Microwave and Radiofrequency Ablation: A Comparative Study between Technologies in Ex Vivo Tissues
Abstract
:1. Introduction
1.1. Radiofrequency and Microwave Techniques in Medical Applications
1.2. Interactions of Electromagnetic Radiation with Biological Tissue in Thermal Heating
- The nature of the load and its temperature (also influenced by the blood flow);
- The frequency of the EM wave, its applied power density (power per unit volume dissipated in the load), and its penetration depth, i.e., the distance at which microwave power is reduced to 1/e (e = 2.718) = 0.368 or ~37% from the strength at the point of entry and can be a limiting factor in application if the mechanism involved is not properly understood.
- Electronic—electrons which have low mass and small inertia and can easily follow the alternations of the electric field, are shifted relative to positive nuclei, resulting in a non-zero dipole moment;
- Dipolar—the alternating electric field tends to align the dipoles in the load parallel to the field and depending on the mass of the dipolar molecule and the frequency of the wave, a phase difference is created between the orientation of the electric field and the molecules leading to dissipative interactions and heat generation;
- Ionic—positively and negatively charged ions are shifted out of their barycenter, leading to vibrations of atoms or ions;
- Interfacial polarization—displacement of free charges accumulated at the interface located within the load under the influence of the electric field.
2. Results
2.1. Shape Evaluation Results
2.2. Morpho-Histological Results
2.3. Discussion
3. Materials and Methods
3.1. Hybrid Microwave and Radiofrequency Generator
3.1.1. Microwave Generator
3.1.2. Radiofrequency Generator
3.2. Probes
3.2.1. Probes Working Principles
3.2.2. Probes Cooling
3.3. Target Tissues
3.4. Ablation Tests
3.5. Ablation Evaluation Methods
3.5.1. Roundness Index
3.5.2. Histological Imaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MacDonald, M.; Abouzahra, M.; Stambaugh, J. Overview of High-Power and Wideband Radar Technology Development at MIT Lincoln Laboratory. Remote Sens. 2024, 16, 1530. [Google Scholar] [CrossRef]
- Zhang, H. The History of Microwave Heating. Microwave Heating of Foods; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Ray, S.K.; Maiti, C.K.; Chakraborti, N.B. Rapid plasma etching of silicon, silicon dioxide and silicon nitride using microwave discharges. Semicond. Sci. Technol. 1993, 8, 599. [Google Scholar] [CrossRef]
- Miotk, R.; Hrycak, B.; Czylkowski, D.; Jasiński, M.; Dors, M.; Mizeraczyk, J. Atmospheric pressure microwave (915 MHz) plasma for hydrogen production from steam reforming of ethanol. Sci. Rep. 2024, 14, 14959. [Google Scholar] [CrossRef] [PubMed]
- Petzold, J.; Schmitter, S.; Silemek, B. Towards an integrated radiofrequency safety concept for implant carriers in MRI based on sensor-equipped implants and parallel transmission. NMR Biomed. 2023, 36, e4900. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S. Hadron Therapy Achievements and Challenges: The CNAO Experience. Physics 2022, 4, 229–257. [Google Scholar] [CrossRef]
- Jiang, D.; Deng, D.; Xiong, Y.; Wang, D.; Gong, J.; Zhao, H.; Bao, Z.; Wei, Y.; Xie, C.; Jia, L.; et al. Total marrow lymphoid irradiation IMRT treatment using a novel CT-linac. Eur. J. Med. Res. 2023, 28, 463. [Google Scholar] [CrossRef] [PubMed]
- Pfannenstiel, A.; Avellar, H.; Hallman, C. Directional microwave ablation in spine: Experimental assessment of computational modelling. Int. J. Hyperth. 2018, 41, 2313492. [Google Scholar] [CrossRef] [PubMed]
- Gianpaolo, C.; Laganà, D.; Mangini, M.; Fontana, F.; Dionigi, G.; Boni, L.; Rovera, F.; Cuffari, S.; Fugazzola, C. Microwave tumors ablation: Principles, clinical applications and review of preliminary experiences. Int. J. Surg. 2008, 6, 65–69. [Google Scholar]
- Filippiadis, D.K.; Yevich, S.; Deschamps, F.; Jennings, J.W.; Tutton, S.; Kelekis, A. The Role of Ablation in Cancer Pain Relief. Curr. Oncol. Rep. 2019, 21, 105. [Google Scholar] [CrossRef]
- Vrba, D.; Vrba, J.; Fiser, O.; Cumana, J.; Babak, M.; Senior, J.V. Applications of Microwaves in Medicine and Biology. In Recent Microwave Technologies; IntechOpen: London, UK, 2022. [Google Scholar]
- Wilfried, W.; Khazen, C.; Deviatko, E.; Stix, G.; Binder, T.; Seitelberger, R.; Schmidinger, H.; Wolner, E. Microwave and radiofrequency ablation yield similar success rates for treatment of chronic atrial fibrillation. Eur. J. Cardio-Thorac. Surg. 2004, 25, 1011–1017. [Google Scholar]
- Reis, J.; Chang, Y.; Sharma, A.K. Radiofrequency ablation vs microwave ablation for osteoid osteomas: Long-term results. Skelet. Radiol. 2020, 49, 1995–2000. [Google Scholar] [CrossRef] [PubMed]
- Bennardo, L.; Fusco, I.; Cuciti, C.; Sicilia, C.; Salsi, B.; Cannarozzo, G.; Hoffmann, K.; Nisticò, S.P. Microwave Therapy for Cellulite: An Effective Non-Invasive Treatment. J. Clin. Med. 2022, 11, 515. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, S.J.; Nyamekye, I.K. Radiofrequency ablation of varicose veins: Best practice techniques and evidence. Phlebology 2015, 30, 9–17. [Google Scholar] [CrossRef]
- Izzo, F.; Granata, V.; Grassi, R.; Fusco, R.; Palaia, R.; Delrio, P.; Carrafiello, G.; Azoulay, D.; Petrillo, A.; A Curley, S. Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. Oncol. 2019, 24, 990–1005. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, D.I.; Alexander, A.; Rosenberg, A.E.; Springfield, A.D. Ablation of osteoid osteomas with a percutaneously placed electrode: A new procedure. Radiology 1992, 183, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, D.E.; Zagoria, R.J.; Akerley, W.; Mayo-Smith, W.W.; Kavanagh, P.V.; Safran, H. Percutaneous radiofrequency ablation of malignancies in the lung. AJR Am. J. Roentgenol. 2000, 174, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Suwa, K.; Seki, T.; Aoi, K.; Yamashina, M.; Murata, M.; Yamashiki, N.; Nishio, A.; Shimatani, M.; Naganuma, M. Efficacy of microwave ablation versus radiofrequency ablation for hepatocellular carcinoma: A propensity score analysis. Abdom. Radiol. 2021, 46, 3790–3797. [Google Scholar] [CrossRef] [PubMed]
- Rathke, H.; Hamm, B.; Güttler, F.; Rathke, J.; Rump, J.; Teichgraber, U.; de Bucourt, M. Comparison of four radiofrequency ablation systems at two target volumes in an ex vivo bovine liver model. Diagn. Interv. Radiol. 2014, 20, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Pfannenstiel, A.; Iannuccilli, J.; Cornelis, F.H.; Dupuy, D.E.; Beard, W.L.; Prakash, P. Shaping the future of microwave tumor ablation: A new direction in precision and control of device performance. International journal of hyperthermia: The official journal of European Society for Hyperthermic Oncology. N. Am. Hyperth. Group 2022, 39, 664–674. [Google Scholar] [CrossRef]
- Goldberg, S.N.; Gazelle, G.S.; Mueller, P.R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am. J. Roentgenol. 2000, 174, 323–331. [Google Scholar] [CrossRef]
- Dodd, G.D., 3rd; Soulen, M.C.; Kane, R.A.; Livraghi, T.; Lees, W.R.; Yamashita, Y.; Gillams, A.R.; Karahan, O.I.; Rhim, H. Minimally invasive treatment of malignant hepatic tumors: At the threshold of a major breakthrough. Radiographics 2000, 20, 9–27. [Google Scholar] [CrossRef]
- Rossi, S.; Di Stasi, M.; Buscarini, E.; Quaretti, P.; Garbagnati, F.; Squassante, L.; Paties, C.T.; Silverman, D.E.; Buscarini, L. Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer. Am. J. Roentgenol. 1996, 167, 759–768. [Google Scholar] [CrossRef]
- Hyung, W.J.; Cheong, J.H.; Kim, J.; Chen, J.; Choi, S.H.; Noh, S.H. Application of minimally invasive treatment for early gastric cancer. J. Surg. Oncol. 2004, 85, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.B.; Pascual, J.M.; Raimondo, M.; Woodward, T.A.; McComb, B.L.; Crook, J.E.; Johnson, M.M.; Al-Haddad, M.A.; Gross, S.A.; Pungpapong, S.; et al. Minimally invasive endoscopic staging of suspected lung cancer. J. Am. Med. Assoc. 2008, 299, 540–546. [Google Scholar] [CrossRef]
- Decareau, R.; Teterson, R. Microwave Processing and Engineering; Ellis Horwood: Chicester, UK, 1986. [Google Scholar]
- Mumtaz, S.; Rana, J.N.; Choi, E.H.; Han, I. Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int. J. Mol. Sci. 2022, 23, 9288. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, P. An introduction to dielectric heating. Microw. Chem. De Gruyter 2017, 20–24. [Google Scholar] [CrossRef]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies; U.S. Air Force Report AFOSR-TR-96; King’s Collage, Department of Physics: London, UK, 1996. [Google Scholar]
- Knavel, E.M.; Brace, C.L. Tumor ablation: Common modalities and general practices. Tech. Vasc. Interv. Radiol. 2013, 16, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Brace, C.L.; Lee, F.T., Jr.; Goldberg, S.N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351–369. [Google Scholar] [CrossRef]
- Lubner, M.G.; Brace, C.L.; Hinshaw, J.L.; Lee, F.T., Jr. Microwave tumor ablation: Mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol. 2021, 21, 192–203. [Google Scholar] [CrossRef]
- Yu, N.C.; Lu, D.S.K.; Raman, S.S.; Dupuy, D.E.; Simon, C.J.; Lassman, C.; Aswad, B.I.; Ianniti, D.; Busuttil, R.W. Hepatocellular carcinoma: Microwave ablation with multiple straight and loop antenna clusters-pilot comparison with pathologic findings. Radiology 2006, 239, 269–275. [Google Scholar] [CrossRef]
- Chiang, J.; Wang, P.; Brace, C.L. Computational Modelling of Microwave Tumour Ablations. Int. J. Hyperth. 2013, 29, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Afaghi, P.; Lapolla, M.; Ghandi, K. Percutaneous microwave ablation applications for liver tumors: Recommendations for COVID-19 patients. Heliyon 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Donlon, P.; Dennedy, M. Thermal ablation in adrenal disorders: A discussion of the technology, the clinical evidence and the future. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, M.S.; Martinez, M.A.; Lindauer, S.; Khan, A.; Ramamurthy, S. Radiofrequency ablation near the bone-muscle interface alters soft tissue lesion dimensions. Reg. Anesth. Pain Med. 2015, 40, 270–275. [Google Scholar] [CrossRef]
- Takahashi, H.; Kahramangil, B.; Berber, E. Local recurrence after microwave thermosphere ablation of malignant liver tumors: Results of a surgical series. Surgery 2017, 163, 709–713. [Google Scholar] [CrossRef]
- Mohtashami, Y.; Luyen, H.; Sawicki, J.F.; Shea, J.D.; Behdad, N.; Hagness, S.C. Tools for Attacking Tumors: Performance Comparison of Triaxial, Choke Dipole, and Balun-Free Base-Fed Monopole Antennas for Microwave Ablation. IEEE Antennas Propag. Mag. 2018, 60, 52–57. [Google Scholar] [CrossRef]
- Satoh, T.; Stauffer, P.R. Implantable helical coil microwave antenna for interstitial hyperthermia. Int. J. Hyperth. 1988, 4, 497–512. [Google Scholar] [CrossRef]
- Lin, J.C.; Wang, Y. A catheter antenna for percutaneous microwave. Microw. Opt. Technol. Lett. 1995, 8, 70–72. [Google Scholar] [CrossRef]
- Longo, I.; Gentili, G.; Cerretelli, M.; Tosoratti, N. A Coaxial Antenna with Miniaturized Choke for Minimally Invasive Interstitial Heating. IEEE Trans. Biomed. Eng. 2003, 50, 82–88. [Google Scholar] [CrossRef]
- Yang, D.; Bertram, J.; Converse, M.; O’Rourke, A.; Webster, J.; Hagness, S.; Will, J.; Mahvi, D. A Floating Sleeve Antenna Yields Localized Hepatic Microwave Ablation. IEEE Trans. Biomed. Eng. 2006, 53, 533–537. [Google Scholar] [CrossRef]
- Park, M.J.; Kim, Y.-S.; Rhim, H.; Lim, H.K.; Lee, M.W.; Choi, D. A Comparison of US-guided Percutaneous Radiofrequency Ablation of Medium-sized Hepatocellular Carcinoma with a Cluster Electrode or a Single Electrode with a Multiple Overlapping Ablation Technique. J. Vasc. Interv. Radiol. 2011, 22, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, N.; Okoh, A.; Yigitbas, H.; Yazici, P.; Ali, N.; Berber, E. Laparoscopic Microwave Thermosphere Ablation of Malignant Liver Tumors: An Analysis of 53 Cases. J. Surg. Oncol. 2016, 113, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Ierardi, A.M.; Biondetti, P.; Coppola, A.; Fumarola, E.M.; Biasina, A.M.; Angileri, S.A.; Carrafiello, G. Percutaneous microwave thermosphere ablation of pancreatic tumours. Gland. Surg. 2018, 7, 59–66. [Google Scholar] [CrossRef]
- Hendriks, P.; Berkhout, W.E.M.; Kaanen, C.I.; Sluijter, J.H.; Visser, I.J.; Dobbelsteen, J.J.v.D.; de Geus-Oei, L.F.; Webb, A.G.; Burgmans, M.C. Performance of the Emprint and Amica Microwave Ablation Systems in ex vivo Porcine Livers: Sphericity and Reproducibility Versus Size. Cardiovasc. Interv. Radiol. 2021, 44, 952–958. [Google Scholar] [CrossRef]
Frequency Band | Medical Applications |
---|---|
3–30 kHz | Electrotherapy, nerve stimulation |
100–300 kHz | Shortwave therapy, electrotherapy |
300–3 MHz | Shortwave diathermy, therapeutic tissue heating |
3–10 MHz | Shortwave diathermy, capacitive diathermy |
13.553–13.567 MHz | Shortwave diathermy, therapeutic tissue heating |
26.957–27.283 MHz | Diathermy, therapeutic tissue heating |
40.66–40.70 MHz | Short-range communication devices for patient monitoring |
433.05–434.79 MHz | Telemetry, monitoring devices, therapeutic tissue heating |
902–928 MHz | Medical telemetry, remote monitoring, therapeutic tissue heating |
2400–2500 MHz | Glucose monitoring, drug delivery, therapeutic tissue heating |
5725–5875 MHz | Short-range communications, monitoring |
24–24.25 GHz | Respiratory and heart rate monitoring |
Tissue Type | Density (app.) g/cm3 | 13.56 MHz | 915 MHz | 2450 MHz | |||
---|---|---|---|---|---|---|---|
ε′ | Conductivity S/m | Permittivity | Conductivity S/m | Permittivity | Conductivity S/m | ||
Avg. brain | 1030.0 | 208.231766 | 0.251501 | 45.745209 | 0.771995 | 42.538925 | 1.511336 |
Avg. skull | 1850.0 | 44.938148 | 0.086985 | 16.597830 | 0.244310 | 14.965101 | 0.599694 |
Avg. muscle | 1040.0 | 132.074387 | 0.655560 | 55.920837 | 0.974554 | 53.573540 | 1.810395 |
Tissue/Organ Type | 13.56 MHz | 915 MHz | 2450 MHz | |||
---|---|---|---|---|---|---|
ε′ | tan δ | ε′ | tan δ | ε′ | tan δ | |
Blood | 210.676758 | 1.117084 | 61.313965 | 1.544645 | 58.263756 | 2.544997 |
Bone cancellous | 59.301670 | 0.128449 | 20.755970 | 0.343505 | 18.548979 | 0.805112 |
Kidney | 297.137695 | 0.542046 | 58.557178 | 1.400791 | 136.423019 | 0.700082 |
Liver | 181.262329 | 0.335616 | 46.763901 | 0.861202 | 90.635765 | 0.424635 |
Lung inflated | 95.402214 | 0.236064 | 21.971907 | 0.459232 | 42.105034 | 0.278781 |
Lung deflated | 148.697876 | 0.451530 | 51.372128 | 0.863622 | 82.449150 | 0.514494 |
MWA—Chicken Breast | |||
---|---|---|---|
MW Power [W] | Size A [mm] | Size B [mm] | Roundness Index |
50 | 20.1 ± 2.2 | 18.5 ± 2.5 | 0.90 ± 0.02 |
100 | 33.2 ± 3.0 | 30.2 ± 3.2 | 0.91 ± 0.01 |
150 | 37.1 ± 4.1 | 32.4 ± 3.5 | 0.86 ± 0.01 |
200 | 48.3 ± 4.0 | 43.3 ± 4.1 | 0.89 ± 0.01 |
250 | 50.2 ± 4.2 | 45.2 ± 3.3 | 0.90 ± 0.01 |
MWA—bovine liver | |||
MW Power [W] | Size A [mm] | Size B [mm] | Roundness Index |
50 | 18.4 ± 1.8 | 15.1 ± 2.3 | 0.83 ± 0.03 |
100 | 32.2 ± 1.9 | 25.2 ± 2.2 | 0.78 ± 0.01 |
150 | 35.3 ± 2.8 | 28.2 ± 3.2 | 0.80 ± 0.02 |
200 | 40.1 ± 3.7 | 33.1 ± 3.5 | 0.83 ± 0.01 |
250 | 42.2 ± 4.3 | 35.3 ± 4 | 0.83 ± 0.01 |
RFA—chicken breast | |||
RF Power [W] | Size A [mm] | Size B [mm] | Roundness Index |
10 | 22.2 ± 1.3 | 12.5 ± 1.7 | 0.55 ± 0.01 |
20 | 24.1 ± 1.9 | 13.2 ± 1.6 | 0.54 ± 0.01 |
30 | 25.2 ± 2.4 | 15.3 ± 2.5 | 0.60 ± 0.03 |
40 | 30.3 ± 3.6 | 17.1 ± 4.2 | 0.57 ± 0.03 |
50 | 32.1 ± 3.9 | 19.1 ± 3.8 | 0.59 ± 0.02 |
RFA—bovine liver | |||
RF Power [W] | Size A [mm] | Size B [mm] | Roundness Index |
10 | 20.1 ± 2.5 | 12.3 ± 2 | 0.60 ± 0.01 |
20 | 22.1 ± 2.4 | 12.2 ± 3.5 | 0.55 ± 0.04 |
30 | 24.2 ± 2.9 | 14.4 ± 2.5 | 0.58 ± 0.02 |
40 | 27.1 ± 3.8 | 15.1 ± 3.2 | 0.55 ± 0.03 |
50 | 30.2 ± 3.3 | 17.2 ± 3.8 | 0.57 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobascio, F.; Di Modugno, R.; Fiore, M.; Di Modugno, N.; Bruno, C.; De Nicolo, T.; Barberis, R.V.; Cabiale, K.; Radoiu, M. Microwave and Radiofrequency Ablation: A Comparative Study between Technologies in Ex Vivo Tissues. Drugs Drug Candidates 2024, 3, 550-565. https://doi.org/10.3390/ddc3030032
Lobascio F, Di Modugno R, Fiore M, Di Modugno N, Bruno C, De Nicolo T, Barberis RV, Cabiale K, Radoiu M. Microwave and Radiofrequency Ablation: A Comparative Study between Technologies in Ex Vivo Tissues. Drugs and Drug Candidates. 2024; 3(3):550-565. https://doi.org/10.3390/ddc3030032
Chicago/Turabian StyleLobascio, Fabio, Rocco Di Modugno, Marco Fiore, Nicola Di Modugno, Cristian Bruno, Thomas De Nicolo, Rossella Veronica Barberis, Karine Cabiale, and Marilena Radoiu. 2024. "Microwave and Radiofrequency Ablation: A Comparative Study between Technologies in Ex Vivo Tissues" Drugs and Drug Candidates 3, no. 3: 550-565. https://doi.org/10.3390/ddc3030032
APA StyleLobascio, F., Di Modugno, R., Fiore, M., Di Modugno, N., Bruno, C., De Nicolo, T., Barberis, R. V., Cabiale, K., & Radoiu, M. (2024). Microwave and Radiofrequency Ablation: A Comparative Study between Technologies in Ex Vivo Tissues. Drugs and Drug Candidates, 3(3), 550-565. https://doi.org/10.3390/ddc3030032