PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism?
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
ALS | Amyotrophic lateral sclerosis |
AMP | 5′adenosine monophosphate |
AMPK | AMP-activated protein kinase |
APBD | Adult polyglucosan body disease |
MND | Motor neuron disease |
MRI | Magnetic resonance imaging |
mTOR | Mammalian target of rapamycin |
NGS | Next-generation sequencing |
PGC1alpha | PPAR coactivator-1 alpha |
PPAR | Peroxisome proliferator-activated receptor |
PRKAG2 | Protein kinase, AMP-activated, noncatalytic, subunit gamma 2 |
SQSTM1 | Sequestosome 1 |
TDP-43 | Transactive response DNA-binding protein 43 |
WES | Whole-exome sequencing |
WPWS | Wolff–Parkinson–White syndrome |
References
- Korb, M.K.; Kimonis, V.E.; Mozaffar, T. Multisystem proteinopathy: Where myopathy and motor neuron disease converge. Muscle. Nerve 2021, 63, 442–454. [Google Scholar] [CrossRef]
- Sgobbi de Souza, P.V.; Badia, B.M.L.; Gonçalves, E.A.; Farias, I.B.; Pinto, W.B.V.R.; Oliveira, A.S.B. Hereditary Inclusion body myopathy: A clinical and genetic review. Rev. Neurocienc. 2020, 28, 1–23. [Google Scholar] [CrossRef]
- Cheung, P.C.; Salt, I.P.; Davies, S.P.; Hardie, D.G.; Carling, D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 2000, 346, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Yavari, A.; Sarma, D.; Sternick, E.B. Human gamma2-AMPK mutation. Methods Mol. Biol. 2018, 1732, 581–619. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Yu, P.; Wu, T.; He, Y.; Zhou, K.; Hua, Y.; Lin, S.; Wang, T.; Huang, H.; Li, Y. Controversial molecular functions of CBS versus non-CBS domain variants of PRKAG2 in arrhythmia and cardiomyopathy: A case report and literature review. Mol. Genet. Genom. Med. 2022, 10, e1962. [Google Scholar] [CrossRef]
- Banankhah, P.; Fishbein, G.A.; Dota, A.; Ardehali, R. Cardiac manifestations of PRKAG2 mutation. BMC. Med. Genet. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Porto, A.G.; Brun, F.; Severini, G.M.; Losurdo, P.; Fabris, E.; Taylor, M.R.G.; Mestroni, L.; Sinagra, G. Clinical spectrum of PRKAG2 syndrome. Circ. Arrhythmia Electrophysiol. 2016, 9, e003121. [Google Scholar] [CrossRef]
- Shen, C.; Liu, L.; Jiang, Z.; Zheng, X.; Meng, L.; Yin, X.; Gao, J.; Sheng, Y.; Gao, J.; Li, Y.; et al. Four genetic variants interact to confer susceptibility to atopic dermatitis in Chinese Han population. Mol. Genet. Genom. 2015, 290, 1493–1498. [Google Scholar] [CrossRef]
- Kim, E.; Lee, S.H.; Lee, K.S.; Cheong, H.K.; Namkoong, K.; Hong, C.H.; Oh, B.H. AMPK gamma2 subunit gene PRKAG2 polymorphism associated with cognitive impairment as well as diabetes in old age. Psychoneuroendocrinology 2012, 37, 358–365. [Google Scholar] [CrossRef]
- Giudici, M.C.; Ahmad, F.; Holanda, D.G. Patient with a PRKAG2 mutation who developed Immunoglobulin A nephropathy: A case report. Eur. Heart. J. Case Rep. 2019, 3, ytz038. [Google Scholar] [CrossRef]
- Beyzaei, Z.; Ezgu, F.; Geramizadeh, B.; Alborzi, A.; Shojazadeh, A. Novel PRKAG2 variant presenting as liver cirrhosis: Report of a family with 2 cases and review of literature. BMC. Med. Genom. 2021, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Vandoorne, T.; Steyaert, J.; Staats, K.A.; Van den Bosch, L. The multifaceted role of kinases in amyotrophic lateral sclerosis: Genetic, pathological and therapeutic implications. Brain 2020, 143, 1651–1673. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Hedberg-Oldfors, C.; Oldfors, A. Polyglucosan storage myopathies. Mol. Asp. Med. 2015, 46, 85–100. [Google Scholar] [CrossRef]
- Arad, M.; Benson, D.W.; Perez-Atayde, A.R.; McKenna, W.J.; Sparks, E.A.; Kanter, R.J.; McGarry, K.; Seidman, J.; Seidman, C.E. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Investig. 2002, 109, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Arad, M.; Maron, B.J.; Gorham, J.M.; Johnson, W.H., Jr.; Saul, J.P.; Perez-Atayde, A.R.; Spirito, P.; Wright, G.B.; Kanter, R.J.; Seidman, C.E.; et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N. Engl. J. Med. 2005, 352, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Arad, M.; Moskowitz, I.P.; Patel, V.V.; Ahmad, F.; Perez-Atayde, A.R.; Sawyer, D.B.; Walter, M.; Li, G.H.; Burgon, P.G.; Maguire, C.T.; et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 2003, 107, 2850–2856. [Google Scholar] [CrossRef] [PubMed]
- Laforêt, P.; Oldfors, A.; Malfatti, E.; Vissing, J.; ENMC 251st Workshop Study Group. 251st ENMC international workshop: Polyglucosan storage myopathies 13–15 December 2019, Hoofddorp, the Netherlands. Neuromuscul. Disord. 2021, 31, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, P.; Martins, R.N. PRKAG2 gene expression is elevated and its protein levels are associated with increased amyloid-beta accumulation in the Alzheimer’s disease brain. J. Alzheimers Dis. 2020, 74, 441–448. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ju, T.C.; Chen, H.M.; Jan, Y.S.; Lee, L.M.; Lai, H.L.; Tai, H.-C.; Fang, J.-M.; Lin, Y.-L.; Tu, P.-H.; et al. Activation of AMP-activated protein kinase a1 mediates mislocalization of TDP-43 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2015, 24, 787–801. [Google Scholar] [CrossRef]
- Perera, N.D.; Sheean, R.K.; Scott, J.W.; Kemp, B.E.; Horne, M.K.; Turner, B.J. Mutant TDP43 deregulates AMPK activation by PP2A in ALS models. PLoS ONE 2014, 9, e95549. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Kuo, S.W.; Chen, L.; Heckman, C.J.; Jiang, M.C. The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis. PLoS ONE 2017, 12, e0172246. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 2021, 7, eabh2169. [Google Scholar] [CrossRef] [PubMed]
- Rosso, P.; Fioramonti, M.; Fracassi, A.; Marangoni, M.; Taglietti, V.; Siteni, S.; Segatto, M. AMPK in the central nervous system: Physiological roles and pathological implications. Res. Rep. Biol. 2016, 7, 1–13. [Google Scholar] [CrossRef]
- Souza, P.V.S.; Badia, B.M.L.; Farias, I.B.; Pinto, W.B.V.R.; Oliveira, A.S.B.; Akman, H.O.; DiMauro, S. GBE1-related disorders: Adult polyglucosan body disease and its neuromuscular phenotypes. J. Inherit. Metab. Dis. 2021, 44, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Canosa, A.; Grassano, M.; Moglia, C.; Iazzolino, B.; Peotta, L.; Gallone, S.; Brunetti, M.; Barberis, M.; Sbaiz, L.; Palumbo, F.; et al. GBA variants influence cognitive status in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Vacchiano, V.; Bartoletti-Stella, A.; Rizzo, G.; Avoni, P.; Parchi, P.; Salvi, F.; Liguori, R.; Capellari, S. Frequency of Parkinson’s disease genes and role of PARK2 in Amyotrophic Lateral Sclerosis: An NGS study. Genes 2022, 13, 1306. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Schapira, A.H.V. GBA variants and Parkinson disease: Mechanisms and treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, G.; Fratila, O.; Buhas, C.; Judea-Pusta, C.T.; Negrut, N.; Bustea, C.; Bungau, S. Cross-talks among GBA mutations, glucocerebrosidase, and alpha-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: A comprehensive review. Transl. Neurodegener. 2021, 10, 4. [Google Scholar] [CrossRef]
- Souza, P.V.S.; Bortholin, T.; Naylor, F.G.M.; Chieia, M.A.T.; Pinto, W.B.V.R.; Oliveira, A.S.B. Motor neuron disease in Inherited neurometabolic disorders. Rev. Neurol. 2018, 174, 115–124. [Google Scholar] [CrossRef]
- Sun, A.G.; Wang, J.; Shan, Y.Z.; Yu, W.J.; Li, X.; Cong, C.H.; Wang, X. Identifying distinct candidate genes for early Parkinson’s disease by analysis of gene expression in whole blood. Neuro Endocrinol. Lett. 2014, 35, 398–404. [Google Scholar] [PubMed]
Main Phenotypes Associated with PRKAG2 Variants | Pattern of Inheritance | Age at Onset | Clinical Presentation |
---|---|---|---|
Familial hypertrophic cardiomyopathy type 6 (MIM #600858) | Autosomal dominant | Variable; generally juvenile or adult onset | Hypertrophic cardiomyopathy; atrial fibrillation, ventricular preexcitation syndrome; atrioventricular block; skeletal myopathy (rare) |
Wolff–Parkinson–White syndrome (MIM #194200) | Autosomal dominant | Variable; childhood or early adulthood onset | Ventricular preexcitation syndrome; typical delta wave; short PR interval; widened QRS complex; supraventricular tachycardia, atrial fibrillation; palpitation; sudden cardiac death |
Lethal congenital glycogen storage disease of the heart (MIM #261740) | Autosomal dominant | Neonatal onset | Hypertrophic cardiomyopathy; vacuolar cardiomyopathy, congestive heart failure; association with preexcitation syndrome/Wolff–Parkinson–White syndrome; skeletal myopathy; severe presentation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsini, M.; Pinto, W.B.V.d.R.; Sgobbi, P.; Oliveira, A.S.B. PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism? Muscles 2024, 3, 235-241. https://doi.org/10.3390/muscles3030021
Orsini M, Pinto WBVdR, Sgobbi P, Oliveira ASB. PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism? Muscles. 2024; 3(3):235-241. https://doi.org/10.3390/muscles3030021
Chicago/Turabian StyleOrsini, Marco, Wladimir Bocca Vieira de Rezende Pinto, Paulo Sgobbi, and Acary Souza Bulle Oliveira. 2024. "PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism?" Muscles 3, no. 3: 235-241. https://doi.org/10.3390/muscles3030021
APA StyleOrsini, M., Pinto, W. B. V. d. R., Sgobbi, P., & Oliveira, A. S. B. (2024). PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism? Muscles, 3(3), 235-241. https://doi.org/10.3390/muscles3030021