Review of the Simulators Used in Pharmacology Education and Statistical Models When Creating the Simulators
Abstract
:1. Introduction
2. Simulators Used in Pharmacology Education
2.1. Free Downloadable Simulators
2.2. Commercial Simulators
3. Statistical Models for Computer Simulation
3.1. Statistical Model for Bioassay
3.2. Statistical Model for Reaction Time
3.3. Limitations of These Statistical Models
4. Sigmoid Curves Used in Statistical Models
4.1. Logistic Curve
4.2. CDF of Normal Distribution
4.3. Gompertz Curve
4.4. Von Bertalanffy Curve
4.5. CDF of the Weibull Distribution
4.6. Comparison of Sigmoid Curves
5. Hierarchical Bayesian Model
5.1. Advantages of Using the Hierarchical Bayesian Model in a Computer Simulation
5.2. Example of a Statistical Model Using Hierarchical Bayesian Model
5.2.1. Statistical Model for Local Anesthetic Agents and Parameter Estimation
- (1)
- Shave the hair on the back of the guinea pig
- (2)
- Inject 0.1 mL of saline and 5 drugs intradermally: procaine (Pro), lidocaine (Lid), mepivacaine (Mep), bupivacaine (Bup), and Lid + adrenaline
- (3)
- Mark each injection site papule enclosed in a circle using a magic marker
- (4)
- Stimulate six times at each papule with a needle. Count the number of skin contractions. This number is defined as the score. The score value is 0 to 6.
- (5)
- Stimulate at 5 min intervals up to 120 min. When a score of 6 is obtained three times in a row, the stimulation is finished, and that time is defined as the duration.
- (1)
- Drug concentration in local tissue decreases exponentially. This concentration is determined by elapsed time (t) and the presence or absence of adrenaline () (Equation (11)). When adrenaline is present, the rate of decrease in local concentration becomes smaller (the slope is decreased). Initial log concentration and slope were set to 100 and , respectively.t is time (minute)is the dummy variable for adrenaline(0 when adrenaline is absent, 1 when adrenaline is present).
- (2)
- The probability of reacting to needle stimulation (p) is determined as the upper probability of normal distribution (mean is and SD is ) based on drug concentration at stimulation time (Equation (12)). The number of reactions to stimulation (score value, Score) follows a binomial distribution at this probability (Equation (13)).i = 1, 2, 3, 4 (drug number; 1: Pro; 2, Lid: 3, Mep, 4: Bup)j = 1, 2, ⋯, 51 (individual number)Bi is the probability mass function for the binomial distribution.
- (3)
- The parameters ( and ) for distribution of each drug and individual follow normal and lognormal distributions, respectively (Figure 6B). follows a normal distribution (mean is and SD is ) (Equation (14)). As must be positive, was assumed to follow a lognormal distribution (mean is and SD is ) (Equation (15)).
- (4)
- The following distributions are assumed for the prior distribution of parameters. follows a Cauchy distribution (Equation (16)). follows a half Cauchy distribution (Equation (17)). follows a normal distribution (Equation (18)). and adr follow uniform distributions (Equations (19) and (20)).
5.2.2. Computer Simulation for Local Anesthetic Agents
- (1)
- the parameters ( and ) are generated by a random number generator following a normal or lognormal distribution, respectively.
- (drug number; 1: Pro; 2, Lid: 3, Mep, 4: Bup)
- (individual number)
- (2)
- score values are determined by a random number generator following a binomial distribution for this probability
- determine how many responses occur when stimulated six times
- (3)
- repeat this operation 100 times (for 100 individuals)
- (4)
- determine the duration of each drug and individual
- compare the median of duration among drugs by survival analysis
- evaluate the differences in duration among drugs and the effect of a vasoconstrictor (adrenaline) on duration
5.2.3. Improved Statistical Model Considering the Correlation Among Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ED50 | effective dose 50% |
TD50 | toxic dose 50% |
LD50 | lethal dose 50% |
CDF | cumulative distribution function |
SD | standard deviation |
Appendix A. Approximate Formulas
Appendix A.1. CDF of the Standard Normal Distribution
Appendix A.2. Probit Function
Appendix B. Things to Consider When Creating a Simulator
- (1)
- Distribution of parameters—Which distribution do parameters follow?
- (2)
- Selection of program language including execution environment
- (3)
- Function to generate random numbers including the usage of extra packages
External Packages for Multivariate Normal Distribution
References
- Council, N.R. Guide for the Care and Use of Laboratory Animals: Eighth Edition; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- University of Strathclyde. Strathclyde Pharmacology Simulations. Available online: http://spider.science.strath.ac.uk/sipbs/page.php?page=software_sims (accessed on 28 October 2024).
- eGrid Corporation. Pharmaco-PICOS: Pharmacological Practice of Intestine and Cardiovascular Organ Simulator. Available online: https://pharmaco-picos.education (accessed on 28 October 2024).
- ERISA. BMP-VR: Basic Medicine Practice-Virtual Reality. Available online: https://jstories.media/article/animal-experiments (accessed on 28 October 2024).
- Certara. Simcyp™: PBPK Tech-Driven Services Predict Clinical Outcomes from Virtual Populations. Available online: https://www.certara.com/services/simcyp-pbpk (accessed on 28 October 2024).
- Plus, S. PKPlus™ Module Extends GastroPlus®: PBPK & PBBM Modeling Software. Available online: https://www.simulations-plus.com/software/gastroplus/pk-models (accessed on 28 October 2024).
- Ara, T.; Kitamura, H. Development of a Predictive Statistical Pharmacological Model for Local Anesthetic Agent Effects with Bayesian Hierarchical Model Parameter Estimation. Medicines 2023, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Ara, T.; Kitamura, H. Improvement of local anesthetics agents’ simulation using Monte Carlo simulation considering correlation among parameters. Biomedinformatics 2024, 1–24. [Google Scholar] [CrossRef]
- Ezeala, C.C. Integration of computer-simulated practical exercises into undergraduate medical pharmacology education at Mulungushi University, Zambia. J. Educ. Eval. Health Prof. 2020, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.B.; Barta, L. Simulation as a Tool to Illustrate Clinical Pharmacology Concepts to Healthcare Program Learners. Curr. Pharmacol. Rep. 2020, 6, 182–191. [Google Scholar] [CrossRef]
- Borghardt, J.M.; Weber, B.; Staab, A.; Kloft, C. Pharmacometric Models for Characterizing the Pharmacokinetics of Orally Inhaled Drugs. AAPS J. 2015, 14, 853–870. [Google Scholar] [CrossRef]
- Ara, T. simla-ts (Ver 2.1.0). 2024. Available online: https://toshi-ara.github.io/simla-ts/sim_local_anesthetics.html (accessed on 23 October 2024). [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 4th ed.; South-Western Cengage Learning: Boston, MA, USA, 2009; Chapter 15. [Google Scholar]
- Iwaya, T.; Tanaka, T. Monte Carlo Simulation and Distribution Characteristics of the Estimates by Probit and Staircase Methods [in Japanese]. J. Soc. Mater. Sci. Jpn. 1990, 39, 914–920. [Google Scholar] [CrossRef]
- Ritteri, J.; Flower, R.; Henderson, G.; Loke, Y.K.; MacEwan, D.; Rang, H. Rang & Dale’s Pharmacology, 9th ed.; Elsevier: Amsterdam, The Nederland, 2019. [Google Scholar]
- Brunton, L.; Knollman, B.C. Pharmacological Basis of Therapeutics, 14th ed.; McGraw-Hill Education: New York City, NY, USA, 2022. [Google Scholar]
- Golan, D.E.; Tashjian, A.H., Jr.; Armstrong, E.J.; Armstrong, A.W. Principles of Clinical Pharmacology: The Pathophysiologic Basis of Drug Therapy, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2011. [Google Scholar]
- Kawanishi, D.T.; Brinker, J.A.; Reeves, R.; Kay, G.N.; Gross, J.; Pioger, G.; Petitot, J.C.; Esler, A.; Grunkemeier, G. Cumulative Hazard Analysis of J-Wire Fracture in the Accufix Series of Atrial Permanent Pacemaker Leads. Pacing Clin. Electrophysiol. 1998, 21, 2322–2326. [Google Scholar] [CrossRef]
- Lord, P.F.; Kapp, D.S.; Hayes, T.; Weshler, Z. Production of systemic hyperthermia in the rat. Eur. J. Cancer Clin. Oncol. 1984, 20, 1079–1085. [Google Scholar] [CrossRef]
- Gonsowski, C.T.; Laster, M.J.; Eger, E.I.; Ferrell, L.D.; Kerschmann, R.L. Toxicity of Compound A in Rats: Effect of a 3-Hour Administration. Anesthesiology 1994, 80, 556–565. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Li, J.; Shan, X.; Chen, Y.; Xu, C.; Tang, L.; Jiang, H. Fitting of Growth Curves and Estimation of Genetic Relationship between Growth Parameters of Qianhua Mutton Merino. Genes 2024, 15, 390. [Google Scholar] [CrossRef]
- Anellis, A.; Werkowski, S. Estimation of Radiation Resistance Values of Microorganisms in Food Products. Appl. Microbiol. 1968, 16, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Little, R.A. Resistance to post-traumatic fluid loss at different ages. Br. J. Exp. Pathol. 1972, 53, 341–346. [Google Scholar] [PubMed]
- Taylor, S.E.; Dorris, R.L. Modification of local anesthetic toxicity by vasoconstrictors. Anesth. Prog. 1989, 36, 79–87. [Google Scholar] [PubMed]
- Verma, S.S.; Gupta, R.K.; Nayar, H.S.; Rai, R.M. Gompertz curve in physiology: An application. Indian J. Physiol. Pharmacol. 1982, 26, 47–53. [Google Scholar]
- Vaghi, C.; Rodallec, A.; Fanciullino, R.; Ciccolini, J.; Mochel, J.P.; Mastri, M.; Ebos, J.M.L.; Benzekry, S. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS computational biology. PLoS Comput. Biol. 2020, 16, e1007178. [Google Scholar] [CrossRef]
- Ogunrinu, O.J.; Norman, K.N.; Vinasco, J.; Levent, G.; Lawhon, S.D.; Fajt, V.R.; Volkova, V.V.; Gaire, T.; Poole, T.L.; Genovese, K.J.; et al. Can the use of older-generation beta-lactam antibiotics in livestock production over-select for beta-lactamases of greatest consequence for human medicine? An in vitro experimental model. PLoS ONE 2020, 15, e0242195. [Google Scholar] [CrossRef]
- Phillips, B.F.; Campbell, N.A. A new method of fitting the von Bertalanffy growth curve using data on the whelk Dicathais. Growth 1968, 32, 317–329. [Google Scholar]
- Kühleitner, M.; Brunner, N.; Nowak, W.G.; Renner-Martin, K.; Scheicher, K. Best-fitting growth curves of the von Bertalanffy-Pütter type. Poult. Sci. 2019, 98, 3587–3592. [Google Scholar] [CrossRef]
- Kühleitner, M.; Brunner, N.; Nowak, W.G.; Renner-Martin, K.; Scheicher, K. Best fitting tumor growth models of the von Bertalanffy-PütterType. BMC Cancer 2019, 12, 683. [Google Scholar] [CrossRef]
- Lee, L.; Atkinson, D.; Hirst, A.G.; Cornell, S.J. A new framework for growth curve fitting based on the von Bertalanffy Growth Function. Sci. Rep. 2020, 10, 7953. [Google Scholar] [CrossRef] [PubMed]
- Demirer, R.M.; Kesebir, S. The entropy of chaotic transitions of EEG phase growth in bipolar disorder with lithium carbonate. Sci. Rep. 2021, 11, 11888. [Google Scholar] [CrossRef]
- van Hagen, M.A.E.; Ducro, B.J.; van den Broek, J.; Knol, B.W. Incidence, risk factors, and heritability estimates of hind limb lameness caused by hip dysplasia in a birth cohort of boxers. Am. J. Vet. Res. 2005, 66, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, Y.R.; Lee, J.H.; Lee, J.H.; Kim, Y.H.; Huh, J.W. Development of a Real-Time Risk Prediction Model for In-Hospital Cardiac Arrest in Critically Ill Patients Using Deep Learning: Retrospective Study. JMIR Med. Inform. 2020, 8, e16349. [Google Scholar] [CrossRef]
- Kuurman, W.; Bailey, B.; Koops, W.; Grossman, M. A model for failure of a chicken embryo to survive incubation. Poult. Sci. 2003, 82, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Gil-Pozo, A.; Astudillo-Rubio, D.; Cascales, Á.F.; Inchingolo, F.; Hirata, R.; Sauro, S.; Delgado-Gaete, A. Effect of gastric acids on the mechanical properties of conventional and CAD/CAM resin composites - An in-vitro study. J. Mech. Behav. Biomed. Mater. 2024, 155, 106565. [Google Scholar] [CrossRef]
- Meng, H.; Xu, Y. Pirfenidone-loaded liposomes for lung targeting: Preparation and in vitro/in vivo evaluation. Drug Des. Dev. Ther. 2015, 2015, 3369–3376. [Google Scholar] [CrossRef]
- Falcinelli, S.D.; Kilpatrick, K.W.; Read, J.; Murtagh, R.; Allard, B.; Ghofrani, S.; Kirchherr, J.; James, K.S.; Stuelke, E.; Baker, C.; et al. Longitudinal Dynamics of Intact HIV Proviral DNA and Outgrowth Virus Frequencies in a Cohort of Individuals Receiving Antiretroviral Therapy. J. Infect. Dis. 2020, 224, 92–100. [Google Scholar] [CrossRef]
- Verhulst, P.F. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles; Nabu Press: Charleston, SC, USA, 1845; Volume 18, p. 8. [Google Scholar]
- Bliss, C.I. The Method of Probits. Science 1934, 79, 38–39. [Google Scholar] [CrossRef]
- Epremian, E.; Mehl, R.F. Investigation of Statistical Nature of Fatigue Properties; National Advisory Committee for Aeronautics: Washington, DC, USA, 1952; Technical Note 2719. [Google Scholar]
- Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 1825, 115, 513–585. [Google Scholar] [CrossRef]
- Winsor, C.P. The Gompertz Curve as a Growth Curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- von Bertalanffy, L. Untersuchungen Über die Gesetzlichkeit des Wachstums. I. Teil: Allgemeine Grundlagen der Theorie; Mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Wilhelm Roux Arch. Entwickl. Mech. Org. 1934, 131, 613–652. [Google Scholar] [CrossRef]
- Weibull, W. The Statistical Theory of the Strength of Materials. Ingeniors Vetenskaps Academy Handlingar (151); Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1939; pp. 1–45. [Google Scholar]
- Rosin, P.; Rammler, E. The Laws Governing the Fineness of Powdered Coal. J. Inst. Fuel 1933, 7, 29–36. [Google Scholar]
- Yada, S.; Hamada, C. Application of Bayesian hierarchical models for phase I/II clinical trials in oncology. Pharm. Stat. 2017, 16, 114–121. [Google Scholar] [CrossRef]
- Fouarge, E.; Monseur, A.; Boulanger, B.; Annoussamy, M.; Seferian, A.M.; Lucia, S.D.; Lilien, C.; Thielemans, L.; Paradis, K.; Cowling, B.S.; et al. Hierarchical Bayesian modelling of disease progression to inform clinical trial design in centronuclear myopathy. Orphanet J. Rare Dis. 2021, 16, 3. [Google Scholar] [CrossRef]
- Haber, L.T.; Reichard, J.F.; Henning, A.K.; Dawson, P.; Chinthrajah, R.S.; Sindher, S.B.; Long, A.; Vincent, M.J.; Nadeau, K.C.; Allen, B.C. Bayesian hierarchical evaluation of dose-response for peanut allergy in clinical trial screening. Food Chem. Toxicol. 2021, 151, 112125. [Google Scholar] [CrossRef]
- Curigliano, G.; Gelderblom, H.; Mach, N.; Doi, T.; Tai, D.; Forde, P.M.; Sarantopoulos, J.; Bedard, P.L.; Lin, C.C.; Hodi, F.S.; et al. Phase I/Ib Clinical Trial of Sabatolimab, an Anti-TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti-PD-1 Antibody, in Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3620–3629. [Google Scholar] [CrossRef]
- Gotuzzo, A.G.; Piles, M.; Della-Flora, R.P.; Germano, J.M.; Reis, J.S.; Tyska, D.U.; Dionello, N.J.L. Bayesian hierarchical model for comparison of different nonlinear function and genetic parameter estimates of meat quails. Poult. Sci. 2019, 98, 1601–1609. [Google Scholar] [CrossRef]
- Paun, I.; Husmeier, D.; Hopcraft, J.G.C.; Masolele, M.M.; Torney, C.J. Inferring spatially varying animal movement characteristics using a hierarchical continuous-time velocity model. Ecol. Lett. 2022, 25, 2726–2738. [Google Scholar] [CrossRef]
- Ramos, A.N.; Fenton, F.H.; Cherry, E.M. Bayesian inference for fitting cardiac models to experiments: Estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation. Med. Biol. Eng. Comput. 2023, 61, 75–95. [Google Scholar] [CrossRef]
- Yang, W.; Tempelman, R.J. A Bayesian antedependence model for whole genome prediction. Genetics 2012, 190, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Selle, M.L.; Steinsland, I.; Lindgren, F.; Brajkovic, V.; Cubric-Curik, V.; Gorjanc, G. Hierarchical Modelling of Haplotype Effects on a Phylogeny. Front. Genet. 2021, 11, 531218. [Google Scholar] [CrossRef] [PubMed]
- Mukaddim, R.A.; Meshram, N.H.; Mitchell, C.C.; Varghese, T. Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and Vivo Validation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1708–1722. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.C. Special Functions of Mathematics for Engineers, 2nd ed.; SPIE Press: Bellingham, WA, 1998; p. 110. [Google Scholar]
- Muller, R. Sequence A007680 in the On-Line Encyclopedia of Integer Sequences (n.d.). Available online: https://oeis.org/A007680 (accessed on 11 November 2024).
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; The Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1972. Available online: https://personal.math.ubc.ca/~cbm/aands/index.htm (accessed on 9 November 2024).
- Carlitz, L. The inverse of the error function. Pac. J. Math. 1963, 13, 459–470. [Google Scholar] [CrossRef]
- Toda, H. An Optimal Rational Approximation for Normal deviates for Digital Computers. Bull. Electrotech. Lab. 1967, 31, 1259–1270. [Google Scholar]
- Guennebaud, G.; Jacob, B.; Avery, P.; Bachrach, A.; Barthelemy, S.; Becker, C.; Benjamin, D.; Berger, C.; Blanco, J.L.; Borgerding, M.; et al. Eigen v3. 2010. Available online: http://eigen.tuxfamily.org (accessed on 11 November 2024).
- Genz, A.; Bretz, F. Computation of Multivariate Normal and t Probabilities; Lecture Notes in Statistics; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Weissmann, B. Multivariate-Normal (v0.1.2): A Pure-Javascript Port of NumPy’s random.multivariate_normal, for node.js and the Browser. 2023. Available online: https://www.npmjs.com/package/multivariate-normal (accessed on 12 November 2024).
Drugs/Experiments | Measurements | Animals |
---|---|---|
General anesthetic agent | induction time and duration | mouse |
inhalation anesthetics | ||
intravenous anesthetics | ||
Local anesthetic agents * | blink reflex to stimulation of cornea by hair | rabbit |
reaction to stimulation by needle | guinea pig | |
Muscle relaxants * | contraction and relaxation of rectus abdominis | frog |
Autonomic nervous | contraction and relaxation of intestinal tract | guinea pig |
system drugs * | Magnus method | |
Antiinflammatory drugs | edema of footpad induced by carrageenin | rat |
dye leakage from blood vessels in the ear | rabbit | |
Analgesics | reaction to stimulation | |
hot plate test/tail flick test | mouse | |
writhing method/formalin method | mouse | |
tail pinch method | mouse | |
Hemostatic drugs | time until bleeding stops from cut tail | mouse |
anticoagulants | similar to Duke method | |
Bioassay | ||
effective dose 50% (ED50) | effect of analgesics | mouse |
toxic dose 50% (TD50) | convulsions induced by pentetorazol or lidocaine | mouse |
Pharmacokinetics * | blood concentration of administrated reagent | mouse/rat |
Simulator | Contents |
---|---|
OBSim [2] | organ bath simulator |
effect of mainly autonomic nervous drugs on intestinal tract | |
Virtual Cat [2] | simulator of anaesthetized cat |
effect of drugs on cardiovascular and skeletal muscle systems | |
RatCVS [2] | simulator of normal and pithed rat |
effect of drugs on cardiovascular system | |
Virtual Twitch [2] | simulator of rat phrenic nerve-hemidiaphragm preparation |
effect of neuromuscular blocking and reversal agents | |
Virtual NMJ [2] | simulator of electrical potentials at the skeletal neuromuscular junction |
effect of various drugs | |
effect of changes to ionic composition of the extracellular solution | |
Virtual Nerve [2] | simulator of action potential firing of a neuron within a brain slice |
effect of anti-epileptic drugs |
Simulator | Contents |
---|---|
Pharmaco-PICOS [3] | web-based simulator for pharmacodynamics |
intestinal motility and blood pressure | |
BMP-VR (Japanese only) [4] | virtual reality simulator of drug-administrated mice |
acetaminophen, buprenorphine, diazepam, loxoprofen, | |
morphine, phenobarbital, phenytoin, rocuronium | |
Simcyp™ [5] | physiologically based pharmacokinetics |
PKPlus™ Module | compartment and non-compartment analysis |
extends GastroPlus® [6] |
Analysis Method | Fitting Curve | Formula |
---|---|---|
Logistic regression analysis | logistic curve | |
Probit regression analysis | CDF of normal distribution | |
Nonlinear regression analysis | Gompertz curve | |
von Bertalanffy curve | ||
CDF of Weibull distribution | ||
Bayesian Hierarchical model | any function | any formula |
Fitting Curve | Contents | References |
---|---|---|
logistic curve (logistic method) | LD50: exposure time where rats die at given temperatures | [19] |
LD50: concentration of olefin at which rats die | [20] | |
LD50: Monte Carlo study based on cardiac disorder data | [21] | |
modeling of animal growth curve | [22] | |
probit curve (probit method) | radiation resistance values of microorganisms | [23] |
period of rabbit bilateral hind-limb ischemia | [24] | |
effect of vasoconstrictors on local anesthetic toxicity | [25] | |
Gompertz curve | modeling of animal growth curve | [22] |
skin temperature after removing hand from cold water | [26] | |
population modeling of tumor growth curves | [27] | |
modeling of bacterial growth rate with antibiotics | [28] | |
von Bertalanffy curve | modeling of whelk Dicathais growth curve | [29] |
modeling of animal growth curve | [22,30] | |
modeling of tumor growth curve | [31] | |
modeling of aquatic invertebrates growth curve | [32] | |
modeling of EEG phase in bipolar disorder with Li3CO3 | [33] | |
CDF of Weibull distribution | modeling of incidence, risk factors, and heritability | [34] |
modeling of in-hospital cardiac arrest risk prediction | [35] | |
modeling of failure of chicken embryo | [36] | |
modeling of mechanical properties of dental materials | [37] | |
modeling of drug release profiles from liposome | [38] | |
modeling of drug release profiles in drug delivery system | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ara, T.; Kitamura, H. Review of the Simulators Used in Pharmacology Education and Statistical Models When Creating the Simulators. Appl. Biosci. 2025, 4, 6. https://doi.org/10.3390/applbiosci4010006
Ara T, Kitamura H. Review of the Simulators Used in Pharmacology Education and Statistical Models When Creating the Simulators. Applied Biosciences. 2025; 4(1):6. https://doi.org/10.3390/applbiosci4010006
Chicago/Turabian StyleAra, Toshiaki, and Hiroyuki Kitamura. 2025. "Review of the Simulators Used in Pharmacology Education and Statistical Models When Creating the Simulators" Applied Biosciences 4, no. 1: 6. https://doi.org/10.3390/applbiosci4010006
APA StyleAra, T., & Kitamura, H. (2025). Review of the Simulators Used in Pharmacology Education and Statistical Models When Creating the Simulators. Applied Biosciences, 4(1), 6. https://doi.org/10.3390/applbiosci4010006