Pharmacological Intervention of PIEZO1 for Butterfly Eyespot Color Patterns in Junonia orithya
Abstract
1. Introduction
2. Materials and Methods
2.1. Butterfly Rearing
2.2. Chemical Treatments
2.3. Image Analyses
2.4. RT-PCR and DNA Sequence Analyses
3. Results
3.1. DMSO
3.2. Jedi2
3.3. Yoda1 and GsMTx4
3.4. Phalloidin
3.5. PIEZO Expression
4. Discussion
4.1. Physical Distortion Hypothesis and PIEZO Channels
4.2. Jedi2 on Eyespots
4.3. Yoda1 and GsMTx4 on Eyespots
4.4. Phalloidin on Eyespots
4.5. PIEZO1 Activation
4.6. Sequences of Eyespot Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TEM | Transmission electron microscopy |
TS | Temperature shock |
ECM | Extracellular matrix |
FB28 | Fluorescent brightener 28 |
ROI | Region of interest |
J. | Junonia |
DMSO | Dimethyl sulfoxide |
ER | Eclosion rate |
PFE | Parafocal element |
SMB | Submarginal band |
PCR | Polymerase chain reaction |
RT-PCR | Reverse transcriptase-polymerase chain reaction |
BLAST | Basic local alignment search tool |
Appendix A
Area of Interest | Sibling #1 | Sibling #2 | Average |
---|---|---|---|
Eyespot A (whole) | 0.682 | 0.597 | 0.639 |
Outer black ring of Eyespot A | 0.672 | 0.590 | 0.631 |
Blue focus of Eyespot A | 0.739 | 0.633 | 0.686 |
Eyespot B (whole) | 0.687 | 0.766 | 0.726 |
Outer black ring of Eyespot B | 0.699 | 0.786 | 0.742 |
Blue focus of Eyespot B | 0.609 | 0.672 | 0.640 |
Eyespot C (whole) | 0.597 | 0.743 | 0.670 |
Eyespot D (whole) | 0.816 | 0.778 | 0.797 |
Eyespot E (whole) | 0.933 | 0.650 | 0.791 |
Outer black ring of Eyespot E | 1.008 | 0.711 | 0.860 |
Orange ring of Eyespot E | 1.014 | 0.620 | 0.817 |
Core disk of Eyespot E | 0.725 | 0.612 | 0.669 |
Eyespot F (whole) | 0.833 | 0.728 | 0.780 |
Outer black ring of Eyespot F | 0.865 | 0.672 | 0.769 |
Orange ring of Eyespot F | 0.919 | 0.757 | 0.838 |
Core disk of Eyespot F | 0.660 | 0.752 | 0.706 |
References
- Murthy, S.E.; Dubin, A.E.; Patapoutian, A. Piezos thrive under pressure: Mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 771–783. [Google Scholar] [CrossRef]
- Kefauver, J.M.; Ward, A.B.; Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 2020, 587, 567–576. [Google Scholar] [CrossRef]
- Xiao, B. Mechanisms of mechanotransduction and physiological roles of PIEZO channels. Nat. Rev. Mol. Cell Biol. 2024, 25, 886–903. [Google Scholar] [CrossRef]
- Xiao, R.; Liu, J.; Xu, X.Z.S. Mechanosensitive GPCRs and ion channels in shear stress sensing. Curr. Opin. Cell Biol. 2023, 84, 102216. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B. Levering mechanically activated Piezo channels for potential pharmacological intervention. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 195–218. [Google Scholar] [CrossRef] [PubMed]
- Earley, S.; Santana, L.F.; Lederer, W.J. The physiological sensor channels TRP and Piezo: Nobel Prize in Physiology or Medicine 2021. Physiol. Rev. 2022, 102, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Coste, B.; Mathur, J.; Schmidt, M.; Earley, T.J.; Ranade, S.; Petrus, M.J.; Dubin, A.E.; Patapoutian, A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 2010, 330, 55–60. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, X.; Jiang, J.; Xiao, B. Structural designs and mechanogating mechanisms of the mechanosensitive Piezo channels. Trends Biochem. Sci. 2021, 46, 472–488. [Google Scholar] [CrossRef]
- Fang, X.Z.; Zhou, T.; Xu, J.Q.; Wang, Y.X.; Sun, M.M.; He, Y.J.; Pan, S.W.; Xiong, W.; Peng, Z.K.; Gao, X.H.; et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels. Cell Biosci. 2021, 11, 13. [Google Scholar] [CrossRef]
- Jin, P.; Jan, L.Y.; Jan, Y.N. Mechanosensitive ion channels: Structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 2020, 43, 207–229. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, B. The mechanosensitive Piezo1 channel: Structural features and molecular bases underlying its ion permeation and mechanotransduction. J. Physiol. 2018, 596, 969–978. [Google Scholar] [CrossRef]
- Young, M.; Lewis, A.H.; Grandl, J. Physics of mechanotransduction by Piezo ion channels. J. Gen. Physiol. 2022, 154, e202113044. [Google Scholar] [CrossRef]
- Cox, C.D.; Bavi, N.; Martinac, B. Biophysical principles of ion-channel-mediated mechanosensory transduction. Cell Rep. 2019, 29, 1–12. [Google Scholar] [CrossRef]
- Gottlieb, P.A. A tour de force: The discovery, properties, and function of Piezo channels. Curr. Top. Membr. 2017, 79, 1–36. [Google Scholar] [CrossRef]
- Morachevskaya, E.A.; Sudarikova, A.V. Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus. Am. J. Physiol. Cell Physiol. 2021, 320, C696–C702. [Google Scholar] [CrossRef]
- Vasileva, V.; Chubinskiy-Nadezhdin, V. Regulation of PIEZO1 channels by lipids and the structural components of extracellular matrix/cell cytoskeleton. J. Cell Physiol. 2023, 238, 918–930. [Google Scholar] [CrossRef]
- Atcha, H.; Jairaman, A.; Holt, J.R.; Meli, V.S.; Nagalla, R.R.; Veerasubramanian, P.K.; Brumm, K.T.; Lim, H.E.; Othy, S.; Cahalan, M.D.; et al. Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing. Nat. Commun. 2021, 12, 3256. [Google Scholar] [CrossRef]
- Zhang, W.; Chu, G.; Wang, H.; Chen, S.; Li, B.; Han, F. Effects of matrix stiffness on the differentiation of multipotent stem cells. Curr. Stem Cell Res. Ther. 2020, 15, 449–461. [Google Scholar] [CrossRef]
- Yao, M.; Tijore, A.; Cheng, D.; Li, J.V.; Hariharan, A.; Martinac, B.; Tran Van Nhieu, G.; Cox, C.D.; Sheetz, M. Force- and cell state-dependent recruitment of Piezo1 drives focal adhesion dynamics and calcium entry. Sci. Adv. 2022, 8, eabo1461. [Google Scholar] [CrossRef]
- Lacroix, J.J.; Wijerathne, T.D. PIEZO channels as multimodal mechanotransducers. Biochem. Soc. Trans. 2025, 53, BST20240419. [Google Scholar] [CrossRef]
- Syeda, R.; Xu, J.; Dubin, A.E.; Coste, B.; Mathur, J.; Huynh, T.; Matzen, J.; Lao, J.; Tully, D.C.; Engels, I.H.; et al. Chemical activation of the mechanotransduction channel Piezo1. eLife 2015, 4, e07369. [Google Scholar] [CrossRef]
- Lacroix, J.J.; Botello-Smith, W.M.; Luo, Y. Probing the gating mechanism of the mechanosensitive channel Piezo1 with the small molecule Yoda1. Nat. Commun. 2018, 9, 2029. [Google Scholar] [CrossRef]
- Botello-Smith, W.M.; Jiang, W.; Zhang, H.; Ozkan, A.D.; Lin, Y.C.; Pham, C.N.; Lacroix, J.J.; Luo, Y. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat. Commun. 2019, 10, 4503. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, S.; Guo, H.; Li, G.; Wang, L.; Zhao, Q.; Rao, Y.; Zu, L.; He, W.; Xiao, B. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat. Commun. 2018, 9, 1300. [Google Scholar] [CrossRef]
- Bae, C.; Sachs, F.; Gottlieb, P.A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 2011, 50, 6295–6300. [Google Scholar] [CrossRef]
- Suchyna, T.M. Piezo channels and GsMTx4: Two milestones in our understanding of excitatory mechanosensitive channels and their role in pathology. Prog. Biophys. Mol. Biol. 2017, 130 Pt B, 244–253. [Google Scholar] [CrossRef]
- Thien, N.D.; Hai-Nam, N.; Anh, D.T.; Baecker, D. Piezo1 and its inhibitors: Overview and perspectives. Eur. J. Med. Chem. 2024, 273, 116502. [Google Scholar] [CrossRef]
- Pathak, M.M.; Nourse, J.L.; Tran, T.; Hwe, J.; Arulmoli, J.; Le, D.T.; Bernardis, E.; Flanagan, L.A.; Tombola, F. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proc. Natl. Acad. Sci. USA 2014, 111, 16148–16153. [Google Scholar] [CrossRef]
- Gudipaty, S.A.; Lindblom, J.; Loftus, P.D.; Redd, M.J.; Edes, K.; Davey, C.F.; Krishnegowda, V.; Rosenblatt, J. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 2017, 543, 118–121. [Google Scholar] [CrossRef]
- Sugimoto, A.; Miyazaki, A.; Kawarabayashi, K.; Shono, M.; Akazawa, Y.; Hasegawa, T.; Ueda-Yamaguchi, K.; Kitamura, T.; Yoshizaki, K.; Fukumoto, S.; et al. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci. Rep. 2017, 7, 17696. [Google Scholar] [CrossRef]
- He, L.; Si, G.; Huang, J.; Samuel, A.D.T.; Perrimon, N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature 2018, 555, 103–106. [Google Scholar] [CrossRef]
- Qiu, X.; Deng, Z.; Wang, M.; Feng, Y.; Bi, L.; Li, L. Piezo protein determines stem cell fate by transmitting mechanical signals. Hum. Cell 2023, 36, 540–553. [Google Scholar] [CrossRef]
- Song, Y.; Li, D.; Farrelly, O.; Miles, L.; Li, F.; Kim, S.E.; Lo, T.Y.; Wang, F.; Li, T.; Thompson-Peer, K.L.; et al. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 2019, 102, 373–389.e6. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Hu, B.; Chen, K.; Yu, Y.; Sun, C.; Zhu, D.; Bai, H.; Palli, S.R.; Tan, A. The mechanoreceptor Piezo is required for spermatogenesis in Bombyx mori. BMC Biol. 2024, 22, 118. [Google Scholar] [CrossRef]
- Coste, B.; Xiao, B.; Santos, J.S.; Syeda, R.; Grandl, J.; Spencer, K.S.; Kim, S.E.; Schmidt, M.; Mathur, J.; Dubin, A.E.; et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 2012, 483, 176–181. [Google Scholar] [CrossRef]
- Kim, S.E.; Coste, B.; Chadha, A.; Cook, B.; Patapoutian, A. The role of Drosophila Piezo in mechanical nociception. Nature 2012, 483, 209–212. [Google Scholar] [CrossRef]
- Otaki, J.M. Self-similarity, distortion waves, and the essence of morphogenesis: A generalized view of color pattern formation in butterfly wings. In Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach; Sekimura, T., Nijhout, H.F., Eds.; Springer: Singapore, 2018; pp. 119–152. [Google Scholar] [CrossRef]
- Mayor, A.G. The development of the wing scales and their pigment in butterflies and moths. Bull. Museum Comp. Zool. 1896, 29, 209–236. [Google Scholar]
- Yoshida, A. Butterfly and Moth Wings: Functional Morphology of the Wings with Scales. In Entomology Monographs; Springer Nature: Singapore, 2024. [Google Scholar]
- Otaki, J.M.; Tanaka, A.; Hirose, E. Butterfly pupal wing tissue with an eyespot organizer. Cells Dev. 2025, 203992. [Google Scholar] [CrossRef]
- Taira, W.; Otaki, J.M. Butterfly wings are three-dimensional: Pupal cuticle focal spots and their associated structures in Junonia butterflies. PLoS ONE 2016, 11, e0146348. [Google Scholar] [CrossRef]
- Nijhout, H.F. Pattern formation on lepidopteran wings: Determination of an eyespot. Dev. Biol. 1980, 80, 267–274. [Google Scholar] [CrossRef]
- Nijhout, H.F. The Development and Evolution of Butterfly Wing Patterns; Smithsonian Institution Press: Washington, DC, USA, 1991. [Google Scholar]
- French, V.; Brakefield, P.M. Eyespot development on butterfly wings: The focal signal. Dev. Biol. 1995, 168, 112–123. [Google Scholar] [CrossRef]
- Brakefield, P.M.; Gates, J.; Keys, D.; Kesbeke, F.; Wijngaarden, P.J.; Monteiro, A.; French, V.; Carroll, S.B. Development, plasticity and evolution of butterfly eyespot patterns. Nature 1996, 384, 236–242. [Google Scholar] [CrossRef]
- French, V.; Brakefield, P.M. The development of eyespot patterns on butterfly wings: Morphogen source or sinks? Development 1992, 116, 103–109. [Google Scholar] [CrossRef]
- Otaki, J.M. Long-range effects of wing physical damage and distortion on eyespot color patterns in the hindwing of the blue pansy butterfly Junonia orithya. Insects 2018, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Ohno, Y.; Otaki, J.M. Butterfly eyespot organiser: In vivo imaging of the prospective focal cells in pupal wing tissues. Sci. Rep. 2017, 7, 40705. [Google Scholar] [CrossRef] [PubMed]
- Iwata, M.; Otaki, J.M. Insights into eyespot color-pattern formation mechanisms from color gradients, boundary scales, and rudimentary eyespots in butterfly wings. J. Insect Physiol. 2019, 114, 68–82. [Google Scholar] [CrossRef]
- Palmer, R.; McKenna, K.Z.; Nijhout, H.F. Morphological murals: The scaling and allometry of butterfly wing patterns. Integr. Comp. Biol. 2019, 59, 1281–1289. [Google Scholar] [CrossRef]
- Otaki, J.M. Structural analysis of eyespots: Dynamics of morphogenic signals that govern elemental positions in butterfly wings. BMC Syst. Biol. 2012, 6, 17. [Google Scholar] [CrossRef]
- Nijhout, H.F. Colour pattern modification by coldshock in Lepidoptera. J. Embryol Exp. Morphol. 1984, 81, 287–305. [Google Scholar] [CrossRef]
- Otaki, J.M. Color-pattern modifications of butterfly wings induced by transfusion and oxyanions. J. Insect Physiol. 1998, 44, 1181–1190. [Google Scholar] [CrossRef]
- Umebachi, Y.; Osanai, M. Perturbation of the wing color pattern of a swallowtail butterfly, Papilio xuthus, induced by acid carboxypeptidase. Zool. Sci. 2003, 20, 325–331. [Google Scholar] [CrossRef]
- Serfas, M.S.; Carroll, S.B. Pharmacologic approaches to butterfly wing patterning: Sulfated polysaccharides mimic or antagonize cold shock and alter the interpretation of gradients of positional information. Dev. Biol. 2005, 287, 416–424. [Google Scholar] [CrossRef]
- Otaki, J.M.; Nakazato, Y. Butterfly wing color pattern modification inducers may act on chitin in the apical extracellular site: Implications in morphogenic signals for color pattern determination. Biology 2022, 11, 1620. [Google Scholar] [CrossRef]
- Otaki, J.M. Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation. BMC Dev. Biol. 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Otaki, J.M. Spontaneous long-range calcium waves in developing butterfly wings. BMC Dev. Biol. 2015, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Nagai, S.; Otaki, J.M. Wound healing in butterfly pupal wing tissues: Real-time in vivo imaging of long-range cell migration, cluster formation, and calcium oscillations. Insects 2025, 16, 124. [Google Scholar] [CrossRef] [PubMed]
- Wehland, J.; Osborn, M.; Weber, K. Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc. Natl. Acad. Sci. USA 1977, 74, 5613–5617. [Google Scholar] [CrossRef]
- Cooper, J.A. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 1987, 105, 1473–1478. [Google Scholar] [CrossRef]
- Wahlberg, N.; Brower, A.V.Z.; Nylin, S. Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 2005, 86, 227–251. [Google Scholar] [CrossRef]
- Su, C.; Shi, Q.; Sun, X.; Ma, J.; Li, C.; Hao, J.; Yang, Q. Dated phylogeny and dispersal history of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Sci. Rep. 2017, 7, 8799. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, N.; Xu, L.; Fang, J.; Wang, S. The complete mitochondrial genome of Vanessa indica and phylogenetic analyses of the family Nymphalidae. Genes Genom. 2018, 40, 1011–1022. [Google Scholar] [CrossRef]
- Otaki, J.M.; Ogasawara, T.; Yamamoto, H. Tungstate-induced color-pattern modifications of butterfly wings are independent of stress response and ecdysteroid effect. Zool. Sci. 2005, 22, 635–644. [Google Scholar] [CrossRef]
- Theophilidis, G.; Kravari, K. Dimethylsulfoxide (DMSO) eliminates the response of the sensory neurones of an insect mechanoreceptor, the femoral chordotonal organ of Locusta migratoria, but blocks conduction of their sensory axons at much higher concentrations: A possible mechanism of analgesia. Neurosci Lett. 1994, 181, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Otaki, J.M. Reversed type of color-pattern modifications of butterfly wings: A physiological mechanism of wing-wide color-pattern determination. J. Insect Physiol. 2007, 53, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Galkin, V.E.; Orlova, A.; Egelman, E.H. Actin filaments as tension sensors. Curr. Biol. 2012, 22, R96–R101. [Google Scholar] [CrossRef] [PubMed]
- Dinwiddie, A.; Null, R.; Pizzano, M.; Chuong, L.; Leigh Krup, A.; Ee Tan, H.; Patel, N.H. Dynamics of F-actin prefigure the structure of butterfly wing scales. Dev. Biol. 2014, 392, 404–418. [Google Scholar] [CrossRef]
- Lloyd, V.J.; Burg, S.L.; Harizanova, J.; Garcia, E.; Hill, O.; Enciso-Romero, J.; Cooper, R.L.; Flenner, S.; Longo, E.; Greving, I.; et al. The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales. Nat. Commun. 2024, 15, 4073. [Google Scholar] [CrossRef]
- Jetta, D.; Shireen, T.; Hua, S.Z. Epithelial cells sense local stiffness via Piezo1 mediated cytoskeletal reorganization. Front. Cell Dev. Biol. 2023, 11, 1198109. [Google Scholar] [CrossRef]
- Chang, Y.S.; Lee, L.C.; Sun, F.C.; Chao, C.C.; Fu, H.W.; Lai, Y.K. Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells. J. Cell. Biochem. 2006, 97, 156–165. [Google Scholar] [CrossRef]
- Li, K.; Xue, Y.; Chen, A.; Jiang, Y.; Xie, H.; Shi, Q.; Zhang, S.; Ni, Y. Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm. PLoS ONE 2014, 9, e115841. [Google Scholar] [CrossRef]
- Mahdi, S.H.; Gima, S.; Tomita, Y.; Yamasaki, H.; Otaki, J.M. Physiological characterization of the cold-shock-induced humoral factor for wing color-pattern changes in butterflies. J. Insect Physiol. 2010, 56, 1022–1031. [Google Scholar] [CrossRef]
- Özsu, N.; Monteiro, A. Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. BMC Genomics 2017, 18, 788. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Chen, B.; Ramos, D.M.; Oliver, J.C.; Tong, X.; Guo, M.; Wang, W.-K.; Fazzino, L.; Kamal, F. Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. J. Exp. Zool. B Mol. Dev. Evol. 2013, 320, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Reed, R.D. Genome editing in butterflies reveals that spalt promotes and Distal-less represses eyespot colour patterns. Nat. Commun. 2016, 7, 11769. [Google Scholar] [CrossRef] [PubMed]
- Connahs, H.; Tlili, S.; van Creij, J.; Loo, T.Y.J.; Banerjee, T.D.; Saunders, T.E.; Monteiro, A. Activation of butterfly eyespots by Distal-less is consistent with a reaction-diffusion process. Development 2019, 146, dev169367. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, Y.; Otaki, J.M. Antibody-mediated protein knockdown reveals Distal-less functions for eyespots and parafocal elements in butterfly wing color pattern development. Cells 2024, 13, 1476. [Google Scholar] [CrossRef]
- Martin, A.; Reed, R.D. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems. Dev. Biol. 2014, 395, 367–378. [Google Scholar] [CrossRef]
- Martin, A.; Reed, R.D. wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Mol. Biol. Evol. 2010, 27, 2864–2878. [Google Scholar] [CrossRef]
- Martin, A.; Papa, R.; Nadeau, N.J.; Hill, R.I.; Counterman, B.A.; Halder, G.; Jiggins, C.D.; Kronforst, M.R.; Long, A.D.; McMillan, W.O.; et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc. Natl. Acad. Sci. USA 2012, 109, 12632–12637. [Google Scholar] [CrossRef]
- Özsu, N.; Chan, Q.Y.; Chen, B.; Gupta, M.D.; Monteiro, A. Wingless is a positive regulator of eyespot color patterns in Bicyclus anynana butterflies. Dev. Biol. 2017, 429, 177–185. [Google Scholar] [CrossRef]
- Mazo-Vargas, A.; Concha, C.; Livraghi, L.; Massardo, D.; Wallbank, R.W.R.; Zhang, L.; Papador, J.D.; Martinez-Najera, D.; Jiggins, C.D.; Kronforst, M.R.; et al. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proc. Natl. Acad. Sci. USA 2017, 114, 10701–10706. [Google Scholar] [CrossRef]
- Hanly, J.J.; Loh, L.S.; Mazo-Vargas, A.; Rivera-Miranda, T.S.; Livraghi, L.; Tendolkar, A.; Day, C.R.; Liutikaite, N.; Earls, E.A.; Corning, O.B.W.H.; et al. Frizzled2 receives WntA signaling during butterfly wing pattern formation. Development 2023, 150, dev201868. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.D.; Murugesan, S.N.; Connahs, H.; Monteiro, A. Spatial and temporal regulation of Wnt signaling pathway members in the development of butterfly wing patterns. Sci. Adv. 2023, 9, eadg3877. [Google Scholar] [CrossRef] [PubMed]
- Carroll, S.B.; Gates, J.; Keys, D.N.; Paddock, S.W.; Panganiban, G.E.; Selegue, J.E.; Williams, J.A. Pattern formation and eyespots determination in butterfly wings. Science 1994, 265, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Keys, D.N.; Lewis, D.L.; Selegue, J.E.; Pearson, B.J.; Goodrich, L.V.; Johnson, R.L.; Gates, J.; Scott, M.P.; Carroll, S.B. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science 1999, 283, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Glaser, G.; Stockslager, S.; Glansdorp, N.; Ramos, D. Comparative insights into questions of lepidopteran wing pattern homology. BMC Dev. Biol. 2006, 6, 52. [Google Scholar] [CrossRef]
- Zhang, L.; Mazo-Vargas, A.; Reed, R.D. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence. Proc. Natl. Acad. Sci. USA 2017, 114, 10707–10712. [Google Scholar] [CrossRef]
- Zhang, L.; Martin, A.; Perry, M.W.; van der Burg, K.R.; Matsuoka, Y.; Monteiro, A.; Reed, R.D. Genetic basis of melanin pigmentation in butterfly wings. Genetics 2017, 205, 1537–1550. [Google Scholar] [CrossRef]
- Westerman, E.L.; VanKuren, N.M.; Massardo, D.; Tenger-Trolander, A.; Zhang, W.; Hill, R.I.; Perry, M.; Bayala, E.; Barr, K.; Chamberian, N.; et al. Aristaless controls butterfly wing color variation used in mimicry and mate choice. Curr. Biol. 2018, 28, 3469–3474. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Monteiro, A. Melanin pathway genes regulate color and morphology of butterfly wing scales. Cell Rep. 2018, 24, 56–65. [Google Scholar] [CrossRef]
- Prakash, A.; Monteiro, A. apterous A specifies dorsal wing patterns and sexual traits in butterflies. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172685. [Google Scholar] [CrossRef]
- Reed, R.D.; Selegue, J.E.; Zhang, L.; Brunetti, C.R. Transcription factors underlying wing margin color patterns and pupal cuticle markings in butterflies. EvoDevo 2020, 11, 10. [Google Scholar] [CrossRef]
- Peng, C.L.; Mazo-Vargas, A.; Brack, B.J.; Reed, R.D. Multiple roles for laccase2 in butterfly wing pigmentation, scale development, and cuticle tanning. Evol. Dev. 2020, 22, 336–341. [Google Scholar] [CrossRef]
- van der Burg, K.R.; Lewis, J.J.; Brack, B.J.; Fandino, R.A.; Mazo-Vargas, A.; Reed, R.D. Genomic architecture of a genetically assimilated seasonal color pattern. Science 2020, 370, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Livraghi, L.; Hanly, J.J.; Van Bellghem, S.M.; Montejo-Kovacevich, G.; van der Heijden, E.S.; Loh, L.S.; Ren, A.; Warren, I.A.; Lewis, J.J.; Concha, C.; et al. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife 2021, 10, e68549. [Google Scholar] [CrossRef] [PubMed]
- Bayala, E.X.; VanKuren, N.; Massardo, D.; Kronforst, M.R. aristaless1 has a dual role in appendage formation and wing color specification during butterfly development. BMC Biol. 2023, 21, 100. [Google Scholar] [CrossRef] [PubMed]
- Bayala, E.X.; Cisneros, I.; Massardo, D.; VanKuren, N.W.; Kronforst, M.R. Divergent expression of aristaless1 and aristaless2 during embryonic appendage and pupal wing development in butterflies. BMC Biol. 2023, 21, 104. [Google Scholar] [CrossRef]
- Ma, S.; Meng, Z.; Chen, R.; Guan, K.L. The Hippo pathway: Biology and pathophysiology. Annu. Rev. Biochem. 2019, 88, 577–604. [Google Scholar] [CrossRef]
- Bairzin, J.C.D.; Emmons-Bell, M.; Hariharan, I.K. The Hippo pathway coactivator Yorkie can reprogram cell fates and create compartment-boundary-like interactions at clone margins. Sci. Adv. 2020, 6, eabe8159. [Google Scholar] [CrossRef]
- Zhong, Z.; Jiao, Z.; Yu, F.X. The Hippo signaling pathway in development and regeneration. Cell Rep. 2024, 43, 113926. [Google Scholar] [CrossRef]
- Saw, T.B.; Doostmohammadi, A.; Nier, V.; Kocgozlu, L.; Thampi, S.; Toyama, Y.; Marcq, P.; Lim, C.T.; Yeomans, J.M.; Ladoux, B. Topological defects in epithelia govern cell death and extrusion. Nature 2017, 544, 212–216. [Google Scholar] [CrossRef]
- Nanavati, B.N.; Yap, A.S.; Teo, J.L. Symmetry breaking and epithelial cell extrusion. Cells 2020, 9, 1416. [Google Scholar] [CrossRef]
- Villars, A.; Levayer, R. Collective effects in epithelial cell death and cell extrusion. Curr. Opin. Genet. Dev. 2022, 72, 8–14. [Google Scholar] [CrossRef]
- Ohsawa, S.; Vaughen, J.; Igaki, T. Cell extrusion: A stress-responsive force for good or evil in epithelial homeostasis. Dev. Cell 2018, 44, 284–296. [Google Scholar] [CrossRef]
- Eisenhoffer, G.T.; Loftus, P.D.; Yoshigi, M.; Otsuna, H.; Chien, C.B.; Morcos, P.A.; Rosenblatt, J. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 2012, 484, 546–549. [Google Scholar] [CrossRef]
- Mori, Y.; Shiratsuchi, N.; Sato, N.; Chaya, A.; Tanimura, N.; Ishikawa, S.; Kato, M.; Kameda, I.; Kon, S.; Haraoka, Y.; et al. Extracellular ATP facilitates cell extrusion from epithelial layers mediated by cell competition or apoptosis. Curr. Biol. 2022, 32, 2144–2159.e5. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T. Calcium wave propagation during cell extrusion. Curr. Opin. Cell Biol. 2022, 76, 102083. [Google Scholar] [CrossRef] [PubMed]
- Okuda, S.; Fujimoto, K. A mechanical instability in planar epithelial monolayers leads to cell extrusion. Biophys. J. 2020, 118, 2549–2560. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Narumi, R.; Akiyama, R.; Vitiello, E.; Shirai, T.; Tanimura, N.; Kuromiya, K.; Ishikawa, S.; Kajita, M.; Tada, M.; et al. Calcium wave promotes cell extrusion. Curr. Biol. 2020, 30, 670–681.e6. [Google Scholar] [CrossRef]
- Le, A.P.; Rupprecht, J.F.; Mège, R.M.; Toyama, Y.; Lim, C.T.; Ladoux, B. Adhesion-mediated heterogeneous actin organization governs apoptotic cell extrusion. Nat. Commun. 2021, 12, 397. [Google Scholar] [CrossRef]
- Fadul, J.; Rosenblatt, J. The forces and fates of extruding cells. Curr. Opin. Cell Biol. 2018, 54, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, K.; Kageyama, R.; Sano, M. Topological defects control collective dynamics in neural progenitor cell cultures. Nature 2017, 545, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Saw, T.B.; Xi, W.; Ladoux, B.; Lim, C.T. Biological tissues as active nematic liquid crystals. Adv. Mater. 2018, 30, 1802579. [Google Scholar] [CrossRef] [PubMed]
- Vafa, F.; Bowick, M.J.; Shraiman, B.I.; Marchetti, M.C. Fluctuations can induce local nematic order and extensile stress in monolayers of motile cells. Soft Matter 2021, 17, 3068–3073. [Google Scholar] [CrossRef] [PubMed]
- Blanch-Mercader, C.; Guillamat, P.; Roux, A.; Kruse, K. Integer topological defects of cell monolayers: Mechanics and flows. Phys. Rev. E 2021, 103, 012405. [Google Scholar] [CrossRef]
- Endresen, K.D.; Kim, M.; Pittman, M.; Chen, Y.; Serra, F. Topological defects of integer charge in cell monolayers. Soft Matter 2021, 17, 5878–5887. [Google Scholar] [CrossRef]
- Maroudas-Sacks, Y.; Garion, L.; Shani-Zerbib, L.; Livshits, A.; Braun, E.; Keren, K. Topological defects in the nematic order of actin fibres as organization centres of Hydra morphogenesis. Nat. Phys. 2021, 17, 251–259. [Google Scholar] [CrossRef]
- Balasubramaniam, L.; Mège, R.M.; Ladoux, B. Active nematics across scales from cytoskeleton organization to tissue morphogenesis. Curr. Opin. Genet. Dev. 2022, 73, 101897. [Google Scholar] [CrossRef]
Butterfly Species | Chemical | Trial No. | Total Number of Treated Individuals (Both Sexes) | Number of Individuals with Successful Eclosion (Both Sexes) | Percentage of Successful Eclosion (Eclosion Rate, ER) | Number of Females with Successful Eclosion |
---|---|---|---|---|---|---|
J. orithya | Jedi2 | #1 | 30 | 15 | 50% | 8 |
Yoda1 | #1 | 32 | 11 | 34% | 5 | |
GsMTx4 | #1 | 11 | 9 | 82% | 8 | |
#2 | 9 | 9 | 100% | 7 | ||
Phalloidin | #1 | 25 | 15 | 60% | 7 | |
DMSO | #1 | 33 | 20 | 61% | 13 | |
#2 | 55 | 17 | 31% | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozaki, M.; Otaki, J.M. Pharmacological Intervention of PIEZO1 for Butterfly Eyespot Color Patterns in Junonia orithya. Receptors 2025, 4, 20. https://doi.org/10.3390/receptors4040020
Ozaki M, Otaki JM. Pharmacological Intervention of PIEZO1 for Butterfly Eyespot Color Patterns in Junonia orithya. Receptors. 2025; 4(4):20. https://doi.org/10.3390/receptors4040020
Chicago/Turabian StyleOzaki, Momo, and Joji M. Otaki. 2025. "Pharmacological Intervention of PIEZO1 for Butterfly Eyespot Color Patterns in Junonia orithya" Receptors 4, no. 4: 20. https://doi.org/10.3390/receptors4040020
APA StyleOzaki, M., & Otaki, J. M. (2025). Pharmacological Intervention of PIEZO1 for Butterfly Eyespot Color Patterns in Junonia orithya. Receptors, 4(4), 20. https://doi.org/10.3390/receptors4040020