Current Therapies and Potential Strategies for Uveal Melanoma
Abstract
:1. Introduction
2. Differences Between Skin Melanoma and Uveal Melanoma
Mutations Found in Skin Melanoma | Functions | References |
BRAF | B-Raf kinase regulating MAPK pathway | [11,12,13,14] |
NRAS | Small GTPase | [15,16] |
KIT | Receptor tyrosine kinase | [17] |
Mutations Found in Uveal Melanoma | Functions | References |
GNA11 | The alpha subunit of Guanine nucleotide-binding proteins | [28] |
GNAQ | The alpha subunit of Guanine nucleotide-binding proteins | [29] |
BAP1 | Deubiquitinating enzyme | [40] |
EIF1AX | Eukaryotic translation initiation | [48] |
SF3B1 | Essential for pre-mRNA splicing | [48] |
3. Current Therapies for Uveal Melanoma
3.1. Radiation Brachytherapy
3.2. Proton Beam Therapy
3.3. Surgical Resection
3.4. Enucleation
3.5. Liver-Directed Therapies
3.6. Immunotherapy
4. Therapies Undergoing Testing in Clinical Trials
4.1. Kinase Inhibitors
4.2. Immunotherapies
4.3. Chemotherapies
4.4. Cell Therapies
4.5. Viral Therapies
4.6. Targeted Cancer Therapy
Drugs | Mode of Action | Phase | References |
---|---|---|---|
Darovasertib (LXS196, IDE196) | PKC inhibitor | Phase I (NCT02601378) | [31] |
Sotrastaurin (AEB071) | PKC inhibitor | Phase I/II (NCT01801358) | [33] |
Selumetinib (Koselugo) | MEK1/2 inhibitor | Phase II (NCT01143402, NCT02768766), Phase III (NCT01974752) | [34,35] |
Ranibizumab | Anti-VEGF | Phase II (NCT02222610) | [54] |
Crizotinib (Zalkori) | Tyrosine kinase inhibitor | Phase II (NCT0222819) | [85] |
Entrectinib | Tyrosine kinase inhibitor | Phase I/II (NCT04589832) | [87] |
Cabozantinib | Tyrosine kinase inhibitor | Phase II (NCT01835145, NCT00940225) | [88,154] |
Ulixertinib (BVD-523) | ERK inhibitor | Phase II (NCT03417739) | [90] |
Sorafenib (Nexavar) | Multi-kinase inhibitor | Phase II (NCT00329642) | [92] |
Everolimus (Afinitor, Zortress, Votubia) | mTOR inhibitor | Phase II (NCT01252251, NCT00976573) | [93,94] |
Nivolumab (Opdivo) | Anti-PD-1 | Phase II (NCT02626962), Phase I/II (NCT04283890), Phase II (NCT02519322, NCT01585194) | [96,97,98,99] |
Pembrolizumab (Keytruda) | Anti-PD-1 | Phase I (NCT03006887), Phase II (NCT02359851, NCT02697630) | [100,101,102] |
Tremelimumab (Imjudo) | Anti-CTLA-4 | Phase II (NCT01034787) | [112] |
RO7293583 | TYRP-1 targeting CD3 T cell engager | Phase I (NCT04551352) | [114] |
6MHP | Peptide vaccine | Phase I/II (NCT00089219) | [116] |
Gp100 antigen | Peptide vaccine | Phase II (NCT00032045, NCT00084656) | [117,155] |
Multi-epitope melanoma peptide vaccine | Peptide vaccine | Phase I (NCT00705640) | [118] |
Tyrosinase DNA vaccine | Vaccine | Phase I (NCT00471133) | [119] |
Interferon | Interferon | Phase II (NCT01100528) | [120] |
GM-CSF | Growth factor | Phase II (NCT00661622) | [121] |
Aldesleukin (Proleukin) | A synthetic IL-2 | Phase I/II (NCT00058279) | [117] |
Melphalan (Alkeran, Evomela) | Alkylating agent | Phase III (NCT02678572) | [74] |
Fotemustine | Alkylating agent | Phase III (NCT00110123) | [129] |
Taxoprexin (DHA-paclitaxel) | Chemotherapy | Phase II (NCT00244816) | [131] |
Marqibo | Vincristine sulfate liposome injection | Phase II (NCT00506142) | [133] |
Tumor-infiltrating lymphocytes | Cell therapy | Phase II (NCT01814046) | [134] |
Autologous dendritic cells | Cell therapy | Phase I (NCT04335890) | [135] |
CVA21 (Cavatak) | Oncolytic virus targeting ICAM1 and decay-accelerating factor (DAF) | Phase I (NCT03408687) | [140] |
Niraparib (Zejula) | PARP inhibitor | Phase II (NCT03207347) | [144] |
ADE-PEG20 | Depleting arginine | Phase I (NCT02029690) | [145] |
Glembatumumab vedotin (CDX-011, CR011-vcMMAE) | Antibody–drug conjugate targeting GPNMB | Phase II (NCT02363283) | [151] |
Melatonin | Hormone | Phase III (NCT05502900) | [153] |
Aflibercept | Anti-VEGF | Phase II (NCT00450255) | [156,157] |
5. Metastasis of Uveal Melanoma
6. Potential Therapies to Prevent Uveal Melanoma Metastases
7. Methods
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
6MHP | 6 melanoma helper peptides |
ASS | Argininosuccinate synthetase |
BAP1 | BRCA1 Associated Protein-1 |
CRP | C-reactive protein |
CTC | Circulating tumor cells |
CTLA-4 | Cytotoxic T-lymphocyte-associated protein 4 |
CVA21 | Coxsackievirus A21 |
DAF | Decay-accelerating factor |
DC | Dendritic cells |
EIF1AX | Eukaryotic translation initiation factor 1A |
FAK | Focal adhesion kinase |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
GNA | Guanine Nucleotide-Binding Protein Alpha Subunit |
GPCR | G protein-coupled receptors |
HDAC | Histone deacetylase |
HDS | Hepatic delivery system |
HLA | Human leukocyte antigen |
HSV-tk | Herpes simplex virus thymidine kinase |
IFN | Interferon |
IHP | Isolated hepatic perfusion |
IL | Interleukin |
i.v.t | Intravitreal injection |
MAPK | Mitogen-activated protein kinase |
MC1R | Melanocortin-1 receptor |
NK | Natural killer |
OS | Overall survival |
PARP | Poly ADP-ribose polymerase |
PD-1 | Programmed death receptor-1 |
PFS | Progression-free survival |
PHP | Percutaneous hepatic perfusion |
PK | Pharmacokinetics |
PMEL | Premelanosome protein |
RFS | Recurrence-free survival |
SF3B1 | Splicing factor 3b subunit 1 |
SIRT | Selective internal radiotherapy |
TACE | Transarterial chemoembolization |
TEV | Tumor-derived extracellular vesicle |
TIL | Tumor-infiltrating lymphocytes |
TLR | Toll-like receptor |
TYRP1 | Tyrosinase-related protein 1 |
UM | Uveal melanoma |
VEGF | Vascular endothelial growth factor |
References
- Toro, M.D.; Gozzo, L.; Tracia, L.; Cicciù, M.; Drago, F.; Bucolo, C.; Avitabile, T.; Rejdak, R.; Nowomiejska, K.; Zweifel, S.; et al. New Therapeutic Perspectives in the Treatment of Uveal Melanoma: A Systematic Review. Biomedicines 2021, 9, 1311. [Google Scholar] [CrossRef]
- Lane, A.M.; Kim, I.K.; Gragoudas, E.S. Survival Rates in Patients After Treatment for Metastasis from Uveal Melanoma. JAMA Ophthalmol. 2018, 136, 981–986. [Google Scholar] [CrossRef]
- Foss, A.J.; Alexander, R.A.; Jefferies, L.W.; Hungerford, J.L.; Harris, A.L.; Lightman, S. Microvessel Count Predicts Survival in Uveal Melanoma. Cancer Res. 1996, 56, 2900–2903. [Google Scholar] [PubMed]
- Mäkitie, T.; Summanen, P.; Tarkkanen, A.; Kivelä, T. Microvascular Density in Predicting Survival of Patients with Choroidal and Ciliary Body Melanoma. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2471–2480. [Google Scholar]
- Missotten, G.S.O.; Notting, I.C.; Schlingemann, R.O.; Zijlmans, H.J.; Lau, C.; Eilers, P.H.C.; Keunen, J.E.E.; Jager, M.J. Vascular Endothelial Growth Factor A in Eyes with Uveal Melanoma. Arch. Ophthalmol. 2006, 124, 1428–1434. [Google Scholar] [CrossRef]
- el Filali, M.; Missotten, G.S.; Maat, W.; Ly, L.V.; Luyten, G.P.; van der Velden, P.A.; Jager, M.J. Regulation of VEGF-A in Uveal Melanoma. Investig. Opthalmology. Vis. Sci. 2010, 51, 2329–2337. [Google Scholar] [CrossRef]
- Barak, V.; Pe’er, J.; Kalickman, I.; Frenkel, S. VEGF as a Biomarker for Metastatic Uveal Melanoma in Humans. Curr. Eye Res. 2011, 36, 386–390. [Google Scholar] [CrossRef]
- Nhàn, N.T.T.; Ganesh, S.; Maidana, D.E.; Heiferman, M.J.; Yamada, K.H. Uveal Melanoma with a GNA11/GNAQ Mutation Secretes VEGF for Systemic Spread. Signal Transduct. Target. Ther. 2025, 10, 51. [Google Scholar] [CrossRef]
- van der Kooij, M.K.; Speetjens, F.M.; van der Burg, S.H.; Kapiteijn, E. Uveal Versus Cutaneous Melanoma; Same Origin, Very Distinct Tumor Types. Cancers 2019, 11, 845. [Google Scholar] [CrossRef]
- Kaliki, S.; Shields, C.L.; Shields, J.A. Uveal Melanoma: Estimating Prognosis. Indian J. Ophthalmol. 2015, 63, 93–102. [Google Scholar] [CrossRef]
- Ny, L.; Hernberg, M.; Nyakas, M.; Koivunen, J.; Oddershede, L.; Yoon, M.; Wang, X.; Guyot, P.; Geisler, J. BRAF Mutational Status as a Prognostic Marker for Survival in Malignant Melanoma: A Systematic Review and Meta-Analysis. Acta Oncol. 2020, 59, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Spathis, A.; Katoulis, A.C.; Damaskou, V.; Liakou, A.I.; Kottaridi, C.; Leventakou, D.; Sgouros, D.; Mamantopoulos, A.; Rigopoulos, D.; Karakitsos, P.; et al. BRAF Mutation Status in Primary, Recurrent, and Metastatic Malignant Melanoma and Its Relation to Histopathological Parameters. Dermatol. Pract. Concept. 2019, 9, 54–62. [Google Scholar] [CrossRef]
- Heppt, M.V.; Siepmann, T.; Engel, J.; Schubert-Fritschle, G.; Eckel, R.; Mirlach, L.; Kirchner, T.; Jung, A.; Gesierich, A.; Ruzicka, T.; et al. Prognostic Significance of BRAF and NRAS Mutations in Melanoma: A German Study from Routine Care. BMC Cancer 2017, 17, 536. [Google Scholar] [CrossRef]
- Long, G.V.; Menzies, A.M.; Nagrial, A.M.; Haydu, L.E.; Hamilton, A.L.; Mann, G.J.; Hughes, T.M.; Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Prognostic and Clinicopathologic Associations of Oncogenic BRAF in Metastatic Melanoma. J. Clin. Oncol. 2011, 29, 1239–1246. [Google Scholar] [CrossRef]
- Hayward, N.K.; Wilmott, J.S.; Waddell, N.; Johansson, P.A.; Field, M.A.; Nones, K.; Patch, A.-M.; Kakavand, H.; Alexandrov, L.B.; Burke, H.; et al. Whole-Genome Landscapes of Major Melanoma Subtypes. Nature 2017, 545, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Colombino, M.; Capone, M.; Lissia, A.; Cossu, A.; Rubino, C.; Giorgi, V.D.; Massi, D.; Fonsatti, E.; Staibano, S.; Nappi, O.; et al. BRAF/NRAS Mutation Frequencies Among Primary Tumors and Metastases in Patients with Melanoma. J. Clin. Oncol. 2012, 30, 2522–2529. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Carvajal, R.D. KIT as an Oncogenic Driver in Melanoma: An Update on Clinical Development. Am. J. Clin. Dermatol. 2019, 20, 315–323. [Google Scholar] [CrossRef]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.-J.; et al. Dabrafenib and Trametinib versus Dabrafenib and Placebo for Val600 BRAF-Mutant Melanoma: A Multicentre, Double-Blind, Phase 3 Randomised Controlled Trial. Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- Caroline, R.; Boguslawa, K.; Jacob, S.; Piotr, R.; Andrzej, M.; Daniil, S.; Michael, L.; Reinhard, D.; Florent, G.; Laurent, M.; et al. Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. N. Engl. J. Med. 2015, 372, 30–39. [Google Scholar] [CrossRef]
- Long, G.V.; Daniil, S.; Helen, G.; Evgeny, L.; de Filippo, B.; James, L.; Claus, G.; Thomas, J.; Axel, H.; Jacques, G.J.; et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Infante, J.R.; Adil, D.; Rene, G.; Kefford, R.F.; Jeffrey, S.; Omid, H.; Lynn, S.; Jonathan, C.; Nageatte, I.; et al. Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N. Engl. J. Med. 2012, 367, 1694–1703. [Google Scholar] [CrossRef] [PubMed]
- James, L.; Ascierto, P.A.; Brigitte, D.; Victoria, A.; Gabriella, L.; Michele, M.; Mario, M.; Lev, D.; Daniil, S.; Luc, T.; et al. Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma. N. Engl. J. Med. 2014, 371, 1867–1876. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Antonescu, C.R.; Wolchok, J.D.; Chapman, P.B.; Roman, R.-A.; Teitcher, J.; Panageas, K.S.; Busam, K.J.; Chmielowski, B.; Lutzky, J.; et al. KIT as a Therapeutic Target in Metastatic Melanoma. JAMA 2011, 305, 2327–2334. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Carvajal, R.D.; Dummer, R.; Hauschild, A.; Daud, A.; Bastian, B.C.; Markovic, S.N.; Queirolo, P.; Arance, A.; Berking, C.; et al. Efficacy and Safety of Nilotinib in Patients with KIT-Mutated Metastatic or Inoperable Melanoma: Final Results from the Global, Single-Arm, Phase II TEAM Trial. Ann. Oncol. 2017, 28, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Si, L.; Kong, Y.; Flaherty, K.T.; Xu, X.; Zhu, Y.; Corless, C.L.; Li, L.; Li, H.; Sheng, X.; et al. Phase II, Open-Label, Single-Arm Trial of Imatinib Mesylate in Patients with Metastatic Melanoma Harboring c-Kit Mutation or Amplification. J. Clin. Oncol. 2011, 29, 2904–2909. [Google Scholar] [CrossRef]
- Hodi, F.S.; Corless, C.L.; Giobbie-Hurder, A.; Fletcher, J.A.; Zhu, M.; Marino-Enriquez, A.; Friedlander, P.; Gonzalez, R.; Weber, J.S.; Gajewski, T.F.; et al. Imatinib for Melanomas Harboring Mutationally Activated or Amplified KIT Arising on Mucosal, Acral, and Chronically Sun-Damaged Skin. J. Clin. Oncol. 2013, 31, 3182–3190. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, T.M.; Kim, Y.J.; Jang, K.; Lee, H.J.; Lee, S.N.; Ahn, M.S.; Hwang, I.G.; Lee, S.; Lee, M.; et al. Phase II Trial of Nilotinib in Patients with Metastatic Malignant Melanoma Harboring KIT Gene Aberration: A Multicenter Trial of Korean Cancer Study Group (UN10-06). Oncologist 2015, 20, 1312–1319. [Google Scholar] [CrossRef]
- Van Raamsdonk, C.D.; Griewank, K.G.; Crosby, M.B.; Garrido, M.C.; Vemula, S.; Wiesner, T.; Obenauf, A.C.; Wackernagel, W.; Green, G.; Bouvier, N.; et al. Mutations in GNA11 in Uveal Melanoma. N. Engl. J. Med. 2010, 363, 2191–2199. [Google Scholar] [CrossRef]
- Raamsdonk, C.D.V.; Bezrookove, V.; Green, G.; Bauer, J.; Gaugler, L.; O’Brien, J.M.; Simpson, E.M.; Barsh, G.S.; Bastian, B.C. Frequent Somatic Mutations of GNAQ in Uveal Melanoma and Blue Naevi. Nature 2009, 457, 599–602. [Google Scholar] [CrossRef]
- Arang, N.; Lubrano, S.; Ceribelli, M.; Rigiracciolo, D.C.; Saddawi-Konefka, R.; Faraji, F.; Ramirez, S.I.; Kim, D.; Tosto, F.A.; Stevenson, E.; et al. High-Throughput Chemogenetic Drug Screening Reveals PKC-RhoA/PKN as a Targetable Signaling Vulnerability in GNAQ-Driven Uveal Melanoma. Cell Rep. Med. 2023, 4, 101244. [Google Scholar] [CrossRef]
- Piperno-Neumann, S.; Carlino, M.S.; Boni, V.; Loirat, D.; Speetjens, F.M.; Park, J.J.; Calvo, E.; Carvajal, R.D.; Nyakas, M.; Gonzalez-Maffe, J.; et al. A Phase I Trial of LXS196, a Protein Kinase C (PKC) Inhibitor, for Metastatic Uveal Melanoma. Br. J. Cancer 2023, 128, 1040–1051. [Google Scholar] [CrossRef]
- Shoushtari, A.N.; Khan, S.; Komatsubara, K.; Feun, L.; Acquavella, N.; Singh-Kandah, S.; Negri, T.; Nesson, A.; Abbate, K.; Cremers, S.; et al. A Phase Ib Study of Sotrastaurin, a PKC Inhibitor, and Alpelisib, a PI3Kα Inhibitor, in Patients with Metastatic Uveal Melanoma. Cancers 2021, 13, 5504. [Google Scholar] [CrossRef]
- Bauer, S.; Larkin, J.; Hodi, F.S.; Stephen, F.; Kapiteijn, E.H.W.; Schwartz, G.K.; Calvo, E.; Yerramilli-Rao, P.; Piperno-Neumann, S.; Carvajal, R.D. A Phase Ib Trial of Combined PKC and MEK Inhibition with Sotrastaurin and Binimetinib in Patients with Metastatic Uveal Melanoma. Front. Oncol. 2023, 12, 975642. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Sosman, J.A.; Quevedo, J.F.; Milhem, M.M.; Joshua, A.M.; Kudchadkar, R.R.; Linette, G.P.; Gajewski, T.F.; Lutzky, J.; Lawson, D.H.; et al. Effect of Selumetinib vs Chemotherapy on Progression-Free Survival in Uveal Melanoma: A Randomized Clinical Trial. JAMA 2014, 311, 2397–2405. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Piperno-Neumann, S.; Kapiteijn, E.; Chapman, P.B.; Frank, S.; Joshua, A.M.; Piulats, J.M.; Wolter, P.; Cocquyt, V.; Chmielowski, B.; et al. Selumetinib in Combination with Dacarbazine in Patients with Metastatic Uveal Melanoma: A Phase III, Multicenter, Randomized Trial (SUMIT). J. Clin. Oncol. 2018, 36, 1232–1239. [Google Scholar] [CrossRef]
- Amaro, A.A.; Gangemi, R.; Emionite, L.; Castagnola, P.; Filaci, G.; Jager, M.J.; Tanda, E.T.; Spagnolo, F.; Mascherini, M.; Pfeffer, U.; et al. Cerivastatin Synergizes with Trametinib and Enhances Its Efficacy in the Therapy of Uveal Melanoma. Cancers 2023, 15, 886. [Google Scholar] [CrossRef]
- Ambrosini, G.; Khanin, R.; Carvajal, R.D.; Schwartz, G.K. Overexpression of DDX43 Mediates MEK Inhibitor Resistance through RAS Upregulation in Uveal Melanoma Cells. Mol. Cancer Ther. 2014, 13, 2073–2080. [Google Scholar] [CrossRef]
- Cheng, H.; Terai, M.; Kageyama, K.; Ozaki, S.; McCue, P.A.; Sato, T.; Aplin, A.E. Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma. Cancer Res. 2015, 75, 2737–2748. [Google Scholar] [CrossRef]
- Mergener, S.; Siveke, J.T.; Peña-Llopis, S. Monosomy 3 Is Linked to Resistance to MEK Inhibitors in Uveal Melanoma. Int. J. Mol. Sci. 2021, 22, 6727. [Google Scholar] [CrossRef]
- Harbour, J.W.; Onken, M.D.; Roberson, E.D.O.; Duan, S.; Cao, L.; Worley, L.A.; Council, M.L.; Matatall, K.A.; Helms, C.; Bowcock, A.M. Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas. Science 2010, 330, 1410–1413. [Google Scholar] [CrossRef]
- Karlsson, J.; Nilsson, L.M.; Mitra, S.; Alsén, S.; Shelke, G.V.; Sah, V.R.; Forsberg, E.M.V.; Stierner, U.; All-Eriksson, C.; Einarsdottir, B.; et al. Molecular Profiling of Driver Events in Metastatic Uveal Melanoma. Nat. Commun. 2020, 11, 1894. [Google Scholar] [CrossRef]
- Uner, O.E.; See, T.R.O.; Szalai, E.; Grossniklaus, H.E.; Stålhammar, G. Estimation of the Timing of BAP1 Mutation in Uveal Melanoma Progression. Sci. Rep. 2021, 11, 8923. [Google Scholar] [CrossRef]
- Helgadottir, H.; Höiom, V. The Genetics of Uveal Melanoma: Current Insights. Appl. Clin. Genet. 2016, 9, 147–155. [Google Scholar] [CrossRef]
- Jensen, D.E.; Proctor, M.; Marquis, S.T.; Gardner, H.P.; Ha, S.I.; Chodosh, L.A.; Ishov, A.M.; Tommerup, N.; Vissing, H.; Sekido, Y.; et al. BAP1: A Novel Ubiquitin Hydrolase Which Binds to the BRCA1 RING Finger and Enhances BRCA1-Mediated Cell Growth Suppression. Oncogene 1998, 16, 1097–1112. [Google Scholar] [CrossRef]
- Shields, C.L.; Furuta, M.; Thangappan, A.; Nagori, S.; Mashayekhi, A.; Lally, D.R.; Kelly, C.C.; Rudich, D.S.; Nagori, A.V.; Wakade, O.A.; et al. Metastasis of Uveal Melanoma Millimeter-by-Millimeter in 8033 Consecutive Eyes. Arch. Ophthalmol. 2009, 127, 989–998. [Google Scholar] [CrossRef]
- Gelmi, M.C.; Jager, M.J. Uveal Melanoma: Current Evidence on Prognosis, Treatment and Potential Developments. Asia-Pac. J. Ophthalmol. 2024, 13, 100060. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Yin, H. The Future of Checkpoint Inhibitors in Uveal Melanoma: A Narrative Review. Ophthalmol. Ther. 2024, 13, 1103–1123. [Google Scholar] [CrossRef]
- Martin, M.; Maßhöfer, L.; Temming, P.; Rahmann, S.; Metz, C.; Bornfeld, N.; van de Nes, J.; Klein-Hitpass, L.; Hinnebusch, A.G.; Horsthemke, B.; et al. Exome Sequencing Identifies Recurrent Somatic Mutations in EIF1AX and SF3B1 in Uveal Melanoma with Disomy. Nat. Genet. 2013, 45, 933–936. [Google Scholar] [CrossRef]
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; et al. Uveal Melanoma. Nat. Rev. Dis. Primers 2020, 6, 24. [Google Scholar] [CrossRef]
- Yang, J.; Manson, D.K.; Marr, B.P.; Carvajal, R.D. Treatment of Uveal Melanoma: Where Are We Now? Ther. Adv. Med. Oncol. 2018, 10, 1758834018757175. [Google Scholar] [CrossRef]
- Koch, E.A.T.; Heppt, M.V.; Berking, C. The Current State of Systemic Therapy of Metastatic Uveal Melanoma. Am. J. Clin. Dermatol. 2024, 25, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Collaborative Ocular Melanoma Study Group. The COMS Randomized Trial of Iodine 125 Brachytherapy for Choroidal Melanoma: V. Twelve-Year Mortality Rates and Prognostic Factors: COMS Report No. 28. Arch. Ophthalmol. 2006, 124, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Kulbay, M.; Marcotte, E.; Remtulla, R.; Lau, T.H.A.; Paez-Escamilla, M.; Wu, K.Y.; Burnier, M.N. Uveal Melanoma: Comprehensive Review of Its Pathophysiology, Diagnosis, Treatment, and Future Perspectives. Biomedicines 2024, 12, 1758. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Fuller, D.; Anand, R.; Fuller, T.; Munoz, J.; Moore, C.; Kim, R.S.; Schefler, A.C.; Bretana, M.E.; Diugnan, K. Two-Year Results for Ranibizumab for Radiation Retinopathy (RRR): A Randomized, Prospective Trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 47–54. [Google Scholar] [CrossRef]
- Horgan, N.; Shields, C.L.; Mashayekhi, A.; Teixeira, L.F.; Materin, M.A.; O’Regan, M.; Shields, J.A. Periocular Triamcinolone for Prevention of Macular Edema After Iodine 125 Plaque Radiotherapy of Uveal Melanoma. Retina 2008, 28, 987–995. [Google Scholar] [CrossRef]
- Horgan, N.; Shields, C.L.; Mashayekhi, A.; Salazar, P.F.; Materin, M.A.; O’Regan, M.; Shields, J.A. Periocular Triamcinolone for Prevention of Macular Edema after Plaque Radiotherapy of Uveal Melanoma A Randomized Controlled Trial. Ophthalmology 2009, 116, 1383–1390. [Google Scholar] [CrossRef]
- Parrozzani, R.; Pilotto, E.; Dario, A.; Miglionico, G.; Midena, E. Intravitreal Triamcinolone Versus Intravitreal Bevacizumab in the Treatment of Exudative Retinal Detachment Secondary to Posterior Uveal Melanoma. Am. J. Ophthalmol. 2013, 155, 127–133.e2. [Google Scholar] [CrossRef]
- Shah, N.V.; Houston, S.K.; Markoe, A.; Murray, T.G. Combination Therapy with Triamcinolone Acetonide and Bevacizumab for the Treatment of Severe Radiation Maculopathy in Patients with Posterior Uveal Melanoma. Clin. Ophthalmol. 2013, 7, 1877–1882. [Google Scholar] [CrossRef] [PubMed]
- Seibel, I.; Hager, A.; Riechardt, A.I.; Davids, A.M.; Böker, A.; Joussen, A.M. Antiangiogenic or Corticosteroid Treatment in Patients with Radiation Maculopathy After Proton Beam Therapy for Uveal Melanoma. Am. J. Ophthalmol. 2016, 168, 31–39. [Google Scholar] [CrossRef]
- Koc, I.; Kadayifcilar, S.; Kiratli, H.; Eldem, B. Intravitreal dexamethasone (ozurdex) implant for radiation maculopathy secondary to stereotactic radiotherapy for posterior uveal melanoma. Retin. Cases Brief Rep. 2017, 13, 352–356. [Google Scholar] [CrossRef]
- Kowal, J.; Markiewicz, A.; Dębicka-Kumela, M.; Bogdali, A.; Jakubowska, B.; Karska-Basta, I.; Romanowska-Dixon, B. Analysis of Local Recurrence Causes in Uveal Melanoma Patients Treated with 125I Brachytherapy—A Single Institution Study. J. Contemp. Brachyther. 2019, 11, 554–562. [Google Scholar] [CrossRef]
- Force, T.O.O.T.; Gallie, B.L.; Simpson, E.R.; Saakyan, S.; Amiryan, A.; Valskiy, V.; Finger, P.T.; Chin, K.J.; Semenova, E.; Seregard, S.; et al. Local Recurrence Significantly Increases the Risk of Metastatic Uveal Melanoma. Ophthalmology 2016, 123, 86–91. [Google Scholar] [CrossRef]
- Hussain, R.N.; Chiu, A.; Pittam, B.; Taktak, A.; Damato, B.E.; Kacperek, A.; Errington, D.; Cauchi, P.; Chadha, V.; Connolly, J.; et al. Proton Beam Radiotherapy for Choroidal and Ciliary Body Melanoma in the UK—National Audit of Referral Patterns of 1084 Cases. Eye 2022, 37, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Trofimov, A.V.; Aronow, M.E.; Gragoudas, E.S.; Keane, F.K.; Kim, I.K.; Shih, H.A.; Bhagwat, M.S. A Systematic Comparison of Dose Distributions Delivered in 125I Plaque Brachytherapy and Proton Radiation Therapy for Ocular Melanoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 501–510. [Google Scholar] [CrossRef]
- Marinkovic, M.; Pors, L.J.; van den Berg, V.; Peters, F.P.; Schalenbourg, A.; Zografos, L.; Pica, A.; Hrbacek, J.; Duinen, S.G.V.; Vu, T.H.K.; et al. Clinical Outcomes after International Referral of Uveal Melanoma Patients for Proton Therapy. Cancers 2021, 13, 6241. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.M.; Hartley, C.; Go, A.K.; Wu, F.; Gragoudas, E.S.; Kim, I.K. Survival of Patients with Recurrent Uveal Melanoma after Treatment with Radiation Therapy. Br. J. Ophthalmol. 2024, 108, 729–734. [Google Scholar] [CrossRef]
- Lane, A.M.; Oxenreiter, M.M.; Hashmi, M.; Aronow, M.E.; Trofimov, A.V.; Shih, H.A.; Gragoudas, E.S.; Kim, I.K. A Comparison of Treatment Outcomes after Standard Dose (70 Gy) versus Reduced Dose (50 Gy) Proton Radiation in Patients with Uveal Melanoma. Ophthalmol. Retin. 2022, 6, 1089–1097. [Google Scholar] [CrossRef]
- Shields, J.A.; Shields, C.L. Management of Posterior Uveal Melanoma: Past, Present, and Future The 2014 Charles L. Schepens Lecture. Ophthalmology 2015, 122, 414–428. [Google Scholar] [CrossRef]
- Shields, C.L.; Shields, J.A. Albert and Jakobiec’s Principles and Practice of Ophthalmology. Springer: Cham, Switzerland, 2022; pp. 7717–7727. [Google Scholar] [CrossRef]
- Diener-West, M.; Earle, J.D.; Fine, S.L.; Hawkins, B.S.; Moy, C.S.; Reynolds, S.M.; Schachat, A.P.; Straatsma, B.R.; Group, C.O.M.S. The COMS Randomized Trial of Iodine 125 Brachytherapy for Choroidal Melanoma, III: Initial Mortality Findings: COMS Report No. 18. Arch. Ophthalmol. 2001, 119, 969–982. [Google Scholar] [CrossRef]
- Chang, M.Y.; McCannel, T.A. Local Treatment Failure after Globe-Conserving Therapy for Choroidal Melanoma. Br. J. Ophthalmol. 2013, 97, 804. [Google Scholar] [CrossRef]
- Sarode, D.; McClay, T.; Roberts, F.; Connolly, J.; Cauchi, P.; Chadha, V. Post-Enucleation Outcomes of Patients with Uveal Melanoma in Scotland. Eye 2022, 37, 988–994. [Google Scholar] [CrossRef]
- Heng, J.S.; Perzia, B.M.; Sinard, J.H.; Pointdujour-Lim, R. Local Recurrence of Uveal Melanoma and Concomitant Brain Metastases Associated with an Activating Telomerase Promoter Mutation Seven Years after Secondary Enucleation. Am. J. Ophthalmol. Case Rep. 2022, 27, 101607. [Google Scholar] [CrossRef]
- Zager, J.S.; Orloff, M.; Ferrucci, P.F.; Choi, J.; Eschelman, D.J.; Glazer, E.S.; Ejaz, A.; Howard, J.H.; Richtig, E.; Ochsenreither, S.; et al. Efficacy and Safety of the Melphalan/Hepatic Delivery System in Patients with Unresectable Metastatic Uveal Melanoma: Results from an Open-Label, Single-Arm, Multicenter Phase 3 Study. Ann. Surg. Oncol. 2024, 31, 5340–5351. [Google Scholar] [CrossRef]
- Schank, T.E.; Hassel, J.C. Immunotherapies for the Treatment of Uveal Melanoma—History and Future. Cancers 2019, 11, 1048. [Google Scholar] [CrossRef]
- Schank, T.E.; Hassel, J.C. Tebentafusp for the Treatment of Metastatic Uveal Melanoma. Future Oncol. 2022, 18, 1303–1311. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Butler, M.O.; Shoushtari, A.N.; Hassel, J.C.; Ikeguchi, A.; Hernandez-Aya, L.; Nathan, P.; Hamid, O.; Piulats, J.M.; Rioth, M.; et al. Clinical and Molecular Response to Tebentafusp in Previously Treated Patients with Metastatic Uveal Melanoma: A Phase 2 Trial. Nat. Med. 2022, 28, 2364–2373. [Google Scholar] [CrossRef]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef]
- Montazeri, K.; Pattanayak, V.; Sullivan, R.J. Tebentafusp in the Treatment of Metastatic Uveal Melanoma: Patient Selection and Special Considerations. Drug Des. Dev. Ther. 2023, 17, 333–339. [Google Scholar] [CrossRef]
- Sacco, J.J.; Carvajal, R.D.; Butler, M.O.; Shoushtari, A.N.; Hassel, J.C.; Ikeguchi, A.; Hernandez-Aya, L.; Nathan, P.; Hamid, O.; Piulats, J.M.; et al. Long-Term Survival Follow-up for Tebentafusp in Previously Treated Metastatic Uveal Melanoma. J. Immunother. Cancer 2024, 12, e009028. [Google Scholar] [CrossRef]
- Hassel, J.C.; Stanhope, S.; Greenshields-Watson, A.; Machiraju, D.; Enk, A.; Holland, C.; Abdullah, S.E.; Benlahrech, A.; Orloff, M.; Nathan, P.; et al. Tebentafusp Induces a T-Cell–Driven Rash in Melanocyte-Bearing Skin as an Adverse Event Consistent with the Mechanism of Action. J. Investig. Dermatol. 2025, 145, 559–572.e9. [Google Scholar] [CrossRef]
- Güç, E.; Treveil, A.; Leach, E.; Broomfield, A.; Camera, A.; Clubley, J.; Garcia, P.N.; Kazachenka, A.; Khanolkar, R.; del Carpio, L.; et al. Tebentafusp, a T Cell Engager, Promotes Macrophage Reprogramming and in Combination with IL-2 Overcomes Macrophage Immunosuppression in Cancer. Nat. Commun. 2025, 16, 2374. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Liu, J.; Ren, E.C. Structural and Functional Distinctiveness of HLA-A2 Allelic Variants. Immunol. Res. 2012, 53, 182–190. [Google Scholar] [CrossRef]
- Sobczuk, P.; Cholewiński, M.; Rutkowski, P. Recent Advances in Tyrosine Kinase Inhibitors VEGFR 1-3 for the Treatment of Advanced Metastatic Melanoma. Expert Opin. Pharmacother. 2024, 25, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Lutzky, J.; Shoushtari, A.N.; Jeter, J.; Marr, B.; Olencki, T.E.; Cebulla, C.M.; Abdel-Rahman, M.; Harbour, J.W.; Sender, N.; et al. Adjuvant Crizotinib in High-Risk Uveal Melanoma Following Definitive Therapy. Front. Oncol. 2022, 12, 976837. [Google Scholar] [CrossRef]
- Valsecchi, M.E.; Orloff, M.; Sato, R.; Chervoneva, I.; Shields, C.L.; Shields, J.A.; Mastrangelo, M.J.; Sato, T. Adjuvant Sunitinib in High-Risk Patients with Uveal Melanoma Comparison with Institutional Controls. Ophthalmology 2018, 125, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, M.W.; Tonogai, E.J.; Schane, C.P.; Xi, M.X.; Fischer, J.H.; Vijayakumar, J.; Ji, Y.; Tarasow, T.M.; Fan, T.M.; Hergenrother, P.J.; et al. The Combination of PAC-1 and Entrectinib for the Treatment of Metastatic Uveal Melanoma. Melanoma Res. 2023, 33, 514–524. [Google Scholar] [CrossRef]
- Daud, A.; Kluger, H.M.; Kurzrock, R.; Schimmoller, F.; Weitzman, A.L.; Samuel, T.A.; Moussa, A.H.; Gordon, M.S.; Shapiro, G.I. Phase II Randomised Discontinuation Trial of the MET/VEGF Receptor Inhibitor Cabozantinib in Metastatic Melanoma. Br. J. Cancer 2017, 116, 432–440. [Google Scholar] [CrossRef]
- Luke, J.J.; Olson, D.J.; Allred, J.B.; Strand, C.A.; Bao, R.; Zha, Y.; Carll, T.; Labadie, B.W.; Bastos, B.R.; Butler, M.O.; et al. Randomized Phase II Trial and Tumor Mutational Spectrum Analysis from Cabozantinib versus Chemotherapy in Metastatic Uveal Melanoma (Alliance A091201). Clin. Cancer Res. 2020, 26, 804–811. [Google Scholar] [CrossRef]
- Buchbinder, E.I.; Cohen, J.V.; Tarantino, G.; Lian, C.G.; Liu, D.; Haq, R.; Hodi, F.S.; Lawrence, D.P.; Giobbie-Hurder, A.; Knoerzer, D.; et al. A Phase II Study of ERK Inhibition by Ulixertinib (BVD-523) in Metastatic Uveal Melanoma. Cancer Res. Commun. 2024, 4, 1321–1327. [Google Scholar] [CrossRef]
- Mouriaux, F.; Servois, V.; Parienti, J.J.; Lesimple, T.; Thyss, A.; Dutriaux, C.; Neidhart-Berard, E.M.; Penel, N.; Delcambre, C.; Paul, L.P.S.; et al. Sorafenib in Metastatic Uveal Melanoma: Efficacy, Toxicity and Health-Related Quality of Life in a Multicentre Phase II Study. Br. J. Cancer 2016, 115, 20–24. [Google Scholar] [CrossRef]
- Bhatia, S.; Moon, J.; Margolin, K.A.; Weber, J.S.; Lao, C.D.; Othus, M.; Aparicio, A.M.; Ribas, A.; Sondak, V.K. Phase II Trial of Sorafenib in Combination with Carboplatin and Paclitaxel in Patients with Metastatic Uveal Melanoma: SWOG S0512. PLoS ONE 2012, 7, e48787. [Google Scholar] [CrossRef]
- Shoushtari, A.N.; Ong, L.T.; Schoder, H.; Singh-Kandah, S.; Abbate, K.T.; Postow, M.A.; Callahan, M.K.; Wolchok, J.; Chapman, P.B.; Panageas, K.S.; et al. A Phase 2 Trial of Everolimus and Pasireotide Long-Acting Release in Patients with Metastatic Uveal Melanoma. Melanoma Res. 2016, 26, 272–277. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, R.R.; Allred, J.B.; Slostad, J.A.; Katipamula, R.; Dronca, R.S.; Rumilla, K.M.; Erickson, L.A.; Bryce, A.H.; Joseph, R.W.; Kottschade, L.A.; et al. NCCTG N0879 (Alliance): A Randomized Phase 2 Cooperative Group Trial of Carboplatin, Paclitaxel, and Bevacizumab ± Everolimus for Metastatic Melanoma. Cancer 2018, 124, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Cui, L.; Zhao, X.; Bai, H.; Cai, S.; Wang, G.; Zhao, Z.; Zhao, J.; Chen, S.; Song, J.; et al. Use of Immunotherapy with Programmed Cell Death 1 vs Programmed Cell Death Ligand 1 Inhibitors in Patients with Cancer. JAMA Oncol. 2020, 6, 375–384. [Google Scholar] [CrossRef]
- Piulats, J.M.; Espinosa, E.; De la Cruz Merino, L.; Varela, M.; Carrión, L.A.; Martín-Algarra, S.; Castro, R.L.; Curiel, T.; Rodríguez-Abreu, D.; Redrado, M.; et al. Nivolumab Plus Ipilimumab for Treatment-Naïve Metastatic Uveal Melanoma: An Open-Label, Multicenter, Phase II Trial by the Spanish Multidisciplinary Melanoma Group (GEM-1402). J. Clin. Oncol. 2021, 39, 586–598. [Google Scholar] [CrossRef]
- Pelster, M.S.; Gruschkus, S.K.; Bassett, R.; Gombos, D.S.; Shephard, M.; Posada, L.; Glover, M.S.; Simien, R.; Diab, A.; Hwu, P.; et al. Nivolumab and Ipilimumab in Metastatic Uveal Melanoma: Results from a Single-Arm Phase II Study. J. Clin. Oncol. 2021, 39, 599–607. [Google Scholar] [CrossRef]
- Tong, T.M.L.; Burgmans, M.C.; Speetjens, F.M.; van Erkel, A.R.; van der Meer, R.W.; van Rijswijk, C.S.P.; Jonker-Bos, M.A.; Roozen, C.F.M.; Sporrel-Blokland, M.; Lutjeboer, J.; et al. Combining Melphalan Percutaneous Hepatic Perfusion with Ipilimumab Plus Nivolumab in Advanced Uveal Melanoma: First Safety and Efficacy Data from the Phase Ib Part of the Chopin Trial. Cardiovasc. Interv. Radiol. 2023, 46, 350–359. [Google Scholar] [CrossRef]
- Amaria, R.N.; Reddy, S.M.; Tawbi, H.A.; Davies, M.A.; Ross, M.I.; Glitza, I.C.; Cormier, J.N.; Lewis, C.; Hwu, W.-J.; Hanna, E.; et al. Neoadjuvant Immune Checkpoint Blockade in High-Risk Resectable Melanoma. Nat. Med. 2018, 24, 1649–1654. [Google Scholar] [CrossRef]
- Johnson, D.B.; Bao, R.; Ancell, K.K.; Daniels, A.B.; Wallace, D.; Sosman, J.A.; Luke, J.J. Response to Anti–PD-1 in Uveal Melanoma Without High-Volume Liver Metastasis. J. Natl. Compr. Cancer Netw. 2019, 17, 114–117. [Google Scholar] [CrossRef]
- Kitano, S.; Fujiwara, Y.; Shimizu, T.; Iwasa, S.; Yonemori, K.; Kondo, S.; Shimomura, A.; Koyama, T.; Ebata, T.; Ikezawa, H.; et al. A Feasibility Study of Lenvatinib plus Pembrolizumab in Japanese Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2022, 90, 523–529. [Google Scholar] [CrossRef]
- Ny, L.; Jespersen, H.; Karlsson, J.; Alsén, S.; Filges, S.; All-Eriksson, C.; Andersson, B.; Carneiro, A.; Helgadottir, H.; Levin, M.; et al. The PEMDAC Phase 2 Study of Pembrolizumab and Entinostat in Patients with Metastatic Uveal Melanoma. Nat. Commun. 2021, 12, 5155. [Google Scholar] [CrossRef]
- Jespersen, H.; Bagge, R.O.; Ullenhag, G.; Carneiro, A.; Helgadottir, H.; Ljuslinder, I.; Levin, M.; All-Eriksson, C.; Andersson, B.; Stierner, U.; et al. Concomitant Use of Pembrolizumab and Entinostat in Adult Patients with Metastatic Uveal Melanoma (PEMDAC Study): Protocol for a Multicenter Phase II Open Label Study. BMC Cancer 2019, 19, 415. [Google Scholar] [CrossRef]
- Kuznetsov, J.N.; Aguero, T.H.; Owens, D.A.; Kurtenbach, S.; Field, M.G.; Durante, M.A.; Rodriguez, D.A.; King, M.L.; Harbour, J.W. BAP1 Regulates Epigenetic Switch from Pluripotency to Differentiation in Developmental Lineages Giving Rise to BAP1-Mutant Cancers. Sci. Adv. 2019, 5, eaax1738. [Google Scholar] [CrossRef]
- Masclef, L.; Ahmed, O.; Estavoyer, B.; Larrivée, B.; Labrecque, N.; Nijnik, A.; Affar, E.B. Roles and Mechanisms of BAP1 Deubiquitinase in Tumor Suppression. Cell Death Differ. 2021, 28, 606–625. [Google Scholar] [CrossRef]
- Hamid, O.; Hassel, J.C.; Shoushtari, A.N.; Meier, F.; Bauer, T.M.; Salama, A.K.S.; Kirkwood, J.M.; Ascierto, P.A.; Lorigan, P.C.; Mauch, C.; et al. Tebentafusp in Combination with Durvalumab and/or Tremelimumab in Patients with Metastatic Cutaneous Melanoma: A Phase 1 Study. J. Immunother. Cancer 2023, 11, e006747. [Google Scholar] [CrossRef]
- Dummer, R.; Long, G.V.; Robert, C.; Tawbi, H.A.; Flaherty, K.T.; Ascierto, P.A.; Nathan, P.D.; Rutkowski, P.; Leonov, O.; Dutriaux, C.; et al. Randomized Phase III Trial Evaluating Spartalizumab Plus Dabrafenib and Trametinib for BRAF V600–Mutant Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2022, 40, 1428–1438. [Google Scholar] [CrossRef]
- Wu, J.; Bloch, N.; Chang, A.Y.; Bhavsar, R.; Wang, Q.; Crawford, A.; DiLillo, D.J.; Vazzana, K.; Mohrs, K.; Dudgeon, D.; et al. A PD-1-Targeted, Receptor-Masked IL-2 Immunocytokine That Engages IL-2Rα Strengthens T Cell-Mediated Anti-Tumor Therapies. Cell Rep. Med. 2024, 5, 101747. [Google Scholar] [CrossRef]
- Akce, M.; Hu-Lieskovan, S.; Reilley, M.; Strauss, J.F.; Specht, J.M.; Stein, M.N.; Wang, J.S.; Choe, J.H.; Leidner, R.; Davar, D.; et al. A Phase 1 Multiple-Ascending Dose Study to Evaluate the Safety and Tolerability of XmAb23104 (PD-1 x ICOS) in Subjects with Selected Advanced Solid Tumors (DUET-3). J. Clin. Oncol. 2022, 40, 2604. [Google Scholar] [CrossRef]
- Jacob, S.; Daud, A. Phase Ib/II Study of XmAb23104 (PD1 X ICOS) and XmAb22841 (CTLA-4 X LAG3) Combination in Metastatic Melanoma Refractory to Prior Immune Checkpoint Inhibitor Therapy with and without CNS Disease. J. Clin. Oncol. 2023, 41, TPS9595. [Google Scholar] [CrossRef]
- Moore, G.L.; Zeng, V.G.; Diaz, J.E.; Bonzon, C.; Avery, K.N.; Rashid, R.; Qi, J.; Nam, D.H.; Jacinto, J.; Dragovich, M.A.; et al. A B7-H3-Targeted CD28 Bispecific Antibody Enhances the Activity of Anti-PD1 and CD3 T-Cell Engager Immunotherapies. Mol. Cancer Ther. 2024, 24, 331–344. [Google Scholar] [CrossRef]
- Joshua, A.M.; Monzon, J.G.; Mihalcioiu, C.; Hogg, D.; Smylie, M.; Cheng, T. A Phase 2 Study of Tremelimumab in Patients with Advanced Uveal Melanoma. Melanoma Res. 2015, 25, 342–347. [Google Scholar] [CrossRef]
- Sánchez, J.; Nicolini, V.; Fahrni, L.; Waldhauer, I.; Walz, A.-C.; Jamois, C.; Fowler, S.; Simon, S.; Klein, C.; Umaña, P.; et al. Preclinical InVivo Data Integrated in a Modeling Network Informs a Refined Clinical Strategy for a CD3 T-Cell Bispecific in Combination with Anti-PD-L1. AAPS J. 2022, 24, 106. [Google Scholar] [CrossRef] [PubMed]
- Spreafico, A.; Couselo, E.M.; Irmisch, A.; Bessa, J.; Au-Yeung, G.; Bechter, O.; Svane, I.M.; Sanmamed, M.F.; Gambardella, V.; McKean, M.; et al. Phase 1, First-in-Human Study of TYRP1-TCB (RO7293583), a Novel TYRP1-Targeting CD3 T-Cell Engager, in Metastatic Melanoma: Active Drug Monitoring to Assess the Impact of Immune Response on Drug Exposure. Front. Oncol. 2024, 14, 1346502. [Google Scholar] [CrossRef]
- Ninmer, E.K.; Xu, F.; Slingluff, C.L. The Landmark Series: Cancer Vaccines for Solid Tumors. Ann. Surg. Oncol. 2025, 32, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Shukla, G.S.; Olson, W.C.; Pero, S.C.; Sun, Y.; Carman, C.L.; Slingluff, C.L.; Krag, D.N. Vaccine-Draining Lymph Nodes of Cancer Patients for Generating Anti-Cancer Antibodies. J. Transl. Med. 2017, 15, 180. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; Hodi, F.S.; Robert, C.; Weber, J.S.; Margolin, K.; Hamid, O.; Patt, D.; Chen, T.-T.; Berman, D.M.; Wolchok, J.D. Pooled Analysis of Long-Term Survival Data from Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J. Clin. Oncol. 2015, 33, 1889–1894. [Google Scholar] [CrossRef]
- Schaefer, J.T.; Patterson, J.W.; Deacon, D.H.; Smolkin, M.E.; Petroni, G.R.; Jackson, E.M.; Slingluff, C.L. Dynamic Changes in Cellular Infiltrates with Repeated Cutaneous Vaccination: A Histologic and Immunophenotypic Analysis. J. Transl. Med. 2010, 8, 79. [Google Scholar] [CrossRef]
- Yuan, J.; Ku, G.Y.; Adamow, M.; Mu, Z.; Tandon, S.; Hannaman, D.; Chapman, P.; Schwartz, G.; Carvajal, R.; Panageas, K.S.; et al. Immunologic Responses to Xenogeneic Tyrosinase DNA Vaccine Administered by Electroporation in Patients with Malignant Melanoma. J. Immunother. Cancer 2013, 1, 20. [Google Scholar] [CrossRef]
- Binkley, E.; Triozzi, P.L.; Rybicki, L.; Achberger, S.; Aldrich, W.; Singh, A. A Prospective Trial of Adjuvant Therapy for High-Risk Uveal Melanoma: Assessing 5-Year Survival Outcomes. Br. J. Ophthalmol. 2020, 104, 524. [Google Scholar] [CrossRef]
- Sato, T.; Eschelman, D.J.; Gonsalves, C.F.; Terai, M.; Chervoneva, I.; McCue, P.A.; Shields, J.A.; Shields, C.L.; Yamamoto, A.; Berd, D.; et al. Immunoembolization of Malignant Liver Tumors, Including Uveal Melanoma, Using Granulocyte-Macrophage Colony-Stimulating Factor. J. Clin. Oncol. 2008, 26, 5436–5442. [Google Scholar] [CrossRef]
- Yamamoto, A.; Chervoneva, I.; Sullivan, K.L.; Eschelman, D.J.; Gonsalves, C.F.; Mastrangelo, M.J.; Berd, D.; Shields, J.A.; Shields, C.L.; Terai, M.; et al. High-Dose Immunoembolization: Survival Benefit in Patients with Hepatic Metastases from Uveal Melanoma. Radiology 2009, 252, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Valsecchi, M.E.; Terai, M.; Eschelman, D.J.; Gonsalves, C.F.; Chervoneva, I.; Shields, J.A.; Shields, C.L.; Yamamoto, A.; Sullivan, K.L.; Laudadio, M.; et al. Double-Blinded, Randomized Phase II Study Using Embolization with or without Granulocyte–Macrophage Colony-Stimulating Factor in Uveal Melanoma with Hepatic Metastases. J. Vasc. Interv. Radiol. 2015, 26, 523–532.e2. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.A.; Yang, J.C.; Sherry, R.M.; Hughes, M.S.; Kammula, U.S.; White, D.E.; Levy, C.L.; Rosenberg, S.A.; Phan, G.Q. CTLA-4 Blockade with Ipilimumab: Long-Term Follow-up of 177 Patients with Metastatic Melanoma. Clin. Cancer Res. 2012, 18, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, M.; Thompson, P.A.; Burger, J.A.; Yilmaz, M.; Jain, N.; Kadia, T.M.; Masarova, L.; Valero, Y.A.; Bose, P.; Ferrajoli, A.; et al. Early Obinutuzumab Significantly Increases Bone Marrow Undetectable MRD (10-4 Sensitivity) (UMRD4) Rate When Combined with Acalabrutinib and Venetoclax in a Randomized Phase II Trial for Treatment Naïve CLL. Blood 2024, 144, 1855. [Google Scholar] [CrossRef]
- Coveler, A.L.; Smith, D.C.; Phillips, T.; Curti, B.D.; Goel, S.; Mehta, A.N.; Kuzel, T.M.; Markovic, S.N.; Rixe, O.; Bajor, D.L.; et al. Phase 1 Dose-Escalation Study of SEA-CD40: A Non-Fucosylated CD40 Agonist, in Advanced Solid Tumors and Lymphomas. J. Immunother. Cancer 2023, 11, e005584. [Google Scholar] [CrossRef]
- Fa’ak, F.; Buni, M.; Falohun, A.; Lu, H.; Song, J.; Johnson, D.H.; Zobniw, C.M.; Trinh, V.A.; Awiwi, M.O.; Tahon, N.H.; et al. Selective Immune Suppression Using Interleukin-6 Receptor Inhibitors for Management of Immune-Related Adverse Events. J. Immunother. Cancer 2023, 11, e006814. [Google Scholar] [CrossRef]
- Ghosh, C.C.; Cournoyer, L.; Liu, Y.; Ballarin, A.; Layman, I.B.; LaPorte, J.; Morrissey, M.; Fraser, K.; Perati, S.; Cox, B.F.; et al. Subcutaneous Checkpoint Inhibition Is Equivalent to Systemic Delivery When Combined with Nelitolimod Delivered via Pressure-Enabled Drug Delivery for Depletion of Intrahepatic Myeloid-Derived Suppressor Cells and Control of Liver Metastases. J. Immunother. Cancer 2024, 12, e008837. [Google Scholar] [CrossRef]
- Leyvraz, S.; Piperno-Neumann, S.; Suciu, S.; Baurain, J.F.; Zdzienicki, M.; Testori, A.; Marshall, E.; Scheulen, M.; Jouary, T.; Negrier, S.; et al. Hepatic Intra-Arterial versus Intravenous Fotemustine in Patients with Liver Metastases from Uveal Melanoma (EORTC 18021): A Multicentric Randomized Trial. Ann. Oncol. 2014, 25, 742–746. [Google Scholar] [CrossRef]
- Bradley, M.O.; Swindell, C.S.; Anthony, F.H.; Witman, P.A.; Devanesan, P.; Webb, N.L.; Baker, S.D.; Wolff, A.C.; Donehower, R.C. Tumor Targeting by Conjugation of DHA to Paclitaxel. J. Control. Release 2001, 74, 233–236. [Google Scholar] [CrossRef]
- Homsi, J.; Bedikian, A.Y.; Papadopoulos, N.E.; Kim, K.B.; Hwu, W.-J.; Mahoney, S.L.; Hwu, P. Phase 2 Open-Label Study of Weekly Docosahexaenoic Acid–Paclitaxel in Patients with Metastatic Uveal Melanoma. Melanoma Res. 2010, 20, 507–510. [Google Scholar] [CrossRef]
- Blajeski, A.L.; Phan, V.A.; Kottke, T.J.; Kaufmann, S.H. G1 and G2 Cell-Cycle Arrest Following Microtubule Depolymerization in Human Breast Cancer Cells. J. Clin. Investig. 2002, 110, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Bedikian, A.Y.; Silverman, J.A.; Papadopoulos, N.E.; Kim, K.B.; Hagey, A.E.; Vardeleon, A.; Hwu, W.; Homsi, J.; Davies, M.; Hwu, P. Pharmacokinetics and Safety of Marqibo (Vincristine Sulfate Liposomes Injection) in Cancer Patients with Impaired Liver Function. J. Clin. Pharmacol. 2011, 51, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.S.; Somerville, R.P.T.; Yang, J.C.; Sherry, R.M.; Klebanoff, C.A.; Goff, S.L.; Wunderlich, J.R.; Danforth, D.N.; Zlott, D.; Paria, B.C.; et al. Treatment of Metastatic Uveal Melanoma with Adoptive Transfer of Tumour-Infiltrating Lymphocytes: A Single-Centre, Two-Stage, Single-Arm, Phase 2 Study. Lancet Oncol. 2017, 18, 792–802. [Google Scholar] [CrossRef]
- Koch, E.A.T.; Schaft, N.; Kummer, M.; Berking, C.; Schuler, G.; Hasumi, K.; Dörrie, J.; Schuler-Thurner, B. A One-Armed Phase I Dose Escalation Trial Design: Personalized Vaccination with IKKβ-Matured, RNA-Loaded Dendritic Cells for Metastatic Uveal Melanoma. Front. Immunol. 2022, 13, 785231. [Google Scholar] [CrossRef]
- Leonard-Murali, S.; Kammula, U.S. Optimizing TIL Therapy for Uveal Melanoma: Lessons Learned and Unlearned from Cutaneous Melanoma. Immunotherapy 2025, 1–9. [Google Scholar] [CrossRef] [PubMed]
- García, M.; Moreno, R.; Gil-Martin, M.; Cascallò, M.; de Olza, M.O.; Cuadra, C.; Piulats, J.M.; Navarro, V.; Domenech, M.; Alemany, R.; et al. A Phase 1 Trial of Oncolytic Adenovirus ICOVIR-5 Administered Intravenously to Cutaneous and Uveal Melanoma Patients. Hum. Gene Ther. 2019, 30, 352–364. [Google Scholar] [CrossRef]
- Ghajar-Rahimi, G.; Kang, K.-D.; Totsch, S.K.; Gary, S.; Rocco, A.; Blitz, S.; Kachurak, K.; Chambers, M.R.; Li, R.; Beierle, E.A.; et al. Clinical Advances in Oncolytic Virotherapy for Pediatric Brain Tumors. Pharmacol. Ther. 2022, 239, 108193. [Google Scholar] [CrossRef]
- Au, G.; Lindberg, A.; Barry, R.; Shafren, D. Oncolysis of Vascular Malignant Human Melanoma Tumors by Coxsackievirus A21. Int. J. Oncol. 2005, 26, 1471–1476. [Google Scholar] [CrossRef]
- Lutzky, J.; Sullivan, R.J.; Cohen, J.V.; Ren, Y.; Li, A.; Haq, R. Phase 1b Study of Intravenous Coxsackievirus A21 (V937) and Ipilimumab for Patients with Metastatic Uveal Melanoma. J. Cancer Res. Clin. Oncol. 2023, 149, 6059–6066. [Google Scholar] [CrossRef]
- Hasenburg, A.; Tong, X.W.; Rojas-Martinez, A.; Nyberg-Hoffman, C.; Kieback, C.C.; Kaplan, A.L.; Kaufman, R.H.; Ramzy, I.; Aguilar-Cordova, E.; Kieback, D.G. Thymidine Kinase (TK) Gene Therapy of Solid Tumors: Valacyclovir Facilitates Outpatient Treatment. Anticancer Res. 1999, 19, 2163–2165. [Google Scholar]
- Ismail, I.H.; Davidson, R.; Gagné, J.-P.; Xu, Z.Z.; Poirier, G.G.; Hendzel, M.J. Germline Mutations in BAP1 Impair Its Function in DNA Double-Strand Break Repair. Cancer Res. 2014, 74, 4282–4294. [Google Scholar] [CrossRef] [PubMed]
- Muzzana, M.; Broggini, M.; Damia, G. The Landscape of PARP Inhibitors in Solid Cancers. OncoTargets Ther. 2025, 18, 297–317. [Google Scholar] [CrossRef]
- George, T.J.; Lee, J.-H.; DeRemer, D.L.; Hosein, P.J.; Staal, S.; Markham, M.J.; Jones, D.; Daily, K.C.; Chatzkel, J.A.; Ramnaraign, B.H.; et al. Phase II Trial of the PARP Inhibitor, Niraparib, in BAP1 and Other DNA Damage Response Pathway-Deficient Neoplasms. JCO Precis. Oncol. 2024, 8, e2400406. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.Y.; Phillips, M.M.; Ellis, S.; Johnston, A.; Feng, X.; Arora, A.; Hay, G.; Cohen, V.M.L.; Sagoo, M.S.; Bomalaski, J.S.; et al. A Phase 1 Study of ADI-PEG20 (Pegargiminase) Combined with Cisplatin and Pemetrexed in ASS1-negative Metastatic Uveal Melanoma. Pigment Cell Melanoma Res. 2022, 35, 461–470. [Google Scholar] [CrossRef]
- Khera, E.; Dharmarajan, L.; Hainzl, D.; Engelhardt, V.; Vostiarova, H.; Davis, J.; Ebel, N.; Wuersch, K.; Romanet, V.; Sharaby, S.; et al. QSP Modeling of a Transiently Inactivating Antibody-Drug Conjugate Highlights Benefit of Short Antibody Half Life. J. Pharmacokinet. Pharmacodyn. 2025, 52, 7. [Google Scholar] [CrossRef]
- Khushalani, N.I.; El-Haddad, G.; Gage, K.L.; Budzevich, M.; Schell, M.J.; Moros, E.G.; Tichacek, C.; Gibbons, W.R.; Rogers, R.E.; Nickels, M.L.; et al. First-in-Human Study of 225actinium Mti-201 (225Ac-MTI-201) in Metastatic Uveal Melanoma (UM). J. Clin. Oncol. 2024, 42, TPS9612. [Google Scholar] [CrossRef]
- Li, M.; Liu, D.; Lee, D.; Cheng, Y.; Baumhover, N.J.; Marks, B.M.; Sagastume, E.A.; Ballas, Z.K.; Johnson, F.L.; Morris, Z.S.; et al. Targeted Alpha-Particle Radiotherapy and Immune Checkpoint Inhibitors Induces Cooperative Inhibition on Tumor Growth of Malignant Melanoma. Cancers 2021, 13, 3676. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Veld, R.V.H.I.; de los Pinos, E.; Ossendorp, F.A.; Jager, M.J. Targeting Ocular Malignancies Using a Novel Light-Activated Virus-like Drug Conjugate. Adv. Ophthalmol. Pract. Res. 2025, 5, 49–57. [Google Scholar] [CrossRef]
- Ma, S.; Veld, R.V.H.I.; Houy, A.; Stern, M.-H.; Rich, C.; Ossendorp, F.A.; Jager, M.J. In Vitro Testing of the Virus-Like Drug Conjugate Belzupacap Sarotalocan (AU-011) on Uveal Melanoma Suggests BAP1-Related Immunostimulatory Capacity. Investig. Ophthalmol. Vis. Sci. 2023, 64, 10. [Google Scholar] [CrossRef]
- Hasanov, M.; Rioth, M.J.; Kendra, K.; Hernandez-Aya, L.; Joseph, R.W.; Williamson, S.; Chandra, S.; Shirai, K.; Turner, C.D.; Lewis, K.; et al. A Phase II Study of Glembatumumab Vedotin for Metastatic Uveal Melanoma. Cancers 2020, 12, 2270. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, X.; Peng, R.; Pan, Q.; Weng, D.; Ma, Y.; Zhang, Y.; Yang, J.; Men, L.; Wang, H.; et al. A First-in-Human Phase I Study of a Novel MDM2/P53 Inhibitor Alrizomadlin in Advanced Solid Tumors. ESMO Open 2024, 9, 103636. [Google Scholar] [CrossRef] [PubMed]
- Omar, R.K.; Hagström, A.; Stålhammar, G. Adjuvant Melatonin for Uveal Melanoma (AMUM): Protocol for a Randomized Open-Label Phase III Study. Trials 2023, 24, 230. [Google Scholar] [CrossRef]
- Bao, R.; Surriga, O.; Olson, D.J.; Allred, J.B.; Strand, C.A.; Zha, Y.; Carll, T.; Labadie, B.W.; Bastos, B.R.; Butler, M.; et al. Transcriptional Analysis of Metastatic Uveal Melanoma Survival Nominates NRP1 as a Therapeutic Target. Melanoma Res. 2021, 31, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Sarnaik, A.A.; Yu, B.; Yu, D.; Morelli, D.; Hall, M.; Bogle, D.; Yan, L.; Targan, S.; Solomon, J.; Nichol, G.; et al. Extended Dose Ipilimumab with a Peptide Vaccine: Immune Correlates Associated with Clinical Benefit in Patients with Resected High-Risk Stage IIIc/IV Melanoma. Clin. Cancer Res. 2011, 17, 896–906. [Google Scholar] [CrossRef]
- Tarhini, A.A.; Frankel, P.; Margolin, K.A.; Christensen, S.; Ruel, C.; Shipe-Spotloe, J.; Gandara, D.R.; Chen, A.; Kirkwood, J.M. Aflibercept (VEGF Trap) in Inoperable Stage III or Stage IV Melanoma of Cutaneous or Uveal Origin. Clin. Cancer Res. 2011, 17, 6574–6581. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, A.A.; Frankel, P.; Ruel, C.; Ernstoff, M.S.; Kuzel, T.M.; Logan, T.F.; Khushalani, N.I.; Tawbi, H.A.; Margolin, K.A.; Awasthi, S.; et al. NCI 8628: A Randomized Phase 2 Study of Ziv-Aflibercept and High-Dose Interleukin 2 or High-Dose Interleukin 2 Alone for Inoperable Stage III or IV Melanoma. Cancer 2018, 124, 4332–4341. [Google Scholar] [CrossRef]
- Aljabali, A.A.A.; Tambuwala, M.M.; El-Tanani, M.; Hassan, S.S.; Lundstrom, K.; Mishra, V.; Mishra, Y.; Hromić-Jahjefendić, A.; Redwan, E.M.; Uversky, V.N. A Comprehensive Review of PRAME and BAP1 in Melanoma: Genomic Instability and Immunotherapy Targets. Cell. Signal. 2024, 124, 111434. [Google Scholar] [CrossRef]
- Barbagallo, C.; Stella, M.; Broggi, G.; Russo, A.; Caltabiano, R.; Ragusa, M. Genetics and RNA Regulation of Uveal Melanoma. Cancers 2023, 15, 775. [Google Scholar] [CrossRef]
- Seider, M.I.; Mruthyunjaya, P. Molecular prognostics for uveal melanoma. Retina 2018, 38, 211–219. [Google Scholar] [CrossRef]
- Cai, L.; Paez-Escamilla, M.; Walter, S.D.; Tarlan, B.; Decatur, C.L.; Perez, B.M.; Harbour, J.W. Gene Expression Profiling and PRAME Status Versus Tumor-Node-Metastasis Staging for Prognostication in Uveal Melanoma. Am. J. Ophthalmol. 2018, 195, 154–160. [Google Scholar] [CrossRef]
- Gallenga, C.E.; Franco, E.; Adamo, G.G.; Violanti, S.S.; Tassinari, P.; Tognon, M.; Perri, P. Genetic Basis and Molecular Mechanisms of Uveal Melanoma Metastasis: A Focus on Prognosis. Front. Oncol. 2022, 12, 828112. [Google Scholar] [CrossRef]
- Field, M.G.; Decatur, C.L.; Kurtenbach, S.; Gezgin, G.; van der Velden, P.A.; Jager, M.J.; Kozak, K.N.; Harbour, J.W. PRAME as an Independent Biomarker for Metastasis in Uveal Melanoma. Clin. Cancer Res. 2016, 22, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Onken, M.D.; Worley, L.A.; Char, D.H.; Augsburger, J.J.; Correa, Z.M.; Nudleman, E.; Aaberg, T.M.; Altaweel, M.M.; Bardenstein, D.S.; Finger, P.T.; et al. Collaborative Ocular Oncology Group Report Number 1: Prospective Validation of a Multi-Gene Prognostic Assay in Uveal Melanoma. Ophthalmology 2012, 119, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Onken, M.D.; Worley, L.A.; Tuscan, M.D.; Harbour, J.W. An Accurate, Clinically Feasible Multi-Gene Expression Assay for Predicting Metastasis in Uveal Melanoma. J. Mol. Diagn. 2010, 12, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Soltysova, A.; Dvorska, D.; Kajabova, V.H.; Pecimonova, M.; Cepcekova, K.; Ficek, A.; Demkova, L.; Buocikova, V.; Babal, P.; Juras, I.; et al. Uncovering Accurate Prognostic Markers for High-risk Uveal Melanoma through DNA Methylation Profiling. Clin. Transl. Med. 2023, 13, e1317. [Google Scholar] [CrossRef]
- Heiferman, M.J.; Mahajan, V.B.; Mruthyunjaya, P. Proteomics in Uveal Melanoma. Curr. Opin. Ophthalmol. 2022, 33, 202–210. [Google Scholar] [CrossRef]
- Nakao, S.; Hafezi-Moghadam, A.; Ishibashi, T. Lymphatics and Lymphangiogenesis in the Eye. J. Ophthalmol. 2012, 2012, 783163. [Google Scholar] [CrossRef]
- Boyd, S.R.; Tan, D.S.W.; de Souza, L.; Neale, M.H.; Myatt, N.E.; Alexander, R.A.; Robb, M.; Hungerford, J.L.; Cree, I.A. Uveal Melanomas Express Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor and Support Endothelial Cell Growth. Br. J. Ophthalmol. 2002, 86, 440. [Google Scholar] [CrossRef]
- Velez, G.; Wolf, J.; Dufour, A.; Mruthyunjaya, P.; Mahajan, V.B. Cross-Platform Identification and Validation of Uveal Melanoma Vitreous Protein Biomarkers. Investig. Ophthalmol. Vis. Sci. 2023, 64, 14. [Google Scholar] [CrossRef]
- Giatromanolaki, A.; Sivridis, E.; Bechrakis, N.E.; Willerding, G.; Charitoudis, G.S.; Foerster, M.H.; Gatter, K.C.; Harris, A.L.; Koukourakis, M.I. Phosphorylated PVEGFR2/KDR Receptor Expression in Uveal Melanomas: Relation with HIF2α and Survival. Clin. Exp. Metastasis 2012, 29, 11–17. [Google Scholar] [CrossRef]
- Yang, H.; Jager, M.J.; Grossniklaus, H.E. Bevacizumab Suppression of Establishment of Micrometastases in Experimental Ocular Melanoma. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2835–2842. [Google Scholar] [CrossRef]
- el Filali, M.; Ly, L.V.; Luyten, G.P.M.; Versluis, M.; Grossniklaus, H.E.; van der Velden, P.A.; Jager, M.J. Bevacizumab and Intraocular Tumors: An Intriguing Paradox. Mol. Vis. 2012, 18, 2454–2467. [Google Scholar] [PubMed]
- Francis, J.H.; Kim, J.; Lin, A.; Folberg, R.; Iyer, S.; Abramson, D.H. Growth of Uveal Melanoma Following Intravitreal Bevacizumab. Ocul. Oncol. Pathol. 2017, 3, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Tsering, T.; Laskaris, A.; Abdouh, M.; Bustamante, P.; Parent, S.; Jin, E.; Ferrier, S.T.; Arena, G.; Burnier, J.V. Uveal Melanoma-Derived Extracellular Vesicles Display Transforming Potential and Carry Protein Cargo Involved in Metastatic Niche Preparation. Cancers 2020, 12, 2923. [Google Scholar] [CrossRef]
- Yamada, K.H.; Kang, H.; Malik, A.B. Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B That Transports VEGFR2 to Plasmalemma in Endothelial Cells. Am. J. Pathol. 2017, 187, 214–224. [Google Scholar] [CrossRef]
- Waters, S.B.; Dominguez, J.R.; Cho, H.D.; Sarich, N.A.; Malik, A.B.; Yamada, K.H. KIF13B-Mediated VEGFR2 Trafficking Is Essential for Vascular Leakage and Metastasis in Vivo. Life Sci. Alliance 2022, 5, e202101170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scoles, S.; Ganesh, S.; Yamada, K.H. Current Therapies and Potential Strategies for Uveal Melanoma. Drugs Drug Candidates 2025, 4, 14. https://doi.org/10.3390/ddc4020014
Scoles S, Ganesh S, Yamada KH. Current Therapies and Potential Strategies for Uveal Melanoma. Drugs and Drug Candidates. 2025; 4(2):14. https://doi.org/10.3390/ddc4020014
Chicago/Turabian StyleScoles, Sarah, Sanjay Ganesh, and Kaori H. Yamada. 2025. "Current Therapies and Potential Strategies for Uveal Melanoma" Drugs and Drug Candidates 4, no. 2: 14. https://doi.org/10.3390/ddc4020014
APA StyleScoles, S., Ganesh, S., & Yamada, K. H. (2025). Current Therapies and Potential Strategies for Uveal Melanoma. Drugs and Drug Candidates, 4(2), 14. https://doi.org/10.3390/ddc4020014