The (–)-Borneol Effect on Addiction/Abstinence by Morphine in Mice
Abstract
:1. Introduction
2. Results
2.1. Effect of Morphine and (–)-BOR on CPP
2.2. Effect of (–)-BOR on the Acquisition of Morphine-Induced CPP
2.3. Effect of (–)-BOR on Morphine Withdrawal Symptoms Precipitated by Naloxone
2.4. Genotoxic Evaluation of (–)-BOR by the Comet Assay
3. Discussion
4. Materials and Methods
4.1. Drugs
4.2. Animals
4.3. Conditioned Place Preference (CPP)
4.3.1. Preconditioning Phase
4.3.2. Conditioning Phase-Effect of Morphine and (–)-BOR on CPP
4.3.3. Conditioning Phase—Effect of (–)-BOR on the Acquisition of Morphine-Induced CPP
4.3.4. Post-Conditioning Phase (Test Phase)
4.4. Effect of (–)-BOR on Morphine Withdrawal Symptoms Precipitated by Naloxone
4.5. Genotoxic Evaluation of (–)-BOR by the Comet Assay
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Abdolrazaghnejad, A.; Banaie, M.; Tavakoli, N.; Safdari, M.; Rajabpour-Sanati, A. Pain Management in the Emergency Department: A Review Article on Options and Methods. Adv. J. Emerg. Med. 2018, 2, e45. [Google Scholar]
- Murphy, P.B.; Bechmann, S.; Barrett, M.J. Morphine. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2021. [Google Scholar]
- Holt, C.T.; McCall, K.L.; Cattabriga, G.; Tu, C.; Smalley, E.K.; Nichols, S.D. Using Controlled Substance Receipt Patterns to Predict Prescription Overdose Death. Pharmacology 2018, 101, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Preuss, C.V.; Kalava, A.; King, K.C. Prescription of Controlled Substances: Benefits and Risks. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Pierre, F.; Ugur, M.; Faivre, F.; Doridot, S.; Veinante, P.; Massotte, D. Morphine-dependent and abstinent mice are characterized by a broader distribution of the neurons co-expressing mu and delta opioid receptors. Neuropharmacology 2019, 152, 30–41. [Google Scholar] [CrossRef]
- Pergolizzi, J.V.; Magnusson, P.; LeQuang, J.A.; Breve, F.; Taylor, R.; Wollmuth, C.; Varrassi, G. Can NSAIDs and Acetaminophen Effectively Replace Opioid Treatment Options for Acute Pain? Expert Opin. Pharmacother. 2021, 22, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Caldas da Silva Dantas Viegas, C.; Sérgio Silva, A.; Marinho Braga, R.; Nunes de Andrade, H.H.; Felício de Sousa Santos, A.K.; Leite Ferreira, M.D.; Ribeiro, M.D.; Agra Cavalcante Silva, L.H.; Alves de Lima, L.; Nobrega de Almeida, R.; et al. Antinociceptive, anti-inflammatory and antioxidant activities of the crude ethanolic extract and alkaloid fraction of Waltheria viscosissima A. St.-Hil. (Malvaceae). J. Ethnopharmacol. 2022, 292, 115173. [Google Scholar] [CrossRef] [PubMed]
- Taddesse, Y.; Kyunghwa, Y.; Soyong, J.; Seikwan, O. Morphine dependence is attenuated by red ginseng extract and ginsenosides Rh2, Rg3, and compound K. J. Ginseng Res. 2016, 40, 445–452. [Google Scholar]
- Glasser, M.; Chen, J.; Alzarah, M.; Wallace, M. Non-opioid Analgesics and Emerging Therapies. Cancer Treat. Res. 2021, 182, 125–142. [Google Scholar]
- Giordano, G.; Marsida, K.; Giulia, S.; Gregory, D.; George, G.; Roberto, C. Pioglitazone attenuates the opioid withdrawal and vulnerability to relapse to heroin seeking in rodents. Psychopharmacology 2017, 234, 223–234. [Google Scholar]
- Dos Reis Izolan, L.; da Silva, D.M.; Oliveira, H.B.L.; de Oliveira Salomon, J.L.; Peruzzi, C.P.; Garcia, S.C.; Dallegrave, E.; Zanotto, C.; Elisabetsky, E.; Gonçalves, C.A.; et al. Sintocalmy, a Passiflora incarnata Based Herbal, Attenuates Morphine Withdrawal in Mice. Neurochem. Res. 2021, 46, 1092–1100. [Google Scholar] [CrossRef]
- Kiashemshaki, B.; Safakhah, H.A.; Ghanbari, A.; Khaleghian, A.; Miladi-Gorji, H. Saffron (Crocus sativus L.) stigma reduces symptoms of morphine-induced dependence and spontaneous withdrawal in rats. Am. J. Drug Alcohol Abus. 2021, 47, 170–181. [Google Scholar] [CrossRef]
- Ehtemami, Z.; Shafaroodi, H.; Asgarpanah, J. Effect of Essential Oil of Zhumeria majdae on Morphine Tolerance and Dependence in Mice. Chin. J. Integr. Med. 2020, 26, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Huang, F.; Szymusiak, M.; Liu, Y.; Wang, Z.J. Curcumin attenuates opioid tolerance and dependence by inhibiting Ca2+/calmodulin-dependent protein kinase II alpha activity. J. Pharmacol. Exp. Ther. 2015, 352, 420–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri, M.T.; Naghizadeh, B.; Ghorbanzadeh, B. Ellagic acid enhances morphine analgesia and attenuates the development of morphine tolerance and dependence in mice. Eur. J. Pharmacol. 2014, 741, 272–280. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. Nutraceuticals—Shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Lucarini, M.; Santini, A. Nutraceuticals in Human Health. Foods 2020, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Masłowski, M.; Aleksieiev, A.; Miedzianowska, J.; Strzelec, K. Potential application of peppermint (Mentha piperita L.), german chamomile (Matricaria chamomilla L.) and yarrow (Achillea millefolium L.) as active fillers in natural rubber biocomposites. Int. J. Mol. Sci. 2021, 22, 7530. [Google Scholar] [CrossRef]
- Michel, J.; Abd Rani, N.Z.; Husain, K. A Review on the Potential Use of Medicinal Plants from Asteraceae and Lamiaceae Plant Family in Cardiovascular Diseases. Front. Pharmacol. 2020, 11, 852. [Google Scholar] [CrossRef]
- El Yaagoubi, M.; Mechqoq, H.; Ortiz, S.; Cavaleiro, C.; Lecsö-Bornet, M.; Pereira, C.G.; Rodrigues, M.J.; Custódio, L.; El Mousadik, A.; Picot, L.; et al. Chemical Composition and Biological Screening of the Essential Oils of Micromeriamacrosiphon and M. arganietorum (Lamiaceae). Chem. Biodivers. 2021, 18, e2100653. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. Evaluation of the analgesic potential and safety of Cinnamomum camphora chvar. Borneol essential oil. Bioengineered 2021, 12, 9860–9871. [Google Scholar]
- Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part II-Production Scales and Clinically Compliant Production Methods. Nanomaterials 2020, 10, 455. [Google Scholar] [CrossRef] [Green Version]
- Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I-Clinical Trials Legislation and Good Manufacturing Practices (GMP) of Nanotherapeutics in the EU. Pharmaceutics 2020, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xie, Q.; Ma, R.; Li, Y.; Yuan, J.; Ren, M.; Li, H.; Wang, J.; Lu, D.; Xu, Z.; et al. Recent Progress on the Synergistic Antitumor Effect of a Borneol-Modified Nanocarrier Drug Delivery System. Front. Med. 2021, 8, 750170. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ren, Z.; Wang, L.; Cai, Y.; Ma, H.; Fang, L.; Su, J. Nanoparticle-stabilized encapsulation of borneol and citral: Physicochemical characteristics, storage stability, and enhanced antibacterial activities. J. Food Sci. 2021, 86, 4554–4565. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Xiao, Z.; Hui, Z.; Jian, X.; Xiao, C.; Yong, L.; Qi, W.; Zi, S.; Hong, W. Natural borneol recycling from Cinnamomum camphor chvar. Borneol oil residue by fractional distillation and recrystallization. Trop. J. Pharm. Res. 2014, 13, 1463–1470. [Google Scholar]
- Granger, E.; Campbell, L.; Johnston, R. (+)- and (–)-borneol: Efficacious positive modulators of GABA action at human recombinant GABAA receptors. Biochem. Pharmacol. 2005, 69, 1101–1111. [Google Scholar] [CrossRef]
- José, F.; Nelma, O.; Daniel, A.; Lucindo, J.; Sócrates, C.; Márcio, S.; Rita, O.; Aldeídia, O. Investigation of Mechanisms Involved in (–)-Borneol-Induced Vasorelaxant Response on Rat Thoracic Aorta. Basic Clin. Pharmacol. Toxicol. 2011, 10, 171–177. [Google Scholar]
- Engin, E.; Benham, R.S.; Rudolph, U. An Emerging Circuit Pharmacology of GABAA Receptors. Trends Pharmacol. Sci. 2018, 39, 710–732. [Google Scholar] [CrossRef]
- Morikawa, H.; Young, C.C.; Smits, J.A. Usage of L-type calcium channel blockers to suppress drug reward and memory driving addiction: Past, present, and future. Neuropharmacology 2022, 221, 109290. [Google Scholar] [CrossRef]
- Xie, Q.; Li, J.; Dong, T.; Yuan, J.; Lu, D.; Ma, R.; Li, H.; Li, Y.; Ren, M.; Chen, H.; et al. Neuroprotective effects of synthetic borneol and natural borneol based on the neurovascular unit against cerebral ischaemic injury. J. Pharm. Pharmacol. 2021, 74, 236–249. [Google Scholar] [CrossRef]
- Li, Q.; Xia, L.; Sun, C.; Zhang, H.; Zheng, M.; Zhang, H.; Lu, H.; Wang, Z. Role of Borneol Induced Autophagy in Enhancing Radiosensitivity of Malignant Glioma. Front. Oncol. 2021, 11, 749987. [Google Scholar] [CrossRef]
- Li, W.R.; Chen, R.Y.; Yang, L.; Huang, T.L.; Xu, Q.W.; Mi, S.Q.; Wang, N.S. Pharmacokinetics of natural borneol after oral administration in mice brain and its effect on excitation ratio. Eur. J. Drug Metab. Pharmacokinet. 2012, 37, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Michaelides, M.; Baler, R. The Neuroscience of Drug Reward and Addiction. Physiol. Rev. 2019, 99, 2115–2140. [Google Scholar] [CrossRef] [PubMed]
- Fatahi, Z.; Zeinaddini-Meymand, A.; Karimi-Haghighi, S.; Haghparast, A.; Khodagholi, F.; Haghparast, A. BDNF and p-GSK3β in the hippocampus mediate the impairment of delay-based decision making in morphine-dependent rats. NeuroReport 2020, 31, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Ujcikova, H.; Hejnova, L.; Eckhardt, A.; Roubalova, L.; Novotny, J.; Svoboda, P. Impact of three-month morphine withdrawal on rat brain cortex, hippocampus, striatum and cerebellum: Proteomic and phosphoproteomic studies. Neurochem. Int. 2021, 144, 104975. [Google Scholar] [CrossRef]
- Osmanlıoğlu, H.Ö.; Yıldırım, M.K.; Akyuva, Y.; Yıldızhan, K.; Nazıroğlu, M. Morphine Induces Apoptosis, Inflammation, and Mitochondrial Oxidative Stress via Activation of TRPM2 Channel and Nitric Oxide Signaling Pathways in the Hippocampus. Mol. Neurobiol. 2020, 57, 3376–3389. [Google Scholar] [CrossRef] [PubMed]
- Massaly, N.; Morón, A.; Al-hasani, A. Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System. Front. Neurosci. 2016, 10, 480. [Google Scholar] [CrossRef] [Green Version]
- Spanagel, R. Animal models of addiction. Dialogues Clin. Neurosci. 2017, 19, 247–258. [Google Scholar] [CrossRef]
- McKendrick, G.; Graziane, N.M. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front. Behav. Neurosci. 2020, 14, 582147. [Google Scholar] [CrossRef]
- Atehortua Martinez, L.A.; Curis, E.; Mekdad, N.; Larrieu, C.; Courtin, C.; Jourdren, L.; Blugeon, C.; Laplanche, J.L.; Megarbane, B.; Marie-Claire, C.; et al. Individual differences in cocaine-induced conditioned place preference in male rats: Behavioral and transcriptomic evidence. J. Psychopharmacol. 2022, 36, 1161–1175. [Google Scholar] [CrossRef]
- Schmill, M.P.; Cadney, M.D.; Thompson, Z.; Hiramatsu, L.; Albuquerque, R.L.; McNamara, M.P.; Castro, A.A.; Kay, J.C.; Buenaventura, D.G.; Ramirez, J.L.; et al. Conditioned place preference for cocaine and methylphenidate in female mice from lines selectively bred for high voluntary wheel-running behavior. Genes Brain Behav. 2021, 20, e12700. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Guo, L.K.; Han, X.; Song, R.; Dong, G.M.; Ma, C.M.; Wu, N.; Li, J. Naltrexone attenuates methamphetamine-induced behavioral sensitization and conditioned place preference in mice. Behav. Brain Res. 2021, 399, 112971. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, M.; Shang, Q.; Qian, H.; An, R.; Liu, H.; Shao, G.; Li, T.; Liu, X. Psilocin suppresses methamphetamine-induced hyperlocomotion and acquisition of conditioned place preference via D2R-mediated ERK signaling. CNS Neurosci. Ther. 2023, 29, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.F.; Davis, C.M.; Sempio, C.; Klawitter, J.; Christians, U.; Weerts, E.M. Δ9-Tetrahydrocannabinol Vapor Exposure Produces Conditioned Place Preference in Male and Female Rats. Cannabis Cannabinoid Res. 2022. advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, C.; Havlickova, T.; Lapka, M.; Puskina, N.; Šlamberová, R.; Kuchar, M.; Sustkova-Fiserova, M. Cannabinoid-Induced Conditioned Place Preference, Intravenous Self-Administration, and Behavioral Stimulation Influenced by Ghrelin Receptor Antagonism in Rats. Int. J. Mol. Sci. 2021, 22, 2397. [Google Scholar] [CrossRef]
- Barattini, A.E.; Montanari, C.; Edwards, K.N.; Edwards, S.; Gilpin, N.W.; Pahng, A.R. Chronic inflammatory pain promotes place preference for fentanyl in male rats but does not change fentanyl self-administration in male and female rats. Neuropharmacology 2023, 231, 109512. [Google Scholar] [CrossRef]
- Zhang, J.; Deji, C.; Fan, J.; Chang, L.; Miao, X.; Xiao, Y.; Zhu, Y.; Li, S. Differential alteration in gut microbiome profiles during acquisition, extinction and reinstatement of morphine-induced CPP. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 104, 110058. [Google Scholar] [CrossRef]
- Amohashemi, E.; Reisi, P.; Alaei, H. Lateral habenula electrical stimulation with different intensities in combination with GABAB receptor antagonist reduces acquisition and expression phases of morphine-induced CPP. Neurosci. Lett. 2021, 759, 135996. [Google Scholar] [CrossRef]
- Khezri, A.; Mohsenzadeh, M.S.; Mirzayan, E.; Bagherpasand, N.; Fathi, M.; Abnous, K.; Imenshahidi, M.; Mehri, S.; Hosseinzadeh, H. Quetiapine attenuates the acquisition of morphine-induced conditioned place preference and reduces ERK phosphorylation in the hippocampus and cerebral cortex. Am. J. Drug Alcohol Abus. 2022, 48, 422–432. [Google Scholar] [CrossRef]
- Mohaddeseh, A.; Hossein, H.; Ali, S.; Ali, R. The effect of O-1602, an atypical cannabinoid, on morphine-induced conditioned place preference and physical dependence. Pharmacol. Rep. 2016, 68, 592–597. [Google Scholar]
- Amohashemi, E.; Reisi, P.; Alaei, H. Involvement of GABAA receptors of lateral habenula in the acquisition and expression phases of morphine-induced place preference in male rats. Behav. Pharmacol. 2022, 33, 452–465. [Google Scholar] [CrossRef]
- Shirazy, M.; RayatSanati, K.; Jamali, S.; Motamedi, F.; Haghparast, A. Role of orexinergic receptors in the dentate gyrus of the hippocampus in the acquisition and expression of morphine-induced conditioned place preference in rats. Behav. Brain Res. 2020, 379, 112349. [Google Scholar] [CrossRef] [PubMed]
- Łuszczki, J.J.; Bojar, H.; Góralczyk, A.; Skalicka-Woźniak, K. Antiseizure Effects of Scoparone, Borneol and Their Impact on the Anticonvulsant Potency of Four Classic Antiseizure Medications in the Mouse MES Model—An Isobolographic Transformation. Int. J. Mol. Sci. 2023, 24, 1395. [Google Scholar] [CrossRef] [PubMed]
- Lucindo, J.; Adriana, G.; Bruno, A.; Geovana, O.; Marília, S.; Flávia, M.; Márcio, S.; Cavalcanti, S.C.; Júnior, W.D.L.; Botelho, M.A.; et al. Carvacrol, borneol and citral reduce convulsant activity in rodents. Afr. J. Biotechnol. 2010, 9, 6566–6572. [Google Scholar]
- Sahraei, H.; Amiri, Y.A.; Haeri-Rohani, A.; Sepehri, H.; Salimi, S.H.; Pourmotabbed, A.; Ghoshooni, H.; Zahirodin, A.; Zardooz, H. Different effects of GABAergic receptors located in the ventral tegmental area on the expression of morphine-induced conditioned place preference in rat. Eur. J. Pharmacol. 2005, 524, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Siivonen, M.S.; de Miguel, E.; Aaltio, J.; Manner, A.K.; Vahermo, M.; Yli-Kauhaluoma, J.; Linden, A.M.; Aitta-Aho, T.; Korpi, E.R. Conditioned Reward of Opioids, but not Psychostimulants, is Impaired in GABA-A Receptor δ Subunit Knockout Mice. Basic Clin. Pharmacol. Toxicol. 2018, 123, 558–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Merrer, J.; Becker, J.A.; Befort, K.; Kieffer, B.L. Reward processing by the opioid system in the brain. Physiol. Rev. 2009, 89, 1379–1412. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 2011, 115, 1363–1381. [Google Scholar] [CrossRef] [Green Version]
- Steidl, S.; Wasserman, D.I.; Blaha, C.D.; Yeomans, J.S. Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neurosci. Biobehav. Rev. 2017, 83, 72–82. [Google Scholar] [CrossRef]
- Andrews, N.; Loomis, S.; Blake, R.; Ferrigan, L.; Singh, L.; McKnight, A.T. Effect of gabapentin-like compounds on development and maintenance of morphine-induced conditioned place preference. Psychopharmacology 2001, 157, 381–387. [Google Scholar] [CrossRef]
- Suzuki, T.; Tsuda, M.; Funada, M.; Misawa, M. Blockade of morphine-induced place preference by diazepam in mice. Eur. J. Pharmacol. 1995, 280, 327–330. [Google Scholar] [CrossRef]
- Shukla, P.K.; Tang, L.; Wang, Z.J. Phosphorylation of neurogranin, protein kinase C, and Ca2+/calmodulin dependent protein kinase II in opioid tolerance and dependence. Neurosci. Lett. 2006, 404, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Zhou, Y.; Li, C.; Chen, Z.; Li, H.; Fang, M.; Zhu, C.; Huo, C.; Yung, K.K.; Li, J.; et al. Sinomenine Protects Against Morphine Dependence through the NMDAR1/CAMKII/CREB Pathway: A Possible Role of Astrocyte-Derived Exosomes. Molecules 2018, 23, 2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayama, T.; Noguchi, J.; Watanabe, S.; Takahashi, N.; Hayashi-Takagi, A.; Ellis-Davies, G.C.; Matsuzaki, M.; Kasai, H. GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nat. Neurosci. 2013, 16, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Park, E.H.; Kim, N.S.; Lee, Y.K.; Choi, J.S. N-Methyl-D-Aspartate (NMDA) Receptors in the Prelimbic Cortex Are Required for Short- and Long-Term Memory Formation in Trace Fear Conditioning. Life 2022, 12, 672. [Google Scholar] [CrossRef]
- Higley, J. Localized GABAergic inhibition of dendritic calcium signaling. Nat. Rev. Neurosci. 2016, 8, 583–592. [Google Scholar]
- Zhang, J.J.; Song, C.G.; Dai, J.M.; Li, L.; Yang, X.M.; Chen, Z.N. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. MedComm 2022, 3, e148. [Google Scholar] [CrossRef]
- Shokri-Kojori, E.; Wang, G.J.; Volkow, N.D. Naloxone precipitated withdrawal increases dopamine release in the dorsal striatum of opioid dependent men. Transl. Psychiatry 2021, 11, 445. [Google Scholar] [CrossRef]
- Cheaha, D.; Reakkamnuan, C.; Nukitram, J.; Chittrakarn, S.; Phukpattaranont, P.; Keawpradub, N.; Kumarnsit, E. Effects of alkaloid-rich extract from Mitragyna speciosa (Korth.) Havil. on naloxone-precipitated morphine withdrawal symptoms and local field potential in the nucleus accumbens of mice. J. Ethnopharmacol. 2017, 208, 129–137. [Google Scholar] [CrossRef]
- Ramesh, D.; Ross, R.; Schlosburg, E.; Owens, A.; Abdullah, A.; Kinsey, G.; Long, Z.; Nomura, K.; Sim-Selley, J.; Cravatt, F.; et al. Blockade of endocannabinoid hydrolytic enzymes attenuates precipitated opioid withdrawal symptoms in mice. J. Pharmacol. Exp. Ther. 2011, 339, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Majid, M.; Mohammad, B.; Pantea, H.; Seyed, K.; Ozra, M. Attenuation of morphine withdrawal syndrome by various dosages of curcumin in comparison with clonidine in mouse: Possible mechanism. Iran. J. Med. Sci. 2015, 40, 125–132. [Google Scholar]
- Glei, M.; Schneider, T.; Schlörmann, W. Comet assay: An essential tool in toxicological research. Arch. Toxicol. 2016, 90, 2315–2336. [Google Scholar] [CrossRef] [PubMed]
- Gajski, G.; Ravlić, S.; Godschalk, R.; Collins, A.; Dusinska, M.; Brunborg, G. Application of the comet assay for the evaluation of DNA damage in mature sperm. Mutat. Res.-Rev. Mutat. Res. 2021, 788, 108398. [Google Scholar] [CrossRef] [PubMed]
- Beach, H.D. Morphine addiction in rats. Can. J. Psychol. 1957, 11, 104–112. [Google Scholar] [CrossRef]
- Marshall, I.; Grahame-Smith, D.G. Evidence against a role of brain 5-hydroxytryptamine in the development of physical dependence upon morphine in mice. J. Pharmacol. Exp. Ther. 1971, 179, 634–641. [Google Scholar] [PubMed]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.; Milic, M.; Bonassi, S.; Dusinska, M. The comet assay in human biomonitoring: Technical and epidemiological perspectives. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 843, 1–2. [Google Scholar] [CrossRef]
Withdrawal Symptoms | Groups (mg/kg, i.p.) | ||||
---|---|---|---|---|---|
Vehicle | Morphine (5) + Naloxone (8) | (–)-BOR (25) + Morphine (5) | (–)-BOR (50) + Morphine (5) (–)- | (–)-BOR (100) + Morphine (5) | |
Jumping | 0.2 ± 0.2 | 3.6 ± 0.4 *** | 3.4 ± 0.4 | 2.2 ± 0.5 | 0.8 ± 0.2 ### |
Paw tremor | 0.3 ± 0.2 | 3.3 ± 0.7 * | 3.1 ± 0.3 | 3.0 ± 0.8 | 2.2 ± 0.9 |
Wet dog shaking | 0.4 ± 0.2 | 3.1 ± 0.8 * | 2.2 ± 0.5 | 2.4 ± 0.2 | 3.0 ± 0.7 |
Reverse walking | 0.0 ± 0.0 | 1.0 ± 0.3 * | 0.5 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.1 |
Preconditioning | Conditioning | Post-Conditioning | |
---|---|---|---|
Day 0 | Days 2, 4, 6, and 8 | Days 1, 3, 5, and 7 | Day 9 |
N/A | Vehicle + vehicle | Vehicle + vehicle | N/A |
N/A | Vehicle + morphine | Vehicle + vehicle | N/A |
N/A | (–)-BOR + vehicle | Vehicle + vehicle | N/A |
N/A | (–)-BOR + morphine | Vehicle + vehicle | N/A |
N/A | Naloxone + morphine | Vehicle + vehicle | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, M.P.d.M.d.; Viana, M.d.R.; Osório, A.T.; Lopes, L.d.S.; Amaral, F.P.d.M.d.; Lucarini, M.; Durazzo, A.; Arcanjo, D.D.R.; Oliveira, R.d.C.M. The (–)-Borneol Effect on Addiction/Abstinence by Morphine in Mice. Drugs Drug Candidates 2023, 2, 486-497. https://doi.org/10.3390/ddc2020025
Amaral MPdMd, Viana MdR, Osório AT, Lopes LdS, Amaral FPdMd, Lucarini M, Durazzo A, Arcanjo DDR, Oliveira RdCM. The (–)-Borneol Effect on Addiction/Abstinence by Morphine in Mice. Drugs and Drug Candidates. 2023; 2(2):486-497. https://doi.org/10.3390/ddc2020025
Chicago/Turabian StyleAmaral, Maurício Pires de Moura do, Melquisedeque da Rocha Viana, Altamiro Teixeira Osório, Luciano da Silva Lopes, Fabrício Pires de Moura do Amaral, Massimo Lucarini, Alessandra Durazzo, Daniel Dias Rufino Arcanjo, and Rita de Cássia Meneses Oliveira. 2023. "The (–)-Borneol Effect on Addiction/Abstinence by Morphine in Mice" Drugs and Drug Candidates 2, no. 2: 486-497. https://doi.org/10.3390/ddc2020025
APA StyleAmaral, M. P. d. M. d., Viana, M. d. R., Osório, A. T., Lopes, L. d. S., Amaral, F. P. d. M. d., Lucarini, M., Durazzo, A., Arcanjo, D. D. R., & Oliveira, R. d. C. M. (2023). The (–)-Borneol Effect on Addiction/Abstinence by Morphine in Mice. Drugs and Drug Candidates, 2(2), 486-497. https://doi.org/10.3390/ddc2020025