Posture Analysis in the Sagittal Plane—Practical Guidelines with Reference Values
Abstract
:1. Introduction
- (1)
- The parameters should be measurable with simple methods, without great effort or cost-intensive instruments, and in an objective, reliable and valid manner.
- (2)
- The parameters should be able to capture several areas in the sagittal plane since the transitional areas (lumbosacral transition and thoraco-cervical transition) are particularly critical in terms of stress [13].
- (3)
- Reference values should be available in order to provide a basis for deciding when posture parameters deviate from the norm depending on age and sex.
2. Examination Methodology
2.1. Preparation of the Test Subjects
2.2. Marker Points and Balls
- Lateral malleolus: This landmark can be easily palpated even through socks. The marker should be placed at the center.
- Greater trochanter: The greater trochanter has a significant spatial extent, and as such its center point, projected onto the skin, is difficult to palpate in a reproducible manner. Underwear should be gathered since any point placed on it will shift with the movements of the test subject. Precise positioning on a pair of trousers, as shown in Figure 1, requires a lot of experience.
- Acromion: The acromion can be easily palpated with a little experience. If problems arise, it is recommended to palpate from the clavicle toward the acromioclavicular joint. The marker should be placed on the tip of the acromion process. Here, too, placement on the skin and not on the clothing is important. T-shirts can be gathered up at the sleeve and fixed with tape so that the point can be placed securely.
- C7: The spinous process of the seventh cervical vertebra is usually easily palpable and prominently visible. Sometimes, it is difficult to distinguish it from T1, depending on the individual’s anatomical characteristics. To differentiate them, the spinous process should be palpated and the subject should rotate their head to the left and right. The spinous process of C7 moves at the endpoint of the rotation, but T1 usually remains stationary.
- S1: The spinous process of the first sacral vertebra can be easily located by first identifying the PSIS. It is about the width of a thumb above (Figure 2).
- PSIS: The posterior superior iliac spines are located beneath the lumbar dimples. The level of the dimples approximately corresponds to the level of S2. When placing a hand on the iliac crest with the index finger to the side, the horizontally spread thumb points toward the PSISs. When palpating, move the finger you are using to palpate slightly so that you can feel the roughness beneath the skin (Figure 2).
- ASIS: The anterior superior iliac spines are easy to palpate because the iliac crest bends forward at this point.
2.3. Measuring Station
2.4. Posture Measurement
2.5. Analysis
3. Examination Parameters
3.1. Overview of Lateral Posture
3.1.1. Theoretical Background
3.1.2. Anatomical Landmarks
3.1.3. Recommendations
3.2. Anteversion of the Pelvis—Pelvic Tilt
3.2.1. Theoretical Background
3.2.2. Anatomical Landmarks
3.2.3. Reference Values
3.2.4. Recommendation
- Pelvic tilt (men): 7°–15°;
- Pelvic tilt (women): 10°–17°;
- Pelvic tilt (athletes): <13°.
3.3. Forward Inclination of the Body—Body Lean
3.3.1. Theoretical Background
3.3.2. Anatomical Landmarks
3.3.3. Reference Values
- Body lean: 1.73° ± 0.94°;
- 95% confidence interval [1.55°–1.91°].
- Body lean: 1.3° ± 0.88°;
- 95% confidence interval [1.18°–1.42°].
3.3.4. Recommendations
- Body lean (adults): 1.5°–1.6°;
- Body lean (children): <1.3°.
3.4. Forward Tilt of the Head—Craniovertebral Angle
3.4.1. Theoretical Background
3.4.2. Anatomical Landmarks
3.4.3. Reference Values
3.4.4. Recommendations
- Craniovertebral angle: 47°–50°.
3.5. Depth of Lordosis in the Cervical and Lumbar Spine—Fleche Cervicale and Lombaire
3.5.1. Theoretical Background
3.5.2. Anatomical Landmarks
3.5.3. Reference Values
3.5.4. Recommendations
- Normalized FC for men: 12–15% of the trunk height;
- Normalized FC for women: 9.5–14% of the trunk height;
- Normalized FL for men: 6.5–8.5% of the trunk height;
- Normalized FL for women: 7–9% of the trunk height.
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASIS | Anterior superior iliac spine |
PSIS | Posterior superior iliac spine |
C7 | Seventh cervical vertebra |
T1 | First thoracic vertebra |
S1 | First sacral vertebra |
FC | Fleche cervicale |
FL | Fleche lombaire |
CVA | Craniovertebral angle |
PT | Pelvic tilt |
CI | Confidence interval |
BL | Body lean |
References
- Ferreira, E.A.; Duarte, M.; Maldonado, E.P.; Bersanetti, A.A.; Marques, A.P. Quantitative Assessment of Postural Alignment in Young Adults Based on Photographs of Anterior, Posterior, and Lateral Views. J. Manip. Physiol. Ther. 2011, 34, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Vieira, É.C.; Meziat-Filho, N.A.; Ferreira, A.S. Photogrammetric variables used by physical therapists to detect neck pain and to refer for physiotherapeutic intervention: A cross-sectional study. J. Manip. Physiol. Ther. 2019, 42, 254–266. [Google Scholar]
- Sahrmann, S.A. Does postural assessment contribute to patient care? J. Orthop. Sports Phys. Ther. 2002, 32, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.; Veqar, Z. Methods of Postural Assessment Used for Sports Persons. J. Clin. Diagn. Res. JCDR 2014, 8, LE01–LE04. [Google Scholar]
- Potthoff, T.; de Bruin, E.D.; Rosser, S.; Humphreys, B.K.; Wirth, B. A systematic review on quantifiable physical risk factors for non-specific adolescent low back pain. J. Pediatr. Rehabil. Med. 2018, 11, 79–94. [Google Scholar]
- Sugai, K.; Michikawa, T.; Takebayashi, T.; Matsumoto, M.; Nakamura, M.; Nishiwaki, Y. Association between visual classification of kyphosis and future ADL decline in community-dwelling elderly people: The Kurabuchi study. Arch. Osteoporos. 2018, 14, 3. [Google Scholar] [CrossRef]
- Decker, S.; Müller, C.; Omar, M.; Krettek, C.; Schwab, F.; Trobisch, P. Sagittal balance of the spine--clinical importance and radiographic assessment. Z. Orthop. Unfallchirurgie 2015, 154, 128–133. [Google Scholar]
- Hasegawa, K.; Okamoto, M.; Hatsushikano, S.; Shimoda, H.; Ono, M.; Watanabe, K. Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur. Spine J. 2016, 25, 3675–3686. [Google Scholar]
- Le Huec, J.C.; Thompson, W.; Mohsinaly, Y.; Barrey, C.; Faundez, A. Sagittal balance of the spine. Eur. Spine J. 2019, 28, 1889–1905. [Google Scholar] [CrossRef]
- Ouchida, J.; Nakashima, H.; Kanemura, T.; Okamoto, M.; Hatsushikano, S.; Imagama, S.; Le Huec, J.C.; Hasegawa, K. The age-specific normative values of standing whole-body sagittal alignment parameters in healthy adults: Based on international multicenter data. Eur. Spine J. 2023, 32, 562–570. [Google Scholar] [CrossRef]
- Porto, A.B.; Okazaki, V.H.A. Procedures of assessment on the quantification of thoracic kyphosis and lumbar lordosis by radiography and photogrammetry: A literature review. J. Bodyw. Mov. Ther. 2017, 21, 986–994. [Google Scholar] [PubMed]
- Patias, P.; Grivas, T.B.; Kaspiris, A.; Aggouris, C.; Drakoutos, E. A review of the trunk surface metrics used as Scoliosis and other deformities evaluation indices. Scoliosis 2010, 5, 12. [Google Scholar] [PubMed]
- Bruno, A.G.; Anderson, D.E.; D’Agostino, J.; Bouxsein, M.L. The effect of thoracic kyphosis and sagittal plane alignment on vertebral compressive loading. J. Bone Miner. Res. 2012, 27, 2144–2151. [Google Scholar] [CrossRef]
- Czaprowski, D.; Stoliński, Ł.; Tyrakowski, M.; Kozinoga, M.; Kotwicki, T. Non-structural misalignments of body posture in the sagittal plane. Scoliosis Spinal Disord. 2018, 13, 6. [Google Scholar] [CrossRef]
- Smith, A.; O’Sullivan, P.; Straker, L. Classification of sagittal thoraco-lumbo-pelvic alignment of the adolescent spine in standing and its relationship to low back pain. Spine 2008, 33, 2101–2107. [Google Scholar] [CrossRef]
- Stolinski, L.; Kozinoga, M.; Czaprowski, D.; Tyrakowski, M.; Cerny, P.; Suzuki, N.; Kotwicki, T. Two-dimensional digital photography for child body posture evaluation: Standardized technique, reliable parameters and normative data for age 7–10 years. Scoliosis Spinal Disord. 2017, 12, 38. [Google Scholar] [CrossRef]
- Singla, D.; Veqar, Z.; Hussain, M.E. Photogrammetric Assessment of Upper Body Posture Using Postural Angles: A Literature Review. J. Chiropr. Med. 2017, 16, 131–138. [Google Scholar] [CrossRef]
- Ludwig, O.; Mazet, C.; Mazet, D.; Hammes, A.; Schmitt, E. Changes in Habitual and Active Sagittal Posture in Children and Adolescents with and without Visual Input—Implications for Diagnostic Analysis of Posture. J. Clin. Diagn. Res. 2016, 10, SC14–SC17. [Google Scholar]
- do Rosario, J.L. Photographic analysis of human posture: A literature review. J. Bodyw. Mov. Ther. 2014, 18, 56–61. [Google Scholar] [CrossRef]
- van Sint Jan, S. Color Atlas of Skeletal Landmark Definitions E-Book: Guidelines for Reproducible Manual and Virtual Palpations; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Dolphens, M.; Cagnie, B.; Coorevits, P.; Vleeming, A.; Danneels, L. Classification system of the normal variation in sagittal standing plane alignement. Spine 2013, 38, E1003–E1012. [Google Scholar]
- Kendall, H.O.; Kendall, F.P. Developing and maintaining good posture. Phys. Ther. 1968, 48, 319–336. [Google Scholar] [PubMed]
- Johnson, J. Postural Assessment; Human Kinetics: Champaign, IL, USA, 2011. [Google Scholar]
- Suits, W.H. Clinical measures of pelvic tilt in physical therapy. Int. J. sports Phys. Ther. 2021, 16, 1366. [Google Scholar] [PubMed]
- Day, J.W.; Smidt, G.L.; Lehmann, T. Effect of pelvic tilt on standing posture. Phys. Ther. 1984, 64, 510–516. [Google Scholar] [PubMed]
- Elabd, A.M.; Elabd, O.M. Relationships between forward head posture and lumbopelvic sagittal alignment in older adults with chronic low back pain. J. Bodyw. Mov. Ther. 2021, 28, 150–156. [Google Scholar]
- Sorensen, C.J.; Norton, B.J.; Callaghan, J.P.; Hwang, C.-T.; Van Dillen, L.R. Is lumbar lordosis related to low back pain development during prolonged standing? Man. Ther. 2015, 20, 553–557. [Google Scholar] [CrossRef]
- Araújo, F.; Lucas, R.; Alegrete, N.; Azevedo, A.; Barros, H. Sagittal standing posture, back pain, and quality of life among adults from the general population: A sex-specific association. Spine 2014, 39, E782–E794. [Google Scholar]
- Król, A.; Polak, M.; Szczygieł, E.; Wójcik, P.; Gleb, K. Relationship between mechanical factors and pelvic tilt in adults with and without low back pain. J. Back Musculoskelet. Rehabil. 2017, 30, 699–705. [Google Scholar]
- Bayrak, A.; Patlar, S. Increased anterior pelvic tilt angle elevates the risk of hamstring injuries in soccer player. Res. Sports Med. 2024, 33, 129–145. [Google Scholar]
- Biz, C.; Nicoletti, P.; Baldin, G.; Bragazzi, N.L.; Crimi, A.; Ruggieri, P. Hamstring strain injury (HSI) prevention in professional and semi-professional football teams: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 8272. [Google Scholar] [CrossRef]
- Mendiguchia, J.; Garrues, M.A.; Schilders, E.; Myer, G.D.; Dalmau-Pastor, M. Anterior pelvic tilt increases hamstring strain and is a key factor to target for injury prevention and rehabilitation. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 573–582. [Google Scholar]
- Romero, V.; Lahti, J.; Castaño Zambudio, A.; Mendiguchia, J.; Jiménez Reyes, P.; Morin, J.-B. Effects of Fatigue Induced by Repeated Sprints on Sprint Biomechanics in Football Players: Should We Look at the Group or the Individual? Int. J. Environ. Res. Public Health 2022, 19, 14643. [Google Scholar] [CrossRef] [PubMed]
- Bibrowicz, K.; Szurmik, T.; Lipowicz, A.; Walaszek, R.; Mitas, A. Tilt and mobility of the hip girdle in the sagittal and frontal planes in healthy subjects aged 19–30 years. J. Back Musculoskelet. Rehabil. 2022, 35, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J. Sex difference in the range of pelvic tilt in sitting and standing among korean young adults. Phys. Ther. Korea 2020, 27, 149–154. [Google Scholar] [CrossRef]
- Krawczky, B.; Pacheco, A.G.; Mainenti, M.R. A systematic review of the angular values obtained by computerized photogrammetry in sagittal plane: A proposal for reference values. J. Manip. Physiol. Ther. 2014, 37, 269–275. [Google Scholar] [CrossRef]
- Sinzato, C.R.; Taciro, C.; Pio, C.d.A.; Toledo, A.M.d.; Cardoso, J.R.; Carregaro, R.L. Efeitos de 20 sessões do método Pilates no alinhamento postural e flexibilidade de mulheres jovens: Estudo piloto. Fisioter. Pesqui. 2013, 20, 143–150. [Google Scholar] [CrossRef]
- Glaner, M.; Mota, Y.; Viana, A.; Santos, M. Photogrammetry: Reliability and lack of objectivity in posture evaluation. Motricidade 2012, 8, 78–85. [Google Scholar]
- Carregaro, R.; Falcão, J.; Massuda, K.; Masunaga, D.; Sinzato, C.; De Oliveira, A.B.; Padula, R.S. Postural analysis and psychosocial measurements of federal civil servants of an institution of higher education. Work 2012, 41, 4795–4800. [Google Scholar] [CrossRef]
- Herrington, L. Assessment of the degree of pelvic tilt within a normal asymptomatic population. Man. Ther. 2011, 16, 646–648. [Google Scholar] [CrossRef]
- Moraes, G.F.d.S.; Antunes, A.P.; Rezende, E.S.; Oliveira, P.C.R.d. Use of different types of shoes do not interfere in healthy women orthostatic posture. Fisioter. Mov. 2010, 23, 565–574. [Google Scholar] [CrossRef]
- Nguyen, A.D.; Shultz, S.J. Sex differences in clinical measures of lower extremity alignment. J. Orthop. Sports Phys. Ther. 2007, 37, 389–398. [Google Scholar] [CrossRef]
- Sousa, A.S.; Silva, A.; Tavares, J.M. Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: A review. Somat. Mot Res 2012, 29, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Dolphens, M.; Vansteelandt, S.; Cagnie, B.; Vleeming, A.; Nijs, J.; Vanderstraeten, G.; Danneels, L. Multivariable modeling of factors associated with spinal pain in young adolescence. Eur. Spine J. 2016, 25, 2809–2821. [Google Scholar] [CrossRef] [PubMed]
- Dolphens, M.; Vansteelandt, S.; Cagnie, B.; Nijs, J.; Danneels, L. Factors associated with low back and neck pain in young adolescence: A multivariable modeling study. Physiotherapy 2015, 101, e1090–e1091. [Google Scholar] [CrossRef]
- Dolphens, M.; Cagnie, B.; Vleeming, A.; Vanderstraeten, G.; Danneels, L. Gender differences in sagittal standing alignment before pubertal peak growth: The importance of subclassification and implications for spinopelvic loading. J. Anat. 2013, 223, 629–640. [Google Scholar] [CrossRef]
- Dolphens, M.; Cagnie, B.; Coorevits, P. Sagittal standing posture and its association with spinal pain: A school-based epidemiological study of 1196 Flemish adolescents before age at peak height velocity. Spine 2012, 37, 1657–1666. [Google Scholar] [CrossRef]
- Wirth, B.; Potthoff, T.; Rosser, S.; Humphreys, B.K.; de Bruin, E.D. Physical risk factors for adolescent neck and mid back pain: A systematic review. Chiropr. Man. Ther. 2018, 26, 36. [Google Scholar] [CrossRef]
- Dolphens, M.; Cagnie, B.; Vleeming, A.; Vanderstraeten, G.; Coorevits, P.; Danneels, L. A clinical postural model of sagittal alignment in young adolescents before age at peak height velocity. Eur. Spine J. 2012, 21, 2188–2197. [Google Scholar] [CrossRef]
- Dolphens, M.; Cagnie, B.; Coorevits, P.; Vleeming, A.; Palmans, T.; Danneels, L. Posture class prediction of pre-peak height velocity subjects according to gross body segment orientations using linear discriminant analysis. Eur. Spine J. 2014, 23, 530–535. [Google Scholar] [CrossRef]
- Salahzadeh, Z.; Maroufi, N.; Ahmadi, A.; Behtash, H.; Razmjoo, A.; Gohari, M.; Parnianpour, M. Assessment of forward head posture in females: Observational and photogrammetry methods. J. Back Musculoskelet. Rehabil. 2014, 27, 131–139. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, C.-J.; Son, S.-M. Neck pain in adults with forward head posture: Effects of craniovertebral angle and cervical range of motion. Osong Public Health Res. Perspect. 2018, 9, 309. [Google Scholar] [CrossRef]
- Kui, A.; Bereanu, A.; Condor, A.-M.; Pop, D.; Buduru, S.; Labunet, A.; Șoicu, S.; Buduru, R.; Chisnoiu, A. Craniocervical Posture and Malocclusion: A Comprehensive Literature Review of Interdisciplinary Insights and Implications. Medicina 2024, 60, 2106. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.; Veqar, Z. Association Between Forward Head, Rounded Shoulders, and Increased Thoracic Kyphosis: A Review of the Literature. J. Chiropr. Med. 2017, 16, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Hazar, Z.; Karabicak, G.O.; Tiftikci, U. Reliability of photographic posture analysis of adolescents. J. Phys. Ther. Sci. 2015, 27, 3123–3126. [Google Scholar] [CrossRef] [PubMed]
- Helmya, N.A.; El-Sayyadb, M.M.; Kattabeib, O.M. Intra-rater and inter-rater reliability of Surgimap Spine software for measuring spinal postural angles from digital photographs. Bull. Fac. Phys. Ther. 2015, 20, 193–199. [Google Scholar]
- Coelho, J.J.; Graciosa, M.D.; de Medeiros, D.L.; Pacheco, S.C.d.S.; da Costa, L.M.R.; Ries, L.G.K. Influence of flexibility and gender on the posture of school children. Rev. Paul. Pediatr. 2014, 32, 223–228. [Google Scholar] [CrossRef]
- Singla, D.; Veqar, Z. Effect of playing basketball on the posture of cervical spine in healthy collegiate students. Int. J. Biomed. Adv. Res. 2015, 6, 133–136. [Google Scholar]
- Greenfield, B.; Catlin, P.A.; Coats, P.W.; Green, E.; McDonald, J.J.; North, C. Posture in patients with shoulder overuse injuries and healthy individuals. J. Orthop. Sports Phys. Ther. 1995, 21, 287–295. [Google Scholar]
- Raine, S.; Twomey, L. Posture of the head, shoulders and thoracic spine in comfortable erect standing. Aust. J. Physiother. 1994, 40, 25–32. [Google Scholar] [CrossRef]
- Stagnara, P. Les Déformations du Rachis: Scolioses, Cyphoses, Lordoses; Masson: New Delhi, India, 1985. [Google Scholar]
- Stagnara, P.; De Mauroy, J.C.; Dran, G.; Gonon, G.P.; Costanzo, G.; Dimnet, J.; Pasquet, A. Reciprocal angulation of vertebral bodies in a sagittal plane: Approach to references for the evaluation of kyphosis and lordosis. Spine 1982, 7, 335–342. [Google Scholar]
- Ludwig, O.; Dindorf, C.; Kelm, J.; Simon, S.; Nimmrichter, F.; Fröhlich, M. Reference values for sagittal clinical posture assessment in people aged 10 to 69 years. Int. J. Environ. Res. Public Health 2023, 20, 4131. [Google Scholar] [CrossRef]
No. | Condition |
---|---|
1 | As little clothing as possible |
2 | Feet shoulder-width apart |
3 | Knees pointing forward |
4 | Knee joints stretched |
5 | Upper limb hanging loosely, palms facing the body |
6 | Head straight (Frankfurt plane horizontal) |
7 | Relaxed breathing |
8 | Posture relaxed, not consciously tense |
9 | No talking |
10 | No prior muscular exhaustion |
Study | Sex, Number | Mean Value | Standard Deviation | 95% CI | Method | Remarks |
---|---|---|---|---|---|---|
Bibrowicz et al., 2022 [34] | W, n = 176 | 15.8 | 3.5 | 15.3–16.3 | I | |
M, n = 170 | 14.9 | 3.3 | 14.1–15.4 | I | ||
Yoon, 2020 [35] | W, n = 61 | 10.9 | 5.4 | 9.5–12.3 | I | |
M, n = 44 | 8.4 | 5.2 | 6.9–9.9 | I | ||
Krawczky et al., 2014 [36] | M + W n = 94 | 12.3 | 5.8 | 11.1–13.5 | -- | Weighted average of 4 studies |
Sinzato et al., 2013 [37] | W, n = 33 2 subgroups | 16.1 | 4.1 | 14.7–17.5 | P | Initial values of a treatment and a control group |
13.4 | 4.2 | 11.6–15.2 | P | |||
Glaner et al., 2012 [38] | W, n = 30 | 12.6 | 4.2 | 11.1–14.1 | P | |
Carregaro et al., 2012 [39] | W, n = 24 | 15.0 | 6.3 | 12.5–17.5 | P | |
M, n = 13 | 9.5 | 3.8 | 7.4–11.6 | P | ||
Herrington, 2011 [40] | M, n = 55 | 6.74 | n.r. | I | ||
W, n = 41 | 6.93 | n.r. | ||||
Moraes et al., 2010 [41] | W, n = 15 | 12.4 | 4.3 | 10.2–14.6 | P | |
Nguyen & Shultz, 2007 [42] | W, n = 50 | 12.2 | 5.2 | 10.8–13.6 | I | |
M, n = 50 | 8.6 | 4.2 | 7.4–9.8 | I |
Study | Sex, Number | Mean Value | Standard Deviation | 95% CI | Remarks |
---|---|---|---|---|---|
Ferreira et al., 2011 [1] | M + W, n = 22 | 1.68 | 0.44 | 1.50–1.86 | |
Carregaro et al., 2012 [39] | M, n = 13 | 1.60 | 0.42 | 1.37–1.83 | |
W, n = 24 | 0.99 | 0.24 | 0.89–1.09 | ||
Moraes et al., 2010 [41] | W, n = 15 | 2.16 | 1.09 | 1.61–2.71 | |
Krawczky et al., 2014 [36] | M + W, n = 104 | 1.73 | 0.94 | 1.55–1.91 | Weighted average of 4 studies |
Dolphens et al., 2012 [49] | M, n = 639 | 0.00 | 1.12 | −0.09–0.09 | Boys, 12.6 ± 0.54 years |
W, n = 557 | 0.60 | 1.12 | 0.51–0.69 | Girls, 10.6 ± 0.47 years |
Study | Sex, Number | Mean Value Obtuse Angle | Mean Value Acute Angle | Standard Deviation | 95% CI | Remarks |
---|---|---|---|---|---|---|
Kim et al., 2018 [52] | M + W, n = 22 | 131.4 | 48.6 | 1.99 | 47.8–49.3 | Adults |
Hazar et al., 2015 [55] | M + W, n = 30 | 131.6 | 48.4 | 4.9 | 46.7–50.2 | Adolescents, 16 years |
Helmya et al., 2015 [56] | M + W, n = 22 | 131.4 | 48.6 | 8.1 | 45.2–52.0 | Adolescents, 12–18 years, average of 3 raters |
Coelho et al., 2014 [57] | W, n = 15 | 135.6 | 44.4 | 6.69 | 41.0–47.8 | Subgroup of children with normal flexibility, 7–12 years |
M, n = 6 | 137.1 | 42.9 | 2.01 | 41.3–44.5 | ||
Singla & Veqar, 2015 [58] | M, n = 15 | 129.7 | 50.3 | 3.56 | 48.5–52.1 | Adults |
Salahzadeh et al., 2015 [51] | W, n = 12 | 125.0 | 55.0 | 3.30 | 53.1–56.9 | Adults |
Greenfield et al., 1995 [59] | M + W, n = 30 | 128.0 | 52.0 | 4.7 | 50.3–53.7 | Adults |
Raine & Twomey, 1994 [60] | M + W, n = 39 | 128.1 | 51.9 | 4.5 | 50.5–53.3 | Adolescents and adults |
Parameter |
Age Group [Years] | Sex | N | Mean | 25th Percentile | 75th Percentile | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|---|---|
FL% [% trunk height] | 10–15 | female | 44 | 8.99 | 7.13 | 11.27 | 8.14 | 9.86 |
12–16 | male | 159 | 7.13 | 5.06 | 8.74 | 6.70 | 7.60 | |
16–19 17–19 | female | 14 | 7.63 | 6.45 | 8.37 | 6.74 | 8.62 | |
male | 29 | 7.29 | 5.41 | 9.50 | 6.21 | 8.44 | ||
20–29 | female | 105 | 8.35 | 6.51 | 10.47 | 7.81 | 8.92 | |
male | 126 | 7.62 | 5.79 | 9.31 | 7.11 | 8.14 | ||
30–39 | female | 75 | 8.54 | 6.59 | 10.49 | 7.83 | 9.22 | |
male | 90 | 7.85 | 5.72 | 9.98 | 7.24 | 8.49 | ||
40–49 | female | 97 | 8.22 | 6.13 | 10.39 | 7.62 | 8.81 | |
male | 98 | 7.43 | 5.37 | 9.44 | 6.84 | 7.97 | ||
50–59 | female | 99 | 8.52 | 6.69 | 10.68 | 7.94 | 9.12 | |
male | 144 | 7.65 | 5.78 | 9.59 | 7.22 | 8.11 | ||
60–69 | female | 18 | 8.94 | 5.54 | 11.34 | 7.41 | 10.41 | |
male | 29 | 7.41 | 5.74 | 9.31 | 6.51 | 8.28 | ||
FC% [% trunk height] | 10–15 | female | 44 | 12.29 | 9.77 | 14.12 | 11.32 | 13.31 |
12–16 | male | 159 | 13.04 | 11.13 | 15.13 | 12.57 | 13.53 | |
16–19 | female | 14 | 11.64 | 8.62 | 13.97 | 10.22 | 13.21 | |
17–19 | male | 29 | 12.60 | 10.76 | 13.44 | 11.65 | 13.51 | |
20–29 | female | 105 | 11.68 | 9.53 | 13.61 | 11.11 | 12.24 | |
male | 126 | 12.89 | 10.59 | 14.86 | 12.33 | 13.43 | ||
30–39 | female | 75 | 10.42 | 8.35 | 12.44 | 9.63 | 11.22 | |
male | 90 | 13.11 | 11.42 | 15.08 | 12.54 | 13.67 | ||
40–49 | female | 97 | 11.30 | 9.04 | 13.73 | 10.59 | 12.03 | |
male | 98 | 14.13 | 12.45 | 16.21 | 13.54 | 14.71 | ||
50–59 | female | 99 | 12.22 | 10.06 | 14.67 | 11.48 | 12.97 | |
male | 144 | 14.69 | 12.37 | 16.65 | 14.13 | 15.25 | ||
60–69 | female | 18 | 11.66 | 8.55 | 14.47 | 9.17 | 14.27 | |
male | 29 | 14.68 | 12.44 | 16.68 | 13.40 | 15.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig, O. Posture Analysis in the Sagittal Plane—Practical Guidelines with Reference Values. Anatomia 2025, 4, 5. https://doi.org/10.3390/anatomia4020005
Ludwig O. Posture Analysis in the Sagittal Plane—Practical Guidelines with Reference Values. Anatomia. 2025; 4(2):5. https://doi.org/10.3390/anatomia4020005
Chicago/Turabian StyleLudwig, Oliver. 2025. "Posture Analysis in the Sagittal Plane—Practical Guidelines with Reference Values" Anatomia 4, no. 2: 5. https://doi.org/10.3390/anatomia4020005
APA StyleLudwig, O. (2025). Posture Analysis in the Sagittal Plane—Practical Guidelines with Reference Values. Anatomia, 4(2), 5. https://doi.org/10.3390/anatomia4020005