, and Perspectives. Trends Parasitol. 2019, 35, 239–253. [Google Scholar] [PubMed]
- Loh, F.-K.; Nathan, S.; Chow, S.-C.; Fang, C.-M. Vaccination challenges and strategies against long-lived Toxoplasma gondii. Vaccine 2019, 37, 3989–4000. [Google Scholar] [PubMed]
- Dunay, I.R.; Gajurel, K.; Dhakal, R.; Liesenfeld, O.; Montoya, J.G. Treatment of Toxoplasmosis: Historical Perspective, Animal Models, and Current Clinical Practice. Clin. Microbiol. Rev. 2018, 31, e00057-17. [Google Scholar]
- Schneider, M.O.; Faschingbauer, F.; Kagan, K.O.; Groß, U.; Enders, M.; Kehl, S. AGG Section Maternal Diseases. Toxoplasma gondii Infection in Pregnancy—Recommendations of the Working Group on Obstetrics and Prenatal Medicine (AGG—Section on Maternal Disorders). Geburtshilfe Frauenheilkd. 2023, 83, 1431–1445. [Google Scholar] [CrossRef]
- Jones-Brando, L.; Torrey, E.F.; Yolken, R. Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr. Res. 2003, 62, 237–244. [Google Scholar]
- Goodwin, D.G.; Strobl, J.S.; Lindsay, D.S. Evaluation of Five Antischizophrenic Agents against Toxoplasma gondii in Human Cell Cultures. J. Parasitol. 2011, 97, 148–151. [Google Scholar]
- Shibre, T.; Alem, A.; Abdulahi, A.; Araya, M.; Beyero, T.; Medhin, G.; Deyassa, N.; Negash, A.; Nigatu, A.; Kebede, D.; et al. Trimethoprim as Adjuvant Treatment in Schizophrenia: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Schizophr. Bull. 2010, 36, 846–851. [Google Scholar]
- Chorlton, S.D. Toxoplasma gondii and schizophrenia: A review of published RCTs. Parasitol. Res. 2017, 116, 1793–1799. [Google Scholar]
- Ferguson, D.J.P. Toxoplasma gondii: 1908–2008, homage to Nicolle, Manceaux and Splendore. Mem. Inst. Oswaldo Cruz 2009, 104, 133–148. [Google Scholar]
Toxoplasmosis | Schizophrenia | Bipolar Disorder | Autism Spectrum Disorders | Parkinson’s Disease | Alzheimer’s Disease | Behaviour Problems | References | ||
---|---|---|---|---|---|---|---|---|---|
Cerebral areas involved | Not sufficient data | [6,7] | |||||||
Neurobiological pathway | Endocannabinoid system (induction of endocannabinoids) | Not sufficient data | Beneficial effects of cannabinoids | Beneficial effects of cannabinoids | [7,8] | ||||
Neurotrasmitter system | Decreased DOPA pathway | Decreased DOPA pathway («negative symptoms») | Increased DOPA pathway | Decreased DOPA pathway | Decreased DOPA pathway | Decreased DOPA pathway | [7,8] | ||
Increased DOPA pathway («positive symptoms») | |||||||||
Not sufficient data | |||||||||
Glutamate (NMDAR) &GABA pathway | blockade of NMDAR function leads to neuronal apoptosis and degeneration | [7,8] | |||||||
TRP degradation | Imbalance of TRP metabolites plays a | TRP and metabolites inhibit various enzymes participating in the biosynthesis of β-amyloid | [7,8] | ||||||
role in pathophysiology of schizophrenia with positive and negativesymptoms | Not sufficient data | ||||||||
Endocrine function | HPA induction | Not sufficient data | [7,8] | ||||||
Decreased testosterone levels in acute infection and increased in men and decreased in women, during latent | Low testosterone levels in males | Not sufficient data | Pre-natal exposure to high testosterone levels | Not sufficient data | Not sufficient data | ||||
Cytokine pathway | Increased pro-inflammatory/neurotoxic cytokines Decreased anti-inflammatory/neuroprotective effects | IL-5 decreased | [5,7,8] | ||||||
Cytokines-mediated enhancement of phagocytosis and degradation of soluble Aβ | Not sufficient data | Not sufficient data | Not sufficient data | Not sufficient data | Accumulation of β-amyloid (possible beneficial effect of Toxplasma infection?) | Not sufficient data | [5,7,8] |
Factors | Toxoplasmosis | Ref. | Neuropsychiatric Disorders | Ref. |
---|---|---|---|---|
Genetic/familial | Increased risk of infection in members of the same family, likely due to interaction between genetic and environmental factors; a trans-placental transmission of the parasite up to 5 generations was shown in mice | [12] | In schizophrenia: higher risk in first-degree relatives affected, but no single gene involved definitely identified In autism spectrum disorder: Twin and family studies demonstrate a strong genetic component | [13,14] |
Age of onset | Seroconversion peak among 15 and 35 years, early among males | [15] | In schizophrenia: major clinical manifestation among 20 and 30 years, with early onset among males In autism spectrum disorder: conditions typically diagnosed after the second year of life. Males are affected more than women (4:1) | [14,16] |
Seasonal variation | Patients born in winter or spring show a higher probability of contracting infectious diseases, including toxoplasmosis | [17] | In schizophrenia: the birth season (winter or spring) seems to correlate with risk of schizophrenia development In autism spectrum disorder: the risk was highest for fall births (i.e., conceived in the winter) and lowest for spring births (i.e., conceived in the summer) | [14,17,18] |
Stillbirth | Increased | [15] | In schizophrenia: Increased | [15] |
Socio-economic status | Lower | [15] | In schizophrenia: lower In autism spectrum disorder: higher | [14,15] |
Residence area | Conflicting data exist on the association between prevalence for toxoplasmosis and residence area | [15] | In schizophrenia: An association may exist with being born or living during childhood in an urban area and the onset of schizophrenia | [19] |
Geographical correlation | Countries with a low prevalence of anti T. gondii antibodies generally show a low prevalence of schizophrenia. Subjects from Papua, New Guinea, where domestic and wild cats are rare show low (≤2%) prevalence rates for toxoplasmosis. In countries such as France, Ethiopia and Brazil, where prevalence rates of toxoplasmosis are high and schizophrenia prevalence is similar to the general population | [15] | In schizophrenia: countries with a low prevalence of anti T. gondii antibodies generally show a low prevalence of schizophrenia. In subjects from Papua, New Guinea, schizophrenia is poorly disseminated. In countries such as France, Ethiopia and Brazil, where prevalence rates of toxoplasmosis are high and schizophrenia prevalence is similar to the general population In autism spectrum disorder: Worldwide prevalence is about 1% | [13,14] |
Contact with cats | The seropositivity to T. gondii has increased together with the habit of keeping domestic cats. In particular, it is important the possession of a kitten under the age of one year | [9] | In schizophrenia, a positive correlation between schizophrenia and cat contact, especially during childhood is likely: schizophrenic patients show a higher frequency of exposure to cats in childhood (43%) compared to control subjects (34%) families in which members later developed schizophrenia or bipolar disorder, were more likely to have owned a cat. The number was higher (52%) during the period from birth up to 13 years old compared to controls (42%). In autism spectrum disorder: Cat ownership does not increase the risk to underlie psychotic disturbances | [14,20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruschi, F.; Fabiani, S. Reconsidering Toxoplasmosis Prevention and Treatment Due to Its Relation to Neuropsychiatric Disturbances. Zoonotic Dis. 2025, 5, 8. https://doi.org/10.3390/zoonoticdis5020008
Bruschi F, Fabiani S. Reconsidering Toxoplasmosis Prevention and Treatment Due to Its Relation to Neuropsychiatric Disturbances. Zoonotic Diseases. 2025; 5(2):8. https://doi.org/10.3390/zoonoticdis5020008
Chicago/Turabian StyleBruschi, Fabrizio, and Silvia Fabiani. 2025. "Reconsidering Toxoplasmosis Prevention and Treatment Due to Its Relation to Neuropsychiatric Disturbances" Zoonotic Diseases 5, no. 2: 8. https://doi.org/10.3390/zoonoticdis5020008
APA StyleBruschi, F., & Fabiani, S. (2025). Reconsidering Toxoplasmosis Prevention and Treatment Due to Its Relation to Neuropsychiatric Disturbances. Zoonotic Diseases, 5(2), 8. https://doi.org/10.3390/zoonoticdis5020008