Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Characteristics of the Selected Studies
3. Results
3.1. Synthesis of Evidence
3.2. Key Findings from Included Studies
- Processing of peripersonal and extrapersonal space using tools: evidence from visual line bisection in real and virtual environments [47]:
- 2.
- Extending the body to virtual tools using a robotic surgical interface: evidence from the crossmodal congruency task [51]:
- 3.
- Reshaping the peripersonal space in virtual reality [49]:
- 4.
- The remapping of peripersonal space in a real but not in a virtual environment [37]:
- 5.
- Embodiment of supernumerary robotic limbs in virtual reality [33]:
- 6.
- A behavioral experiment in virtual reality to verify the role of action function in space coding [35]:
- The effect of facial expressions on peripersonal and interpersonal spaces [42]:
- 2.
- Near or far? It depends on my impression: moral information and spatial behavior in virtual interactions [38]:
- 3.
- Space for power: feeling powerful over others’ behavior affects peri-personal space representation [34]:
- 4.
- Peripersonal and interpersonal space in virtual and real environments: effects of gender and age [39]:
- 5.
- Defensive functions provoke similar psychophysiological reactions in reaching and comfort spaces [43]:
- 6.
- Sharpening of peripersonal space during the COVID-19 pandemic [52]:
- Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially tuned manner [44]:
- 2.
- The impact of embodiment and avatar sizing on personal space in immersive virtual environments [46]:
- 3.
- Disconnected hand avatar can be integrated into the peripersonal space [41]:
- 4.
- Immersive virtual reality reveals that visuo-proprioceptive discrepancy enlarges the hand-centered peripersonal space [45]:
- 5.
- Remote hand: hand-centered peripersonal space transfers to a disconnected hand avatar [36]:
- 6.
- Peripersonal space as the space of the bodily self [50]:
- 7.
- Adaptation to delayed visual feedback of the body movement extends multisensory peripersonal space [48]:
- 8.
- Expansion of space for visuotactile interaction during visually induced self-motion [40]:
4. Discussion
5. Conclusions
5.1. Practical Implications and Future Research
5.2. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Descartes, Rene|Internet Encyclopedia of Philosophy. Available online: https://iep.utm.edu/rene-descartes/ (accessed on 20 May 2024).
- Rizzolatti, G.; Fadiga, L.; Fogassi, L.; Gallese, V. The Space Around Us. Science 1997, 277, 190–191. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, L.; Hyvärinen, J.; Nyman, G.; Linnankoski, I.I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp. Brain Res. 1979, 34, 299–320. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Scandolara, C.; Matelli, M.; Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav. Brain Res. 1981, 2, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Fadiga, L.; Gallese, V.; Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 1996, 3, 131–141. [Google Scholar] [CrossRef]
- Holmes, N.P.; Spence, C. The body schema and the multisensory representation(s) of peripersonal space. Cogn. Process. 2004, 5, 94. [Google Scholar] [CrossRef]
- Spence, C.; Pavani, F.; Driver, J. Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cogn. Affect. Behav. Neurosci. 2004, 4, 148–169. [Google Scholar] [CrossRef] [PubMed]
- Canzoneri, E.; Ubaldi, S.; Rastelli, V.; Finisguerra, A.; Bassolino, M.; Serino, A. Tool-use reshapes the boundaries of body and peripersonal space representations. Exp. Brain Res. 2013, 228, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Canzoneri, E.; Avenanti, A. Fronto-parietal areas necessary for a multisensory representation of peripersonal space in humans: An rTMS study. J. Cogn. Neurosci. 2011, 23, 2956–2967. [Google Scholar] [CrossRef]
- Rabellino, D.; Frewen, P.A.; McKinnon, M.C.; Lanius, R.A. Peripersonal Space and Bodily Self-Consciousness: Implications for Psychological Trauma-Related Disorders. Front. Neurosci. 2020, 14, 586605. [Google Scholar] [CrossRef] [PubMed]
- Graziano, M.S.A.; Cooke, D.F. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 2006, 44, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Fogassi, L.; Gallese, V.; Fadiga, L.; Luppino, G.; Matelli, M.; Rizzolatti, G. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 1996, 76, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Noel, J.-P.; Galli, G.; Canzoneri, E.; Marmaroli, P.; Lissek, H.; Blanke, O. Body part-centered and full body-centered peripersonal space representations. Sci. Rep. 2015, 5, 18603. [Google Scholar] [CrossRef] [PubMed]
- Iriki, A.; Tanaka, M.; Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 1996, 7, 2325–2330. [Google Scholar] [CrossRef] [PubMed]
- Farnè, A.; Làdavas, E. Dynamic size-change of hand peripersonal space following tool use. Neuroreport 2000, 11, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Berti, A.; Frassinetti, F. When far becomes near: Remapping of space by tool use. J. Cogn. Neurosci. 2000, 12, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Bassolino, M.; Farnè, A.; Làdavas, E. Extended multisensory space in blind cane users. Psychol. Sci. 2007, 18, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.-P.; Grivaz, P.; Marmaroli, P.; Lissek, H.; Blanke, O.; Serino, A. Full body action remapping of peripersonal space: The case of walking. Neuropsychologia 2015, 70, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, N.; Teramoto, W. Contribution of motor and proprioceptive information to visuotactile interaction in peripersonal space during bike riding. Exp. Brain Res. 2022, 240, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Sambo, C.F.; Iannetti, G.D. Better Safe Than Sorry? The Safety Margin Surrounding the Body Is Increased by Anxiety. J. Neurosci. 2013, 33, 14225–14230. [Google Scholar] [CrossRef] [PubMed]
- de Haan, A.M.; Smit, M.; Van der Stigchel, S.; Dijkerman, H.C. Approaching threat modulates visuotactile interactions in peripersonal space. Exp. Brain Res. 2016, 234, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Teneggi, C.; Canzoneri, E.; Di Pellegrino, G.; Serino, A. Social modulation of peripersonal space boundaries. Curr. Biol. 2013, 23, 406–411. [Google Scholar] [CrossRef]
- Dell’Anna, A.; Rosso, M.; Bruno, V.; Garbarini, F.; Leman, M.; Berti, A. Does musical interaction in a jazz duet modulate peripersonal space? Psychol. Res. 2021, 85, 2107–2118. [Google Scholar] [CrossRef]
- Lucifora, C.; Schembri, M.; Poggi, F.; Grasso, G.M.; Gangemi, A. Virtual reality supports perspective taking in cultural heritage interpretation. Comput. Hum. Behav. 2023, 148, 107911. [Google Scholar] [CrossRef]
- Vicario, C.M.; Salehinejad, M.A.; Lucifora, C.; Martino, G.; Falzone, A.M.; Grasso, G.; Nitsche, M.A. Combining Virtual Reality Exposure Therapy with Non-invasive Brain Stimulation for the Treatment of Post-traumatic Stress Disorder and Related Syndromes: A Perspective; DEU; Humana: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Ferraioli, F.; Culicetto, L.; Cecchetti, L.; Falzone, A.; Tomaiuolo, F.; Quartarone, A.; Vicario, C.M. Virtual Reality Exposure Therapy for Treating Fear of Contamination Disorders: A Systematic Review of Healthy and Clinical Populations. Brain Sci. 2024, 14, 510. [Google Scholar] [CrossRef]
- Nucera, S. A Brief Analysis of the Educational Implications of Virtual Reality. Prelim. Rep. Negat. Results Life Sci. Humanit. 2024, 1, 53–59. [Google Scholar] [CrossRef]
- Vicario, C.M.; Martino, G. Psychology and technology: How Virtual Reality can boost psychotherapy and neurorehabilitation. AIMS Neurosci. 2022, 9, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Castiello, U.; Lusher, D.; Burton, C.; Glover, S.; Disler, P. Improving left hemispatial neglect using virtual reality. Neurology 2004, 62, 1958–1962. [Google Scholar] [CrossRef]
- Bernasconi, F.; Noel, J.-P.; Park, H.D.; Faivre, N.; Seeck, M.; Spinelli, L.; Schaller, K.; Blanke, O.; Serino, A. Audio-Tactile and Peripersonal Space Processing Around the Trunk in Human Parietal and Temporal Cortex: An Intracranial EEG Study. Cereb. Cortex 2018, 28, 3385–3397. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Arai, K.; Saito, H.; Fukuoka, M.; Ueda, S.; Sugimoto, M.; Kitazaki, M.; Inami, M. Embodiment of supernumerary robotic limbs in virtual reality. Sci. Rep. 2022, 12, 9769. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, T.; Paladino, M.P.; Pellencin, E.; Serino, S.; Serino, A. Space for power: Feeling powerful over others’ behavior affects peri-personal space representation. Exp. Brain Res. 2023, 241, 2779–2793. [Google Scholar] [CrossRef] [PubMed]
- Gamberini, L.; Carlesso, C.; Seraglia, B.; Craighero, L. A behavioural experiment in virtual reality to verify the role of action function in space coding. Vis. Cogn. 2013, 21, 961–969. [Google Scholar] [CrossRef]
- Mine, D.; Yokosawa, K. Remote hand: Hand-centered peripersonal space transfers to a disconnected hand avatar. Atten. Percept. Psychophys. 2021, 83, 3250–3258. [Google Scholar] [CrossRef]
- Ferroni, F.; Gallese, V.; Soccini, A.M.; Langiulli, N.; Rastelli, F.; Ferri, D.; Bianchi, F.; Ardizzi, M. The Remapping of Peripersonal Space in a Real but Not in a Virtual Environment. Brain Sci. 2022, 12, 1125. [Google Scholar] [CrossRef] [PubMed]
- Iachini, T.; Pagliaro, S.; Ruggiero, G. Near or far? It depends on my impression: Moral information and spatial behavior in virtual interactions. Acta Psychol. 2015, 161, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Iachini, T.; Coello, Y.; Frassinetti, F.; Senese, V.P.; Galante, F.; Ruggiero, G. Peripersonal and Interpersonal Space in Virtual and Real Environments: Effects of Gender and Age. J. Environ. Psychol. 2016, 45, 154–164. [Google Scholar] [CrossRef]
- Kuroda, N.; Teramoto, W. Expansion of space for visuotactile interaction during visually induced self-motion. Exp. Brain Res. 2020, 239, 257–265. [Google Scholar] [CrossRef]
- Mine, D.; Yokosawa, K. Disconnected hand avatar can be integrated into the peripersonal space. Exp. Brain Res. 2020, 239, 237–244. [Google Scholar] [CrossRef]
- Ruggiero, G.; Frassinetti, F.; Coello, Y.; Rapuano, M.; di Cola, A.S.; Iachini, T. The effect of facial expressions on peripersonal and interpersonal spaces. Psychol. Res. 2016, 81, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, G.; Rapuano, M.; Cartaud, A.; Coello, Y.; Iachini, T. Defensive functions provoke similar psychophysiological reactions in reaching and comfort spaces. Sci. Rep. 2021, 11, 5170. [Google Scholar] [CrossRef] [PubMed]
- Somervail, R.; Bufacchi, R.J.; Guo, Y.; Kilintari, M.; Novembre, G.; Swapp, D.; Steed, A.; Iannetti, G.D. Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially-tuned manner. Sci. Rep. 2019, 9, 3661. [Google Scholar] [CrossRef] [PubMed]
- Fossataro, C.; Rossi Sebastiano, A.; Tieri, G.; Poles, K.; Galigani, M.; Pyasik, M.; Bruno, V.; Bertoni, T.; Garbarini, F. Immersive virtual reality reveals that visuo-proprioceptive discrepancy enlarges the hand-centred peripersonal space. Neuropsychologia 2020, 146, 107540. [Google Scholar] [CrossRef]
- Buck, L.E.; Chakraborty, S.; Bodenheimer, B. The Impact of Embodiment and Avatar Sizing on Personal Space in Immersive Virtual Environments. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2102–2113. [Google Scholar] [CrossRef] [PubMed]
- Gamberini, L.; Seraglia, B.; Priftis, K. Processing of peripersonal and extrapersonal space using tools: Evidence from visual line bisection in real and virtual environments. Neuropsychologia 2008, 46, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Mine, D.; Yokosawa, K. Adaptation to delayed visual feedback of the body movement extends multisensory peripersonal space. Atten. Percept. Psychophys. 2022, 84, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Petrizzo, I.; Mikellidou, K.; Avraam, S.; Avraamides, M.; Arrighi, R. Reshaping the peripersonal space in virtual reality. Sci. Rep. 2024, 14, 2438. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.-P.; Pfeiffer, C.; Blanke, O.; Serino, A. Peripersonal Space as the space of the Bodily Self. Cognition 2015, 144, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Sengül, A.; van Elk, M.; Rognini, G.; Aspell, J.E.; Bleuler, H.; Blanke, O. Extending the body to virtual tools using a robotic surgical interface: Evidence from the crossmodal congruency task. PLoS ONE 2012, 7, e49473. [Google Scholar] [CrossRef]
- Serino, S.; Trabanelli, S.; Jandus, C.; Fellrath, J.; Grivaz, P.; Paladino, M.P.; Serino, A. Sharpening of peripersonal space during the COVID-19 pandemic. Curr. Biol. CB 2021, 31, R889–R890. [Google Scholar] [CrossRef]
- Valori, I.; McKenna-Plumley, P.E.; Bayramova, R.; Farroni, T. Perception and Motion in Real and Virtual Environments: A Narrative Review of Autism Spectrum Disorders. Front. Psychol. 2021, 12, 708229. [Google Scholar] [CrossRef] [PubMed]
- Gammeri, R.; Turri, F.; Ricci, R.; Ptak, R. Adaptation to virtual prisms and its relevance for neglect rehabilitation: A single-blind dose-response study with healthy participants. Neuropsychol. Rehabil. 2020, 30, 753–766. [Google Scholar] [CrossRef]
- Lucifora, C.; Grasso, G.M.; Nitsche, M.A.; D’Italia, G.; Sortino, M.; Salehinejad, M.A.; Falzone, A.; Avenanti, A.; Vicario, C.M. Enhanced fear acquisition in individuals with evening chronotype. A virtual reality fear conditioning/extinction study. J. Affect. Disord. 2022, 311, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Vicario, C.M.; Makris, S.; Culicetto, L.; Lucifora, C.; Falzone, A.; Martino, G.; Ferraioli, F.; Nitsche, M.A.; Avenanti, A.; Craparo, G. Evidence of Altered Fear Extinction Learning in Individuals with High Vaccine Hesitancy During Covid-19 Pandemic. Clin. Neuropsychiatry 2023, 20, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Karami, B.; Koushki, R.; Arabgol, F.; Rahmani, M.; Vahabie, A.-H. Effectiveness of Virtual/Augmented Reality–Based Therapeutic Interventions on Individuals with Autism Spectrum Disorder: A Comprehensive Meta-Analysis. Front. Psychiatry 2021, 12, 665326. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Stacey, J.; Jenner, S.; Maguire, E. Are Extended Reality Interventions Effective in Helping Autistic Children to Enhance Their Social Skills? A Systematic Review. Rev. J. Autism Dev. Disord. 2023, 10, 729–748. [Google Scholar] [CrossRef]
- Neo, J.R.J.; Won, A.S.; Shepley, M.M. Designing Immersive Virtual Environments for Human Behavior Research. Front. Virtual Real. 2021, 2, 603750. [Google Scholar] [CrossRef]
- Abdlkarim, D.; Di Luca, M.; Aves, P.; Maaroufi, M.; Yeo, S.-H.; Miall, R.C.; Holland, P.; Galea, J.M. A methodological framework to assess the accuracy of virtual reality hand-tracking systems: A case study with the Meta Quest 2. Behav. Res. Methods 2024, 56, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- What Does the Frame Rate of a Virtual Reality Headset Indicate. Robots.net. Available online: https://robots.net/tech/what-does-the-frame-rate-of-a-virtual-reality-headset-indicate/ (accessed on 26 June 2024).
Database | Search Fields | Search Phrase | Limitations |
---|---|---|---|
SCOPUS | Article title, abstract, and keywords | “peripersonal” OR “peri-personal” AND “virtual” | English; article |
PubMed | All Fields | ((peripersonal) OR (peri-personal)) AND (virtual) | None |
Web of Science | Topic (article title, abstract, and keywords) | ((TS = (peripersonal)) OR TS = (peri-personal)) AND TS = (virtual) | English; article |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakoc, C.; Lucifora, C.; Massimino, S.; Nucera, S.; Vicario, C.M. Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review. Virtual Worlds 2025, 4, 5. https://doi.org/10.3390/virtualworlds4010005
Karakoc C, Lucifora C, Massimino S, Nucera S, Vicario CM. Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review. Virtual Worlds. 2025; 4(1):5. https://doi.org/10.3390/virtualworlds4010005
Chicago/Turabian StyleKarakoc, Cagatay, Chiara Lucifora, Simona Massimino, Sebastiano Nucera, and Carmelo Mario Vicario. 2025. "Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review" Virtual Worlds 4, no. 1: 5. https://doi.org/10.3390/virtualworlds4010005
APA StyleKarakoc, C., Lucifora, C., Massimino, S., Nucera, S., & Vicario, C. M. (2025). Extending Peri-Personal Space in Immersive Virtual Reality: A Systematic Review. Virtual Worlds, 4(1), 5. https://doi.org/10.3390/virtualworlds4010005