A Fully Validated LC-MS Quantitation Method for Psychoactive Compounds Found in Native South American Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Plant Acquisition and Growth Conditions
2.3. Sample Preparation
2.4. Extraction Method
2.5. Extraction Efficiency Method
2.6. Pre-Extraction Spike Preparation
2.7. Post-Extraction Spike Preparation
2.8. Instrumentation Parameters
2.9. Data Processing
3. Results and Discussion
3.1. Method Validation
3.2. Extraction Efficiency
3.3. Linearity, LOD, and LOQ
3.4. Accuracy and Precision
3.5. Matrix Effect
3.6. Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carbonaro, T.M.; Gatch, M.B. Neuropharmacology of N,N-dimethyltryptamine. Brain Res. Bull. 2016, 126, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Barnwal, P.; Ramasamy, A.; Sen, S.; Mondal, S. Lysergic acid diethylamide: A drug of ‘use’? Ther. Adv. Psychopharmacol. 2016, 6, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.M.; Carvalho, F.; Bastos Mde, L.; Guedes de Pinho, P.; Carvalho, M. The hallucinogenic world of tryptamines: An updated review. Arch. Toxicol. 2015, 89, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Labate, B.C.; Rose, I.S.; Santos, R.G. Ayahuasca Religions: A Comprehensive Bibliography and Critical Essays; Multidisciplinary Association for Psychedelic Studies—MAPS: Santa Cruz, CA, USA, 2009. [Google Scholar]
- Reiff, C.M.; Richman, E.E.; Nemeroff, C.B.; Carpenter, L.L.; Widge, A.S.; Rodriguez, C.I.; Kalin, N.H.; McDonald, W.M.; the Work Group on Biomarkers and Novel Treatments, a Division of the American Psychiatric Association Council of Research. Psychedelics and Psychedelic-Assisted Psychotherapy. Am. J. Psychiatry 2020, 177, 391–410. [Google Scholar] [CrossRef]
- Bender, D.; Hellerstein, D.J. Assessing the risk-benefit profile of classical psychedelics: A clinical review of second-wave psychedelic research. Psychopharmacology 2022, 239, 1907–1932. [Google Scholar] [CrossRef]
- Milliere, R.; Carhart-Harris, R.L.; Roseman, L.; Trautwein, F.M.; Berkovich-Ohana, A. Psychedelics, Meditation, and Self-Consciousness. Front. Psychol. 2018, 9, 1475. [Google Scholar] [CrossRef]
- Siegel, A.N.; Meshkat, S.; Benitah, K.; Lipsitz, O.; Gill, H.; Lui, L.M.W.; Teopiz, K.M.; McIntyre, R.S.; Rosenblat, J.D. Registered clinical studies investigating psychedelic drugs for psychiatric disorders. J. Psychiatr. Res. 2021, 139, 71–81. [Google Scholar] [CrossRef]
- Callaway, J.C.; Brito, G.S.; Neves, E.S. Phytochemical analyses of Banisteriopsis caapi and Psychotria viridis. J. Psychoact. Drugs 2005, 37, 145–150. [Google Scholar] [CrossRef]
- Pickover, C.A. Sex, Drugs, Einstein, & Elves: Sushi, Psychedelics, Parallel Universes, and the Quest for Transcendence; Smart Publications: Coral Springs, FL, USA, 2005. [Google Scholar]
- McKenna, D.J.; Towers, G.H.; Abbott, F. Monoamine oxidase inhibitors in South American hallucinogenic plants: Tryptamine and beta-carboline constituents of ayahuasca. J. Ethnopharmacol. 1984, 10, 195–223. [Google Scholar] [CrossRef]
- Haroz, R.; Greenberg, M.I. Emerging drugs of abuse. Med. Clin. N. Am. 2005, 89, 1259–1276. [Google Scholar] [CrossRef]
- Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol. Rev. 1994, 46, 157–203. [Google Scholar] [PubMed]
- Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; et al. Predicting new molecular targets for known drugs. Nature 2009, 462, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Uthaug, M.V.; Lancelotta, R.; van Oorsouw, K.; Kuypers, K.P.C.; Mason, N.; Rak, J.; Sulakova, A.; Jurok, R.; Maryska, M.; Kuchar, M.; et al. A single inhalation of vapor from dried toad secretion containing 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) in a naturalistic setting is related to sustained enhancement of satisfaction with life, mindfulness-related capacities, and a decrement of psychopathological symptoms. Psychopharmacology 2019, 236, 2653–2666. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Thomson, K.; Ruiz, E.M.; Masten, V.; Buell, M.; Geyer, M.A. The roles of 5-HT1A and 5-HT2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacology 2006, 189, 319–329. [Google Scholar] [CrossRef]
- Nagai, F.; Nonaka, R.; Satoh Hisashi Kamimura, K. The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain. Eur. J. Pharmacol. 2007, 559, 132–137. [Google Scholar] [CrossRef]
- Ly, C.; Greb, A.C.; Cameron, L.P.; Wong, J.M.; Barragan, E.V.; Wilson, P.C.; Burbach, K.F.; Soltanzadeh Zarandi, S.; Sood, A.; Paddy, M.R.; et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 2018, 23, 3170–3182. [Google Scholar] [CrossRef]
- Rivier, L.; Lindgren, J.-E. “Ayahuasca,” the South American hallucinogenic drink: An ethnobotanical and chemical investigation. Econ. Bot. 1972, 26, 101–129. [Google Scholar] [CrossRef]
- Brito-da-Costa, A.M.; Dias-da-Silva, D.; Gomes, N.G.M.; Dinis-Oliveira, R.J.; Madureira-Carvalho, A. Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact. Pharmaceuticals 2020, 13, 334. [Google Scholar] [CrossRef]
- Jahaniani, F.; Ebrahimi, S.A.; Rahbar-Roshandel, N.; Mahmoudian, M. Xanthomicrol is the main cytotoxic component of Dracocephalum kotschyii and a potential anti-cancer agent. Phytochemistry 2005, 66, 1581–1592. [Google Scholar] [CrossRef]
- Chambers, M.I.; Appley, M.G.; Longo, C.M.; Musah, R.A. Detection and Quantification of Psychoactive N,N-Dimethyltryptamine in Ayahuasca Brews by Ambient Ionization High-Resolution Mass Spectrometry. ACS Omega 2020, 5, 28547–28554. [Google Scholar] [CrossRef]
- Santos, M.C.; Navickiene, S.; Gaujac, A. Determination of Tryptamines and beta-Carbolines in Ayahuasca Beverage Consumed During Brazilian Religious Ceremonies. J. AOAC Int. 2017, 100, 820–824. [Google Scholar] [CrossRef] [PubMed]
- Kowalczuk, A.P.; Łozak, A.; Bachliński, R.; Duszyński, A.; Sakowska, J.; Zjawiony, J.K. Identification challenges in examination of commercial plant material of Psychotria viridis. Acta Pol. Pharm. 2015, 72, 747–755. [Google Scholar] [PubMed]
- Eckernas, E.; Bendrioua, A.; Cancellerini, C.; Timmermann, C.; Carhart-Harris, R.; Hoffmann, K.J.; Ashton, M. Development and application of a highly sensitive LC-MS/MS method for simultaneous quantification of N,N-dimethyltryptamine and two of its metabolites in human plasma. J. Pharm. Biomed. Anal. 2022, 212, 114642. [Google Scholar] [CrossRef] [PubMed]
- Protti, M.; Mandrioli, R.; Mercolini, L. Microsampling and LC-MS/MS for antidoping testing of glucocorticoids in urine. Bioanalysis 2020, 12, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Luethi, D.; Kolaczynska, K.E.; Vogt, S.B.; Ley, L.; Erne, L.; Liechti, M.E.; Duthaler, U. Liquid chromatography-tandem mass spectrometry method for the bioanalysis of N,N-dimethyltryptamine (DMT) and its metabolites DMT-N-oxide and indole-3-acetic acid in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022, 1213, 123534. [Google Scholar] [CrossRef]
- Peters, F.T.; Drummer, O.H.; Musshoff, F. Validation of new methods. Forensic Sci. Int. 2007, 165, 216–224. [Google Scholar] [CrossRef]
- Scientific, T.F. Why and How to Matrix Spike. Available online: https://assets.thermofisher.com/TFS-Assets/LPD/Product-Information/Why-How-Matrix-Spike-ST-MATSPIKE-EN.pdf#:~:text=Calculate%20the%20percent%20recovery%20of%20the%20spike%20as,result%29%20x%20100%25%29%20%2F%20Known%20spike%20added%20concentration (accessed on 10 October 2020).
- Vassiliadis, S.; Elkins, A.C.; Reddy, P.; Guthridge, K.M.; Spangenberg, G.C.; Rochfort, S.J. A Simple LC-MS Method for the Quantitation of Alkaloids in Endophyte-Infected Perennial Ryegrass. Toxins 2019, 11, 649. [Google Scholar] [CrossRef]
- Gambelunghe, C.; Aroni, K.; Rossi, R.; Moretti, L.; Bacci, M. Identification of N,N-dimethyltryptamine and beta-carbolines in psychotropic ayahuasca beverage. Biomed. Chromatogr. 2008, 22, 1056–1059. [Google Scholar] [CrossRef]
- Lanaro, R.; Calemi, D.B.; Togni, L.R.; Costa, J.L.; Yonamine, M.; Cazenave Sde, O.; Linardi, A. Ritualistic Use of Ayahuasca versus Street Use of Similar Substances Seized by the Police: A Key Factor Involved in the Potential for Intoxications and Overdose? J. Psychoact. Drugs 2015, 47, 132–139. [Google Scholar] [CrossRef]
- Souza, R.C.Z.; Zandonadi, F.S.; Freitas, D.P.; Tofoli, L.F.F.; Sussulini, A. Validation of an analytical method for the determination of the main ayahuasca active compounds and application to real ayahuasca samples from Brazil. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1124, 197–203. [Google Scholar] [CrossRef]
- Ott, J. Pharmanopo-Psychonautics: Human Intranasal, Sublingual, Intrarectal, Pulmonary and Oral Pharmacology of Bufotenine. J. Psychoact. Drugs 2001, 33, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Hewavitharana, A.K.; Abu Kassim, N.S.; Shaw, P.N. Standard addition with internal standardisation as an alternative to using stable isotope labelled internal standards to correct for matrix effects-Comparison and validation using liquid chromatography-tandem mass spectrometric assay of vitamin D. J. Chromatogr. A 2018, 1553, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Vasil’eva, I.E.; Shabanova, E.V. Plant-Matrix Reference Materials as a Tool for Ensuring the Unity of Chemical Measurements in Geochemistry, Ecology, Agriculture, and Pharmacology. In Reference Materials in Measurement and Technology; Springer: Cham, Switzerland, 2022; pp. 189–203. [Google Scholar]
Compound | RT (min) | Precursor Ion (m/z) [M + H]+ | Fragment Ion 1 (m/z) [M + H]+ | Fragment Ion 2 (m/z) [M + H]+ |
---|---|---|---|---|
Tryptamine | 5.81 | 161.1068 | 144.0803 | N/A |
DMT-D4 | 6.41 | 193.1625 | 148.1051 | N/A |
DMT | 6.45 | 189.1379 | 144.0803 | N/A |
5-MeO-DMT | 6.64 | 219.1485 | 174.0909 | N/A |
THH | 7.60 | 217.1328 | 200.1064 | 188.1065 |
Harmaline | 8.45 | 215.1172 | N/A | N/A |
Harmine-D3 | 8.48 | 216.1196 | N/A | N/A |
Harmine | 8.53 | 213.1011 | N/A | N/A |
Psychedelic Compounds (%) | |||||||
---|---|---|---|---|---|---|---|
Extraction No. | Tryptamine | DMT | 5-MeO-DMT | THH | Harmaline | Harmine | |
Psychotria carthegenensis | 1 | 94 | NF | NF | NF | NF | NF |
2 | 99 | NF | NF | NF | NF | NF | |
3 | 100 | NF | NF | NF | NF | NF | |
4 | 100 | NF | NF | NF | NF | NF | |
Banisteriopsis caapi | 1 | NF | NF | NF | 99 | 87 | 90 |
2 | NF | NF | NF | 100 | 98 | 98 | |
3 | NF | NF | NF | 100 | 99 | 100 | |
4 | NF | NF | NF | 100 | 100 | 100 | |
Alicia anisopetala | 1 | NF | NF | NF | NF | NF | NF |
2 | NF | NF | NF | NF | NF | NF | |
3 | NF | NF | NF | NF | NF | NF | |
4 | NF | NF | NF | NF | NF | NF | |
Psychotria viridis | 1 | 91 | 91 | NF | NF | NF | NF |
2 | 98 | 98 | NF | NF | NF | NF | |
3 | 100 | 99 | NF | NF | NF | NF | |
4 | 100 | 100 | NF | NF | NF | NF |
Compound | Concentration Range (ng/mL) | Equation | R2 | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
Tryptamine | 1–10,000 | y = (5.33 × 105)x | 0.999 | 0.10 | 0.31 |
DMT-D4 | 1–10,000 | y = (4.84 × 105)x | 0.990 | 0.08 | 0.25 |
DMT | 1–10,000 | y = (5.15 × 105)x | 0.991 | 0.09 | 0.27 |
5-MeO-DMT | 1–10,000 | y = (6.83 × 105)x | 0.993 | 0.11 | 0.33 |
THH | 1–10,000 | y = (6.60 × 105)x | 0.999 | 0.06 | 0.18 |
Harmaline | 1–10,000 | y = (1.01 × 106)x | 0.991 | 0.09 | 0.29 |
Harmine-D3 | 1–10,000 | y = (9.58 × 105)x | 0.989 | 0.06 | 0.20 |
Harmine | 1–10,000 | y = (9.95 × 105)x | 0.988 | 0.11 | 0.34 |
Compounds | 0.25 µg/mL | 1 µg/mL | 5 µg/mL |
---|---|---|---|
Tryptamine | 2.39 | 1.39 | 1.48 |
DMT-D4 | 0.50 | 0.95 | 0.69 |
DMT | 1.99 | 0.98 | 0.97 |
5-MeO-DMT | 1.09 | 1.36 | 1.09 |
THH | 1.46 | 1.67 | 1.05 |
Harmaline | 1.99 | 2.27 | 2.32 |
Harmine-D3 | 1.08 | 1.37 | 1.49 |
Harmine | 0.82 | 1.58 | 1.27 |
Psychotria carthagenensis | Banisteriopsis caapi | Alicia anisopetala | Psychotria viridis | |||||
---|---|---|---|---|---|---|---|---|
Compounds | Conc. (mg/g) | RSD (%) | Conc. (mg/g) | RSD (%) | Conc. (mg/g) | RSD (%) | Conc. (mg/g) | RSD (%) |
Tryptamine | 0.061 | 4.41 | NF | N/A | NF | N/A | 0.34 | 4.83 |
DMT | NF | N/A | NF | N/A | NF | N/A | 18.2 | 3.47 |
5-MeO-DMT | NF | N/A | NF | N/A | NF | N/A | NF | N/A |
THH | NF | N/A | 7.7 | 4.20 | NF | N/A | NF | N/A |
Harmaline | NF | N/A | 0.69 | 2.86 | NF | N/A | NF | N/A |
Harmine | NF | N/A | 11.4 | 3.13 | NF | N/A | NF | N/A |
Psychotria carthagenensis | Banisteriopsis caapi (*) | Alicia anisopetala | Psychotria viridis (*) | |||||
---|---|---|---|---|---|---|---|---|
Compounds | LS | HS | LS | HS | LS | HS | LS | HS |
Tryptamine | 87.4 | 85.4 | 74.8 | 81.6 | 109.6 | 95.8 | 77.2 | 82.9 |
DMT-D4 | 87.2 | 96.8 | 99.8 | 102.1 | 95.1 | 104.6 | 104.5 | 111.4 |
DMT | 81.9 | 91.0 | 93.8 | 95.9 | 89.4 | 98.3 | 98.2 | 104.7 |
5-MeO-DMT | 94.0 | 92.0 | 84.6 | 94.0 | 101.2 | 99.6 | 88.2 | 95.2 |
THH | 88.8 | 85.8 | 95.9 | 98.1 | 94.3 | 93.5 | 90.6 | 95.1 |
Harmaline | 85.1 | 84.9 | 95.5 | 99.3 | 72.1 | 76.8 | 98.5 | 101.6 |
Harmine-D3 | 80.2 | 84.2 | 91.6 | 102.4 | 92.2 | 96.9 | 106.6 | 110.5 |
Harmine | 77.2 | 81.0 | 88.2 | 98.6 | 88.7 | 93.3 | 102.6 | 106.4 |
Psychotria carthagenensis | Banisteriopsis caapi | Alica ansiopetala | Psychotria viridis | |||||
---|---|---|---|---|---|---|---|---|
Compounds | LS | HS | LS | HS | LS | HS | LS | HS |
Tryptamine | 96.9 | 96.5 | 91.3 | 93.4 | 84.1 | 89.1 | 111.6 | 89.6 |
DMT | 108.8 | 96.7 | 109.1 | 92.5 | 100.4 | 81.6 | ND | ND |
5-MeO-DMT | 107.8 | 100.9 | 110.2 | 98.4 | 91.8 | 85.9 | 85.3 | 84.5 |
THH | 105.9 | 101.2 | ND | ND | 77.6 | 74.1 | 86.7 | 86.0 |
Harmaline | 108.0 | 98.1 | 94.8 | 86.1 | 96.7 | 83.3 | 95.4 | 87.9 |
Harmine | 110.6 | 99.6 | ND | ND | 90.4 | 88.7 | 97.4 | 91.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, J.; Elkins, A.C.; Vassiliadis, S.; Cogan, N.O.I.; Rochfort, S.J. A Fully Validated LC-MS Quantitation Method for Psychoactive Compounds Found in Native South American Plant Species. Psychoactives 2024, 3, 513-524. https://doi.org/10.3390/psychoactives3040032
Tran J, Elkins AC, Vassiliadis S, Cogan NOI, Rochfort SJ. A Fully Validated LC-MS Quantitation Method for Psychoactive Compounds Found in Native South American Plant Species. Psychoactives. 2024; 3(4):513-524. https://doi.org/10.3390/psychoactives3040032
Chicago/Turabian StyleTran, Jonathan, Aaron C. Elkins, Simone Vassiliadis, Noel O. I. Cogan, and Simone J. Rochfort. 2024. "A Fully Validated LC-MS Quantitation Method for Psychoactive Compounds Found in Native South American Plant Species" Psychoactives 3, no. 4: 513-524. https://doi.org/10.3390/psychoactives3040032
APA StyleTran, J., Elkins, A. C., Vassiliadis, S., Cogan, N. O. I., & Rochfort, S. J. (2024). A Fully Validated LC-MS Quantitation Method for Psychoactive Compounds Found in Native South American Plant Species. Psychoactives, 3(4), 513-524. https://doi.org/10.3390/psychoactives3040032