Feasibility of Organic Fertilization for Reducing Greenhouse Gas Emissions Compared to Mineral Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Climate, and Soil
2.2. Treatments and Preparation
2.3. Greenhouse Gas Emissions Assessment
- δC/δt is the change in gas concentration in a chamber during the incubation period;
- V and A are, respectively, chamber volume and area of soil covered by a chamber;
- M is the molecular weight of the gas;
- Vm is the molecular volume corrected for standard conditions of temperature and pressure: Vm = 0.02241 × (273.15 + temp/273.15) c p0/p1, where 0.02241 m3 is 22.41 L mol volume, temp is the chamber temperature at the moment of sampling (in °C), p0 is sea level air pressure, and p1 is the air temperature of the experimental field. Air pressure at the study site was estimated using the barometric equation that takes altitude into account.
2.4. Forage Characteristic Evaluation
2.5. Emission Intensity Calculation
2.6. Data Analysis
3. Results
3.1. Greenhouse Gas Emissions
3.2. Forage Production and Emissions Intensities
4. Discussion
4.1. Greenhouse Gas Emissions
4.2. Relationship Between GHG Emissions and Forage Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, T.; Yuan, J.; Luo, J.; Wang, W.; Fan, J.; Liu, D.; Ding, W. Organic Fertilizers Have Divergent Effects on Soil N2O Emissions. Biol. Fertil. Soils 2019, 55, 685–699. [Google Scholar] [CrossRef]
- do Nascimento, D.B.; Lopes, M.L.S.; Izidro, J.L.P.S.; Bezerra, R.C.A.; Gois, G.C.; de Amaral, T.N.E.; da Silva Dias, W.; de Barros, M.M.L.; da Silva Oliveira, A.R.; de Farias Sobrinho, J.L.; et al. Nitrogen, Phosphorus, and Potassium Cycling in Pasture Ecosystems. Cienc. Anim. Bras. 2024, 25, e-76743. [Google Scholar] [CrossRef]
- He, X.; Wang, H.; Ju, X.; Yan, Z.; Zhu-Barker, X. Nitrifier Denitrification Can Contribute to N2O Emissions Substantially in Wet Agricultural Soil. Biol. Fertil. Soils 2025, 61, 971–976. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K. Anaerobic Digestate Management for Carbon Neutrality and Fertilizer Use: A Review of Current Practices and Future Opportunities. Biomass Bioenergy 2024, 180, 106991. [Google Scholar] [CrossRef]
- Da Silva Dos Reis, S.D.; Orrico, M.A.P.; Tomazi, M.; Cunha, S.S.; Orrico, C.A.; Alves, J.P.; Galeano, E.S.J. Is Organic Fertilizer Application a Viable Alternative to Synthetic Fertilizer for Piatã Grass? Trop. Grasslands-Forrajes Trop. 2021, 9, 300–306. [Google Scholar] [CrossRef]
- McRoberts, K.C.; Parsons, D.; Ketterings, Q.M.; Hai, T.T.; Quan, N.H.; Ba, N.X.; Nicholson, C.F.; Cherney, D.J.R. Urea and Composted Cattle Manure Affect Forage Yield and Nutritive Value in Sandy Soils of South-Central Vietnam. Grass Forage Sci. 2018, 73, 132–145. [Google Scholar] [CrossRef]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Cardoso, A.S.; Berndt, A.; Leytem, A.; Alves, B.J.R.; de Carvalho, I.d.N.O.; de Barros Soares, L.H.; Urquiaga, S.; Boddey, R.M. Impact of the Intensification of Beef Production in Brazil on Greenhouse Gas Emissions and Land Use. Agric. Syst. 2016, 143, 86–96. [Google Scholar] [CrossRef]
- Barton, L.; Butterbach-Bahl, K.; Kiese, R.; Murphy, D.V. Nitrous Oxide Fluxes from a Grain-Legume Crop (Narrow-Leafed Lupin) Grown in a Semiarid Climate. Glob. Chang. Biol. 2011, 17, 1153–1166. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2006; ISBN 0935584773. [Google Scholar]
- Nicholson, F.; Bhogal, A.; Cardenas, L.; Chadwick, D.; Misselbrook, T.; Rollett, A.; Taylor, M.; Thorman, R.; Williams, J. Nitrogen Losses to the Environment Following Food-Based Digestate and Compost Applications to Agricultural Land. Environ. Pollut. 2017, 228, 504–516. [Google Scholar] [CrossRef]
- Fowler, D.; Steadman, C.E.; Stevenson, D.; Coyle, M.; Rees, R.M.; Skiba, U.M.; Sutton, M.A.; Cape, J.N.; Dore, A.J.; Vieno, M.; et al. Effects of Global Change during the 21st Century Onthe Nitrogen Cycle. Atmos. Chem. Phys. 2015, 15, 13849–13893. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Phillips, L. Nitrogen Stewardship in the Anthropocene. Science 2017, 357, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hou, H.; Wang, X.; Zhu, Y.; Saddique, Q.; Wang, Y.; Cai, H. The Effects of Aeration and Irrigation Regimes on Soil CO2 and N2O Emissions in a Greenhouse Tomato Production System. J. Integr. Agric. 2018, 17, 449–460. [Google Scholar] [CrossRef]
- Ouyang, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Effect of Nitrogen Fertilization on the Abundance of Nitrogen Cycling Genes in Agricultural Soils: A Meta-Analysis of Field Studies. Soil Biol. Biochem. 2018, 127, 71–78. [Google Scholar] [CrossRef]
- Xie, Y. Bioreactor Strategies for Sustainable Nitrogen Cycling Based on Mineralization/Nitrification, Partial Nitritation/Anammox or Sulfur-Based Denitratation. Ph.D. Thesis, University of Antwerp, Antwerp, Belgium, 2021. [Google Scholar]
- Khurshid, M.; Rashid, Z.; Agarwal, R.K.; Nasseer, S.; Shabeena, M.; Dar, Z.A.; Rakshanda, A.; Bhat, R.A. Nitrification Inhibitors-Role in Mitigating Nitrous Oxide Emissions from Soil. Just Agric. 2024, 4, 8, e-ISSN: 2582-8223. [Google Scholar]
- Shen, Q.; Redmile-Gordon, M.; Song, J.; Li, J.; Zhang, K.; Voroney, P.; Xu, J.; Brookes, P.C. Amendment with biodiesel co-product modifies genes for N cycling (nirK, nirS, nosZ) and greenhouse gas emissions (N2O, CH4, CO2) from an acid soil. Biol. Fertil. Soils 2021, 1, 629–642. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of Organic Fertilizers on the Soil Microorganisms Responsible for N2O Emissions: A Review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Cavalli, D.; Cabassi, G.; Borrelli, L.; Fuccella, R.; Degano, L.; Bechini, L.; Marino, P. Nitrogen Fertiliser Value of Digested Dairy Cow Slurry, Its Liquid and Solid Fractions, and of Dairy Cow Slurry. Ital. J. Agron. 2014, 9, 71–78. [Google Scholar] [CrossRef]
- Nyameasem, J.K.; Malisch, C.S.; Loges, R.; Taube, F.; Klub, C.; Vogeler, I.; Reinsch, T. Nitrous Oxide Emission from Grazing Is Low across a Gradient of Plant Functional Diversity and Soil Conditions. Atmosphere 2021, 12, 223. [Google Scholar] [CrossRef]
- Christensen, S.; Rousk, K. Global N2O Emissions from Our Planet: Which Fluxes Are Affected by Man, and Can We Reduce These? iScience 2024, 27, 109042. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, X.; Carswell, A.; Misselbrook, T.; Ding, R.; Li, S.; Kang, S. Inorganic Nitrogen Fertilizer and High N Application Rate Promote N2O Emission and Suppress CH4 Uptake in a Rotational Vegetable System. Soil Tillage Res. 2021, 206, 104848. [Google Scholar] [CrossRef]
- Assefa, S. The Principal Role of Organic Fertilizer on Soil Properties and Agricultural Productivity—A Review. Agric. Res. Technol. Open Access J. 2019, 22, 2. [Google Scholar] [CrossRef]
- Gutser, R.; Ebertseder, T.; Weber, A.; Schraml, M.; Schmidhalter, U. Short-Term and Residual Availability of Nitrogen after Long-Term Application of Organic Fertilizers on Arable Land. J. Plant Nutr. Soil Sci. 2005, 168, 439–446. [Google Scholar] [CrossRef]
- Witwicki, D.L.; Munson, S.M.; Thoma, D.P. Effects of Climate and Water Balance across Grasslands of Varying C3 and C4 Grass Cover. Ecosphere 2016, 7, e01577. [Google Scholar] [CrossRef]
- Zhao, S.; Li, K.; Zhou, W.; Qiu, S.; Huang, S.; He, P. Changes in Soil Microbial Community, Enzyme Activities and Organic Matter Fractions under Long-Term Straw Return in North-Central China. Agric. Ecosyst. Environ. 2016, 216, 82–88. [Google Scholar] [CrossRef]
- Bogusz, P.; Rusek, P.; Brodowska, M.S. Suspension Fertilizers: How to Reconcile Sustainable Fertilization and Environmental Protection. Agriculture 2021, 11, 1008. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, J.; Sun, Z.; Ji, C.; Huang, M.; Zhang, Y.; Xu, P.; Li, S.; Pawlett, M.; Zou, J. Soil N-Oxide Emissions Decrease from Intensive Greenhouse Vegetable Fields by Substituting Synthetic N Fertilizer with Organic and Bio-Organic Fertilizers. Geoderma 2021, 383, 114730. [Google Scholar] [CrossRef]
- Orrico Junior, M.A.P.; Centurion, R.S.; Orrico, A.C.A.; Sunada, N.S. Effects of Biofertilizer Rates on the Structural, Morphogenetic and Productive Characteristics of Piatã Grass. Rev. Bras. Zootec. 2012, 41, 6. [Google Scholar] [CrossRef]
- Orrico Junior, M.A.P.; da Silveira, A.P.; Orrico, A.C.A.; Schwingel, A.W.; Carnavali, P.L.; Alves, D.C. Use of Organic Compost for the Fertilization of Piatã and Paiaguás Grasses: Effects of Dose on Morphogenetic, Structural, Nutritional, and Productive Characteristics. Compost Sci. Util. 2018, 26, 201–208. [Google Scholar] [CrossRef]
- Hou, Y.; Velthof, G.L.; Lesschen, J.P.; Staritsky, I.G.; Oenema, O. Nutrient Recovery and Emissions of Ammonia, Nitrous Oxide, and Methane from Animal Manure in Europe: Effects of Manure Treatment Technologies. Environ. Sci. Technol. 2017, 51, 375–383. [Google Scholar] [CrossRef]
Doses | Urea | Compost | Digestate |
---|---|---|---|
kg N/ha † | 400 | 400 | 400 |
kg fertilizer/ha | 909 | 18,779 | 173,913 |
g fertilizer/pot ‡ | 18 | 370 | 3430 |
g fertilizer/pot/cut | 1.8 | 37 | 343 |
Parameters | Control | Urea | Compost | Digestate | † SEM | p Value |
---|---|---|---|---|---|---|
DMP ‡, t/ha | 7.7C | 16.9A | 11.7B | 13.1B | 1.48 | <0.01 |
N2O, kg/ha | 0.4C | 2.2B | 1.2C | 5.0A | 0.46 | <0.01 |
CH4, g/ha | 0.1A | −0.5B | −0.3AB | 0.1A | 0.15 | <0.01 |
EF, % | - | 0.5B | 0.2C | 1.3A | 0.06 | <0.01 |
N2O, kg CO2eq/ha | 104D | 596B | 322C | 1345A | 71.1 | <0.01 |
CH4, kg CO2eq/ha | 0.0028A | −0.0131B | −0.0089AB | 0.0023A | −0.00121 | <0.01 |
Total, kg CO2eq/ha | 104.4D | 596.4B | 322.0C | 1345.9A | 59.21 | <0.01 |
EI, kg CO2eq/t DM | 13D | 35B | 27C | 103A | 11.6 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, S.D.d.S.d.; Junior, M.A.P.O.; Tomazi, M.; Orrico, A.C.A.; Cunha, S.d.S.; Amaral, I.P.d.O. Feasibility of Organic Fertilization for Reducing Greenhouse Gas Emissions Compared to Mineral Fertilization. Grasses 2025, 4, 26. https://doi.org/10.3390/grasses4020026
Reis SDdSd, Junior MAPO, Tomazi M, Orrico ACA, Cunha SdS, Amaral IPdO. Feasibility of Organic Fertilization for Reducing Greenhouse Gas Emissions Compared to Mineral Fertilization. Grasses. 2025; 4(2):26. https://doi.org/10.3390/grasses4020026
Chicago/Turabian StyleReis, Sirio Douglas da Silva dos, Marco Antonio Previdelli Orrico Junior, Michely Tomazi, Ana Carolina Amorim Orrico, Stéfane de Sousa Cunha, and Isabele Paola de Oliveira Amaral. 2025. "Feasibility of Organic Fertilization for Reducing Greenhouse Gas Emissions Compared to Mineral Fertilization" Grasses 4, no. 2: 26. https://doi.org/10.3390/grasses4020026
APA StyleReis, S. D. d. S. d., Junior, M. A. P. O., Tomazi, M., Orrico, A. C. A., Cunha, S. d. S., & Amaral, I. P. d. O. (2025). Feasibility of Organic Fertilization for Reducing Greenhouse Gas Emissions Compared to Mineral Fertilization. Grasses, 4(2), 26. https://doi.org/10.3390/grasses4020026