Why Logics?
Abstract
:1. Classical Logic(s) vs. Non-Classical Logic(s)
2. From the Universe of Logic Systems to Universal Logic
- 1st UNILOG, Montreux, 2005, How to define identity between logics?
- 2nd UNILOG, Xi’an, 2007, How to translate one logic into another one?
- 3rd UNILOG, Lisbon, 2010, How to combine logics?
3. The Singular Science of Logic
- (1)
- reasoning;
- (2)
- a system describing reasoning, that is, “a logic”;
- (3)
4. Birth of the Journal Logics
Funding
Conflicts of Interest
1 | We are indicating the dates of birth and death of the main personalities whom we are discussing to fix the ideas and to provide a more precise historical account, as well as to emphasize that a science like logic has been developed until now by human beings who were born and died (some are still alive) and not by robots. |
2 | There were other proposals, such as Indian logic (see, e.g., [1,2]), Talmudic logic [3], Stoic logic [4], etc., but their influence was not as important as that of Aristotelian logic, and they were not developed in as systematic a way. The systematization of Aristotelian syllogistic logic has many aspects, such as the theory of the square opposition (see, e.g., [5]), the introduction of singular terms [6], and all kinds of variations, such Abelard’s logic [7]. |
3 | Carroll is famous for his novel Alice’s Adventures in Wonderland (1865), but he was also a logician [14]. |
4 | |
5 | I wrote a master’s thesis in philosophy at the Sorbonne in 1987 on the question of objective reality according to modern physics [57], comparing the views of Heisenberg, Bohr, and Bohm, under the supervision of the famous physicist Bernard d’Espagnat (1921–2015), who received the Templeton prize in 2009. |
References
- Schumann, A. On the Origin of Indian Logic from the Viewpoint of the Pāli Canon. Log. Univers. 2019, 13, 347–393. [Google Scholar] [CrossRef]
- Matilal, B.K. Indian Approach to Logic; Centre for Policy Studies: London, UK, 1985; Available online: https://cpsindia.org/dl/science/logic-c2.pdf (accessed on 19 May 2023).
- Schumann, A. On the Origin of Logical Determinism in Babylonia. Log. Univers. 2021, 15, 331–357. [Google Scholar] [CrossRef]
- Gourinat, J.-B. La Dialectique des Stoïciens; Vrin: Paris, France, 2000. [Google Scholar]
- Beziau, J.-Y.; Jacquette, D. Around and Beyond the Square of Opposition; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Ashworth, J.E. Medieval Theories of Singular Terms. In Stanford Encyclopedia of Philosophy; Stanford University: Stanford, CA, USA, 2003; Available online: https://plato.stanford.edu/entries/singular-terms-medieval/#SinTerLog (accessed on 23 September 2019).
- Lenzen, W. Abaelards Logik; Brill: Leiden, The Netherlands, 2021. [Google Scholar]
- Boole, G. The Mathematical Analysis of Logic, Being an Essay towards a Calculus of Deductive Reasoning; Macmillan: London, UK, 1847. [Google Scholar]
- Boole, G. The Calculus of Logic. Camb. Dublin Math. J. 1848, 3, 183–198. [Google Scholar]
- Boole, G. An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities; Macmillan: London, UK, 1854. [Google Scholar]
- Beziau, J.-Y. What is “formal logic”? In Proceedings of the XXII World Congress of Philosophy, Seoul 2018; Hyun-Lee, M., Ed.; Korean Philosophical Association: Seoul, Republic of South Korea, 2008; Volume 13, pp. 9–22. [Google Scholar]
- Venn, J. Symbolic Logic; Macmillan: London, UK, 1881. [Google Scholar]
- Carroll, L. Symbolic Logic; Macmillan: London, UK, 1896. [Google Scholar]
- Abeles, F. Lewis Carroll: Logic. The Internet Encyclopedia of Philosophy. Available online: https://iep.utm.edu/lewis-carroll-logic/ (accessed on 1 March 2023).
- Beziau, J.-Y. La puissance du symbole. In La Pointure du Symbole; Beziau, J.-Y., Ed.; Petra: Paris, France, 2014; pp. 9–34. [Google Scholar]
- Schlaudt, O.; Schmid, A.-F. (Eds.) Louis Couturat: The History of Modern Symbolic Logic and Other French Manuscripts; Birkäuser: Cham, Switzerland, 2021. [Google Scholar]
- Quine, W.V. The Philosophy of Logic; Harvard University Press: Cambridge, MA, USA, 1970. [Google Scholar]
- Suszko, R. The Fregean axiom and Polish mathematical logic in the 1920s. Stud. Log. 1977, 36, 87–90. [Google Scholar] [CrossRef]
- Beziau, J.-Y. What is classical propositional logic? Log. Investig. 2001, 8, 266–277. [Google Scholar]
- Paseau, A.C.; Leek, R. The Compactness Theorem. The Internet Encyclopedia of Philosophy. Available online: https://iep.utm.edu/compactness (accessed on 18 May 2023).
- Naming Logic(s). In Proceedings of the Workshop at the 15th Congress on Logic, Methodology, and Philosophy of Science, Helsinki, Finland, 3–8 August 2015; Available online: https://clmps2015.sched.com/event/31PW (accessed on 1 April 2023).
- Naming Logics, II. In Proceedings of the Workshop at the 6th World School and Congress on Universal Logic, Vichy, France, 16–26 June 2018; Available online: https://uni-log.org/wk6-NAM.html (accessed on 1 April 2023).
- Miró Quesada, F. Heterodox logics and the problem of the unity of logic; Unpublished, Campinas, 1976. Translation into Spanish: Las lógicas heterodoxas y el problema de la unidad de la lógica. In Lógica. Aspectos Formales y Filosóficos; Rosales Papa, D., Ed.; PUCP: Lima, Peru, 1978; pp. 13–44. [Google Scholar]
- Haack, S. Philosophy of Logics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Humberstone, L. Contra-classical logics. Australas. J. Philos. 2000, 78, 438–474. [Google Scholar] [CrossRef]
- Beziau, J.-Y.; Buchsbaum, A. Let us be Antilogical: Anti-Classical Logic as a Logic. In Soyons Logiques/Let Us Be Logical; Moktefi, A., Moretti, A., Schang, F., Eds.; College Publications: London, UK, 2016; pp. 1–10. [Google Scholar]
- Beziau, J.-Y. Cats that are not cats. In Natural Arguments—A Tribute to John Woods; Gabbay, D., Magnani, L., Park, W., Pitarinen, A.V., Eds.; College Publications: London, UK, 2019; pp. 49–71. [Google Scholar]
- Beziau, J.-Y. A sequent calculus for Lukasiewicz’s three-valued logic based on Suszko’s bivalent semantics. Bull. Sect. Log. 1999, 28, 89–97. [Google Scholar]
- Beziau, J.-Y. History of truth-values. In Handbook of the History of Logic, Vol. 11—Logic: A History of Its Central Concepts; Gabbay, D.M., Woods, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 233–305. [Google Scholar]
- da Costa, N.C.A.; Beziau, J.-Y.; Bueno, O.A.S. Malinowski and Suszko on many-valued logics: On the reduction of many-valuedness to two-valuedness. Mod. Log. 1996, 6, 272–299. [Google Scholar]
- D’Ottaviano, I.M.L.; Feitosa, H.A. Conservative translations. Ann. Pure App. Log. 2001, 108, 205–227. [Google Scholar]
- Gentzen, G. Untersuchungen über das logische Schließen. I. Math. Z. 1935, 39, 176–210. [Google Scholar] [CrossRef]
- Beziau, J.-Y. Classical negation can be expressed by one of its halves. Log. J. IGPL 1999, 7, 145–151. [Google Scholar] [CrossRef]
- Humberstone, L. Béziau’s translation paradox. Theoria 2005, 71, 138–381. [Google Scholar] [CrossRef]
- Beziau, J.-Y. Universal logic. In Proceedings of the Logica’94—Proceedings of the 8th International Symposium, Liblice, Czech Republic, 10–12 June 1994; Childers, T., Majer, O., Eds.; Czech Academy of Science: Prague, Czech Republic, 1994; pp. 73–93. [Google Scholar]
- Beziau, J.-Y. Recherches sur la Logique Universelle. Ph.D. Thesis, University Paris 7 Denis Diderot, Paris, France, 1995. [Google Scholar]
- Beziau, J.-Y. 13 Questions about universal logic. Bull. Sect. Log. 2006, 35, 133–150. [Google Scholar]
- Beziau, J.-Y. From consequence operator to universal logic: A survey of general abstract logic. In Logica Universalis: Towards a General Theory of Logic; Beziau, J.-Y., Ed.; Birkhäuser: Basel, Switzerland, 2005; pp. 3–17. [Google Scholar]
- Beziau, J.-Y. (Ed.) Universal Logic, an Anthology—From Paul Hertz to Paul Gabbay; Birkhäuser: Basel, Switzerland, 2010. [Google Scholar]
- Birkhoff, G. Universal algebra. In Selected Papers on Algebra and Topology by Garret Birkhoff; Rota, G.-C., Oliveira, J.S., Eds.; Birkhäuser: Basel, Switzerland, 1987; pp. 111–115. [Google Scholar]
- Beziau, J.-Y. La véritable portée du théorème de Lindenbaum-Asser. Log. Anal. 1999, 167–168, 341–359. [Google Scholar]
- Łoś, J.; Suszko, R. Remarks on sentential logics. Indigationes MathemaIicae 1958, 10, I77–I183. [Google Scholar] [CrossRef]
- Gabbay, D.M. Fibring Logics; Clarendon: Oxford, UK, 1998. [Google Scholar]
- Lawvere, F.W.; Schanuel, S. Conceptual Mathematics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Word Congress and School on Universal Logic. Available online: http://uni-log.org/ (accessed on 11 March 2023).
- Beziau, J.-Y. Logic Prizes et Cætera. Log. Univers. 2018, 12, 271–296. [Google Scholar] [CrossRef]
- Beziau, J.-Y. Universal Logic: Evolution of a Project. Log. Univers. 2018, 12, 1–8. [Google Scholar] [CrossRef]
- Beziau, J.-Y. 1st World Logic Day: 14 January 2019. Log. Univers. 2019, 13, 1–20. [Google Scholar] [CrossRef]
- Fontenele Reis, M.E. Inclusion of the World Logic Day in the UNESCO Calendar of International Days. Available online: http://www.logica-universalis.org/wld3-brazilian-unesco-ambassador (accessed on 10 February 2023).
- Beziau, J.-Y. The 2nd World Logic Prizes Contest, 7th UNILOG, Crete 2022. Log. Univers. 2022, 16, 1–9. [Google Scholar] [CrossRef]
- Andréka, H.; Gyenis, Z.; Németi, I.; Sain, I. Universal Algebraic Logic—Dedicated to the Unity of Science; Birkhäuser: Cham, Switzerland, 2010. [Google Scholar]
- Beziau, J.-Y. Metalogic, Schopenhauer and Universal Logic. In Language, Logic, and Mathematics in Schopenhauer; Lemanski, J., Ed.; Birkhäuser: Basel, Switzerland, 2020; pp. 207–257. [Google Scholar]
- Beziau, J.-Y. What is a logic?—Towards axiomatic emptiness. Log. Investig. 2010, 16, 272–279. [Google Scholar]
- Beziau, J.-Y. Logic is not logic. Abstracta 2010, 6, 73–102. [Google Scholar]
- Beziau, J.-Y. Is Logic Exceptional? In Logic in Question—Talks from the Annual Sorbonne Logic Workshop (2011–2019); Beziau, J.-Y., Desclés, J.-P., Mokteki, A., Pascu, A., Eds.; Birkhäuser: Cham, Switzerland, 2022; pp. 261–279. [Google Scholar]
- Beziau, J.-Y. Is there an axiom for everything? In Wider den Reduktionismus—Ausgewählte Beiträge zum Kurt Gödel Preis 2019; Passon, O., Benzmüller, C., Eds.; Springer Spektrum: Heidelberg, Germany, 2021; pp. 103–117. [Google Scholar]
- Beziau, J.-Y. L’holomouvement chez David Bohm. Master’s Thesis, University Paris 1 Panthéon-Sorbonne, Paris, France, 1987. [Google Scholar]
- de Saussure, F. Cours de Linguistique Générale; Payot: Lausanne, Switzerland, 1916. [Google Scholar]
- Granger, G.-G. Pensée Formelle et Science de l’homme; Aubier: Paris, France, 1960. [Google Scholar]
- Bourbaki, N. L’architecture des mathématiques—La mathématique ou les mathématiques. In Les Grands Courants de la Pensée Mathématique; le Lionnais, F., Ed.; Cahiers du Sud: Marseilles, France, 1948; pp. 35–47. [Google Scholar] [CrossRef]
- Bourbaki, N. Eléments de Mathématique; Hermann: Paris, France, 1939. [Google Scholar]
- Heidegger, M. Die Frage nach dem Ding, Zu Kants Lehre von den Transzendentalen Grundsätzen; Niemeyer: Tübingen, Germany, 1962. [Google Scholar]
- Beziau, J.-Y. Being aware of rational animals. In Representation and Reality: Humans, Animals and Machines; Dodig-Crnkovic, G., Giovagnoli, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 319–331. [Google Scholar]
- Beziau, J.-Y. Risoto et Rosita au Pays du Rire—A Comic Trip for the Few Happy Francophones. Trágica 2019, 12, 125–149. [Google Scholar]
- Serfati, M. La Révolution Symbolique. La Constitution de l’écriture Symbolique Mathématique; Pétra: Paris, France, 2005. [Google Scholar]
- Beziau, J.-Y.; The Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Personal email communication to D.Liao MDPI, 2021.
- Logica Universalis. Available online: https://www.springer.com/journal/11787/ (accessed on 9 May 2023).
- Li, J.; MDPI, Basel, Switzerland. Personal email communication to J.-Y.Beziau, 2021.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beziau, J.-Y. Why Logics? Logics 2023, 1, 148-156. https://doi.org/10.3390/logics1030007
Beziau J-Y. Why Logics? Logics. 2023; 1(3):148-156. https://doi.org/10.3390/logics1030007
Chicago/Turabian StyleBeziau, Jean-Yves. 2023. "Why Logics?" Logics 1, no. 3: 148-156. https://doi.org/10.3390/logics1030007
APA StyleBeziau, J.-Y. (2023). Why Logics? Logics, 1(3), 148-156. https://doi.org/10.3390/logics1030007