Practical Knowledge of Injuries Caused by Simulated Herbicide Drift in Young Tomato Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Plant Material Description
2.2. Experimental Design and Treatments
2.3. Assessments of Symptoms, Injury Level, and Dry Mass
2.4. Statistical Analysis
3. Results
3.1. Effects of Simulated Drift Caused by Synthetic Auxin Herbicides
3.2. Effects of Simulated Drift Caused by EPSPs-Inhibiting Herbicides
3.3. Effects of Simulated Drift Caused by PPO-Inhibiting Herbicides
3.4. Effects of Simulated Drift Caused by PSII-Inhibiting Herbicides
3.5. Effects of Simulated Drift Caused by PSI-Inhibiting Herbicides
3.6. Effects of Simulated Drift Caused by ALS-Inhibiting Herbicides
3.7. Effects of Simulated Drift Caused by HPPD-Inhibiting Herbicides
3.8. Effect of Simulated Herbicides Drift on Tomato Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bergougnoux, V. The history of tomato: From domestication to biopharming. Biotechnol. Adv. 2014, 32, 170–189. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QI (accessed on 27 February 2023).
- IBGE (Brazilian Institute of Geography and Statistics). Sidra. Available online: https://sidra.ibge.gov.br/tabela/5457#resultado (accessed on 17 January 2023).
- Warmund, M.R.; Ellersieck, M.R.; Smeda, R.J. Sensitivity and Recovery of Tomato Cultivars Following Simulated Drift of Dicamba or 2,4-D. Agriculture 2022, 12, 1489. [Google Scholar] [CrossRef]
- Miller, P.C.H. Spray drift and its measurement. In Application Technology for Crop Protection; Matthews, G.A., Hislop, E.C., Eds.; CAB International: Wallingford, UK, 1993; pp. 101–122. [Google Scholar]
- Hilz, E.; Vermeer, A.W.P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Prot. 2013, 44, 75–83. [Google Scholar] [CrossRef]
- da Silva Brochado, M.G.; Mielke, K.C.; de Paula, D.F.; Laube, A.F.S.; Alcántara-de la Cruz, R.; Gonzatto, M.P.; Mendes, K.F. Impacts of Dicamba and 2,4-D Drift on ‘Ponkan’ Mandarin Seedlings, Soil Microbiota and Amaranthus retroflexus. J. Hazard. Mater. Adv. 2022, 6, 100084. [Google Scholar] [CrossRef]
- Li, X.; Du, J.; Song, B.; Zhang, X.; Riaz, M. Fomesafen Drift Affects Morphophysiology of Sugar Beet. Chemosphere 2022, 287, 132073. [Google Scholar] [CrossRef]
- França, A.C.; Carvalho, F.P.; Fialho, C.M.T.; D’Antonino, L.; Silva, A.A.; Santos, J.B.; Ferreira, L.R. Deriva Simulada Do Glyphosate Em Cultivares de Café Acaiá e Catucaí. Planta Daninha 2013, 31, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Haring, S.C.; Ou, J.; Al-Khatib, K.; Hanson, B.D. Grapevine Injury and Fruit Yield Response to Simulated Auxin Herbicide Drift. HortScience 2022, 57, 384–388. [Google Scholar] [CrossRef]
- Takeshita, V.; Mendes, K.F.; Alonso, F.G.; Tornisielo, V.L. Effect of organic matter on the behavior and control effectiveness of herbicides in soil. Planta Daninha 2019, 37, e019214401. [Google Scholar] [CrossRef] [Green Version]
- Mehdizadeh, M.; Mushtaq, W.; Siddiqui, S.A.; Ayadi, S.; Kaur, P.; Yeboah, S.; Tampubolon, K. Herbicide residues in agroecosystems: Fate, detection, and effect on non-target plants. Rev. Agric. Sci. 2021, 9, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Marchesan, E.D. Seleção de espécies bioindicadoras para uso em bioensaios de lixiviação e persistência de atrazina no solo. Pestic. Rev. Ecotoxicologia Meio Ambiente 2011, 21, 47–54. [Google Scholar] [CrossRef] [Green Version]
- INMET (National Institute of Meteorology). Available online: https://mapas.inmet.gov.br/ (accessed on 19 January 2023).
- EWRC (European Weed Research Council). Cite of methods in weed research. Weed Res. 1964, 4, 88. [Google Scholar]
- Wells, M.L.; Prostko, E.P.; Carter, O.W. Simulated Single Drift Events of 2,4-D and Dicamba on Pecan Trees. HortTechnology 2019, 29, 360–366. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, X.; Napier, R.; Dong, L.; Li, J. Mode of action of a novel synthetic auxin herbicide halauxifen-methyl. Agronomy 2022, 12, 1659. [Google Scholar] [CrossRef]
- Grossmann, K. Auxin Herbicides: Current Status of Mechanism and Mode of Action: Auxin Herbicides. Pest Manag. Sci. 2010, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Todd, O.E.; Figueiredo, M.R.A.; Morran, S.; Soni, N.; Preston, C.; Kubeš, M.F.; Gaines, T.A. Synthetic auxin herbicides: Finding the lock and key to weed resistance. Plant Sci. 2020, 300, 110631. [Google Scholar] [CrossRef]
- Duke, S.O. The history and current status of glyphosate. Pest Manag. Sci. 2017, 74, 1027–1034. [Google Scholar] [CrossRef]
- Meyers, S.L.; Arana, J.; Woolam, B.C.; Vargas, N.; Rodriguez, L.; Cardona, L. Dicamba Residue Persistence in Processing Tomato. Weed Sci. 2022, 70, 603–609. [Google Scholar] [CrossRef]
- Duke, S.O. Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. In Reviews of Environmental Contamination and Toxicology; Knaak, J.B., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- McNaughton, K.E.; Sikkema, P.H.; Robinson, D.E. Response of Processing Tomato to Simulated Glyphosate Drift Followed by In-Crop Metribuzin Application. Weed Technol. 2012, 26, 757–762. [Google Scholar] [CrossRef]
- Gunsolus, J.L.; Curran, W.S. Herbicide Mode of Action and Injury Symptoms; Cooperative Extension Service, U.S. Department of Agriculture: Washington, DC, USA, 1991; pp. 1–21.
- MAPA (Ministério da Agricultura, Pecuária e Abastecimento). Formulação de Agrotóxicos Para Suporte Fitossanitário. Available online: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/arquivos/manual-de-procedimentos-para-registro-de-agrotoxicos.pdf (accessed on 26 January 2023).
- Wakabayashi, K.; Böger, P. General Physiological Characteristics and Mode of Action of Peroxidizing Herbicides. In Peroxidizing Herbicides; Böger, P., Wakabayashi, K., Eds.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Preston, C.; Wakelin, A.M. Resistance to Glyphosate from Altered Herbicide Translocation Patterns: Resistance to Glyphosate Owing to Altered Translocation. Pest Manag. Sci. 2008, 64, 372–376. [Google Scholar] [CrossRef]
- Pekarek, R.A.; Garvey, P.V.; Monks, D.W.; Jennings, K.M.; Macrae, A.W. Sulfentrazone Carryover to Vegetables and Cotton. Weed Technol. 2010, 24, 20–24. [Google Scholar] [CrossRef]
- Rahman, A.; Dowsett, C.; Trolove, M.; James, T. Soil residual activity and plantback periods for the herbicides saflufenacil and topramezone. N. Z. Plant Prot. 2014, 67, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Dan Hess, F. Light-Dependent Herbicides: An Overview. Weed Sci. 2000, 48, 160–170. [Google Scholar] [CrossRef]
- Brian, R.C. Darkness and the activity of diquat and paraquat on tomato, broad bean and sugar beet. Ann. Appl. Biol. 1967, 60, 77–85. [Google Scholar] [CrossRef]
- Stankiewicz-Kosyl, M.; Haliniarz, M.; Wrochna, M.; Obrępalska-Stęplowska, A.; Kuc, P.; Łukasz, J.; Wińska-Krysiak, M.; Wrzesińska-Krupa, B.; Puła, J.; Podsiadło, C.; et al. Occurrence and Mechanism of Papaver rhoeas ALS Inhibitors Resistance in Poland. Agriculture 2022, 13, 82. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, W.; Zhang, Y.; Liu, K.K. Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic. Biochem. Physiol. 2007, 89, 89–96. [Google Scholar] [CrossRef]
- Boyd, N.; Dittmar, P. Evaluation of Postemergence-Directed Herbicides for Purple Nutsedge (Cyperus rotundus) Control in Fresh-Market Tomato. Weed Technol. 2018, 32, 260–266. [Google Scholar] [CrossRef]
- Moran, G.R. 4-Hydroxyphenylpyruvate dioxygenase. Arch. Biochem. Biophys. 2005, 433, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.; Penner, D. Sensitivity of Selected Crops to Isoxaflutole in Soil and Irrigation Water. Weed Technol. 2005, 19, 659–663. [Google Scholar] [CrossRef]
- Ahrens, H.; Lange, G.; Müller, T.; Rosinger, C.; Willms, L.; van Almsick, A. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors in Combination with Safeners: Solutions for Modern and Sustainable Agriculture. Angew. Chem. Int. Ed. 2013, 52, 9388–9398. [Google Scholar] [CrossRef]
Modes of Action | Commercial Name | Name of a.i. or a.e. | Highest Commercial Dose | Highest Dose g of a.i or a.e./ha | Dose Ratio g of a.i or a.e./ha | ||
---|---|---|---|---|---|---|---|
1/16 | 1/32 | 1/64 | |||||
Synthetic auxin | U46 BR | 2,4-D | 3.5 L/ha | 2345 | 146.56 | 73.28 | 36.64 |
Atectra | Dicamba | 1.5 L/ha | 720 | 45 | 22.5 | 11.25 | |
Enolpyruvylshikimate-3-phosphate synthase (EPSPs) inhibitor | Roundup Original | Glyphosate | 6.0 L/ha | 2220 | 138.75 | 69.38 | 34.69 |
Protoporphyrinogen oxidase (PPO) inhibitors | Heat | Saflufenacil | 200 g/ha | 140 | 8.75 | 4.38 | 2.19 |
Goal BR | Oxyfluorfen | 6.0 L/ha | 1440 | 90 | 45 | 22.5 | |
Photosystem II (PSII) inhibitors | Hexazinona D NORTOX | Hexazinone | 3.0 kg/ha | 396 | 24.75 | 12.38 | 6.19 |
Diuron NORTOX 500 SC | Diuron | 6.4 L/ha | 3200 | 200 | 100 | 50 | |
Photosystem I (PSI) inhibitors | Reglone | Diquat | 3.5 L/ha | 60 | 43.75 | 21.88 | 10.94 |
Acetolactate synthas (ALS) inhibitors | Nicosulfuron NORTOX 750WG | Nicosulfuron | 80 g/ha | 700 | 3.75 | 1.88 | 0.94 |
Carotenoid biosynthesis [4-hydroxyphenylpyruvate dioxygenase (HPPD)] inhibitors | Provence 750 WG | Isoxaflutole | 350 g/ha | 262.5 | 16.41 | 8.20 | 4.10 |
Injury Level | Characteristics |
---|---|
0 | No effect; normal plant |
10 | Slight wrinkling of terminal leaf leaflets |
20 | Curving of terminal leaflets, slight wrinkling of second-leaf leaflets, normal growth rate |
30 | Leaflets of two shell-shaped terminal leaves, terminal leaf expansion slightly suppressed |
40 | Malformation and growth suppression of two terminal leaves, terminal leaf size less than half that of the control. New axillary leaves develop at a substantially reduced rate |
50 | No terminal leaf expansion, size of second leaf half of control. Axillary leaf buds unable to open and develop |
60 | Small terminal growth, terminal leaf necrosis, and apparent axillary bud. Chlorosis and necrosis in clusters of axillary leaves |
70 | Terminal bud dead, substantial growth of heavily malformed axillary shoots |
80 | Limited axillary shoot growth, leaves present at the time of treatment chlorotic with slight necrosis |
90 | Plant dying, leaves predominantly necrotic |
100 | Dead plant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Paula Medeiros, B.A.; da Silva Brochado, M.G.; de Paiva Ferreira, G.A.; da Costa Lima, A.; Mielke, K.C.; Mendes, K.F. Practical Knowledge of Injuries Caused by Simulated Herbicide Drift in Young Tomato Plants. Agrochemicals 2023, 2, 150-169. https://doi.org/10.3390/agrochemicals2010011
de Paula Medeiros BA, da Silva Brochado MG, de Paiva Ferreira GA, da Costa Lima A, Mielke KC, Mendes KF. Practical Knowledge of Injuries Caused by Simulated Herbicide Drift in Young Tomato Plants. Agrochemicals. 2023; 2(1):150-169. https://doi.org/10.3390/agrochemicals2010011
Chicago/Turabian Stylede Paula Medeiros, Bruna Aparecida, Maura Gabriela da Silva Brochado, Guilherme Augusto de Paiva Ferreira, Alessandro da Costa Lima, Kamila Cabral Mielke, and Kassio Ferreira Mendes. 2023. "Practical Knowledge of Injuries Caused by Simulated Herbicide Drift in Young Tomato Plants" Agrochemicals 2, no. 1: 150-169. https://doi.org/10.3390/agrochemicals2010011
APA Stylede Paula Medeiros, B. A., da Silva Brochado, M. G., de Paiva Ferreira, G. A., da Costa Lima, A., Mielke, K. C., & Mendes, K. F. (2023). Practical Knowledge of Injuries Caused by Simulated Herbicide Drift in Young Tomato Plants. Agrochemicals, 2(1), 150-169. https://doi.org/10.3390/agrochemicals2010011