Performance of Mombaça Grass Under Irrigation and Doses of Biodegradable Hydroretentive Polymer
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Water Retention by the Hydroretentive Polymer
2.3. Mombaça Grass Performance
2.4. Meteorological Elements
2.5. Experimental Design
2.6. Experiment Management
2.7. Experimental Evaluations
- -
- Number of emerging leaves (NEmL): Obtained immediately before harvest, considering as emerging or expanding leaves those that did not show an exposed ligule.
- -
- Number of expanded leaves (NEpL): Obtained immediately before harvest, considering the number of fully expanded leaves of each tiller, i.e., with an exposed ligule.
- -
- Number of live leaves (NLL): Obtained immediately before harvest, summing the number of expanding and expanded leaves of the tiller.
- -
- Leaf appearance rate (LAR, leaves tiller−1 d−1): Obtained by subtracting the number of new leaves per tiller from the initial leaves, divided by the number of days involved.
- -
- Leaf elongation rate (LER, cm tiller−1 d−1): Obtained by subtracting the initial and final leaf blade lengths, dividing the difference by the number of days in the evaluation, and multiplying the result by the number of tillers considered.
- -
- Stem elongation rate (SER, cm tiller−1 d−1): Obtained by subtracting the initial and final stem lengths, dividing the difference by the number of days in the evaluation, and multiplying the result by the number of tillers considered.
- -
- Leaf senescence rate (LSR, cm tiller−1 d−1): Calculated by dividing the total final length of senescent tissue by the number of days involved.
2.8. Statistical Analysis
3. Results and Discussion
3.1. Preliminary Experiment: Water Retention and Polymer Degradability
3.2. Standardization Cycle
3.3. Water Consumption
3.4. Morphogenetic Characteristics
3.5. Agronomic Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADDs | Accumulated degree-days |
Al | Aluminum |
Al3+ | Aluminum ion |
ANAVA | Analysis of variance |
Aw | Tropical Savanna climate with dry-winter |
Bd | Soil bulk density |
C | Cycle |
C. Org | Organic carbon |
Ca2+ | Calcium ion |
Cd | Cadmium |
CO(NH2)2 | Urea |
Cr | Chromium |
CRRH | Center for Water Resources Reference |
Cu | Copper |
CV | Coefficient of variation |
D | Drained water |
ETc | Crop evapotranspiration |
FC | Field capacity |
Fe | Iron |
H | Hydrogen |
HP | Hydroretentive polymer |
K | Potassium |
K0 | Saturated hydraulic conductivity |
K2O | Potassium oxide |
KCl | Potassium chloride |
LAR | Leaf appearance rate |
LDPE | Low-density polyethylene |
LER | Leaf elongation rate |
LSR | Leaf senescence rate |
m | Aluminum saturation index |
MAP | Monoammonium phosphate |
Mg2+ | Magnesium ion |
Mn | Manganese |
Mpot i | Pot mass on day i |
Na | Sodium |
NEmL | Number of emerging leaves |
NEpL | Number of expanded leaves |
NH4H2PO4 | Monoammonium phosphate |
Ni | Nickel |
NLL | Number of live leaves |
N–total | Total nitrogen |
OM | Organic matter |
P | Phosphorus |
Pb | Lead |
PET | Polyethylene terephthalate |
pH | Potential of hydrogen |
P–rem | Remaining phosphorus |
PWP | Permanent wilting point |
R2 | Coefficient of determination |
RBD | Randomized block design |
S | Sulfur |
SB | Sum of exchangeable bases |
SDM | Shoot dry mass |
SER | Stem elongation rate |
SFM | Shoot fresh mass |
SSI | Sodium saturation index |
T | Cation exchange capacity |
t | Effective cation exchange capacity |
UFV | Federal University of Viçosa |
V | Base saturation index |
VW | Total volume of water applied |
WC | Water consumption |
WP | Water productivity |
Zn | Zinc |
References
- Ahmad, M.M.; Yaseen, M.; Saqib, S.E. Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges. Int. J. Disaster Risk Reduct. 2022, 80, 103210. [Google Scholar] [CrossRef]
- Bogale, G.A.; Erena, Z.B. Drought vulnerability and impacts of climate change on livestock production and productivity in different agroecological zones of Ethiopia. J. Appl. Anim. Res. 2022, 50, 471–489. [Google Scholar] [CrossRef]
- Viciedo, D.O.; Prado, R.M.; Martínez, C.A.; Habermann, E.; Piccolo, M.C. Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production. Sci. Total Environ. 2019, 681, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Nieves, C.C.; Baldivieso, H.L.P.; Wu, X.B.; Cooper, S.M. Environmental and landscape influences on the spatial and temporal distribution of a cattle herd in a South Texas rangeland. Ecol. Process. 2020, 9, 39. [Google Scholar] [CrossRef]
- Alencar, C.A.B.; Oliveira, R.A.; Cóser, A.C.; Martins, C.E.; Cunha, F.F.; Figueiredo, J.L.A. Production of pasture grasses cultivated under grazing in different irrigation depths and seasons. Rev. Bras. Eng. Agric. Ambient. 2009, 13, 680–686. [Google Scholar] [CrossRef][Green Version]
- Galvez, M.D.H.; Matías, L.; Cambrollé, J.; Gutiérrez, E.; Ramos, I.M.P. Impact of climate change on pasture quality in Mediterranean dehesas subjected to different grazing histories. Plant Soil 2023, 488, 465–483. [Google Scholar] [CrossRef]
- Melo, M.C.; Guimarães, L.C.; Silva, P.L.; Camargo, D.D.; Drumond, L.C.D. Growth and productivity of brachiaria fertilized and irrigated by subsuperficial dripping. Irriga 2020, 25, 112–130. [Google Scholar] [CrossRef]
- Fu, B.; Li, Z.; Gao, X.; Wu, L.; Lan, J.; Peng, W. Effects of subsurface drip irrigation on alfafa (Medicago sativa L.) growth and soil microbial community structures in arid and semi-arid areas of northern China. Appl. Soil Ecol. 2021, 159, 103859. [Google Scholar] [CrossRef]
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 vision of subsurface drip irrigation in the U.S. Trans. ASABE 2021, 66, 1319–1343. [Google Scholar] [CrossRef]
- Rocha, M.O.; Siqueira, A.G.; Silva, P.A.; Alencar, C.A.B.; Cunha, F.F. Performance of ‘Sabiá’ grass irrigated with drippers installed in the subsurface. Irrig. Drain. 2025, 74, 3081. [Google Scholar] [CrossRef]
- Gonçalves, I.Z.; Barbosa, E.A.A.; Santos, L.N.S.; Nazário, A.A.; Feitosa, D.R.C.; Tuta, N.F.; Matsura, E.E. Water relations and productivity of sugarcane irrigated with domestic wastewater by subsurface drip. Agric. Water Manag. 2017, 185, 105–115. [Google Scholar] [CrossRef]
- Chang, L.; Xu, L.; Liu, Y.; Qiu, D. Superabsorbent polymers used for agricultural water retention. Polym. Test. 2021, 94, 107021. [Google Scholar] [CrossRef]
- Rodrigues, P.E.C.; Swarowsky, A.; Brum, M.L.; Martins, J.D.; Backes, F.A.L.; Mezzomo, W.; Menegaes, J.F. Use of hydrogel on the chemical and physical characteristics of a substrate for the cultivation of ornamental plants. Ens. Ciênc. 2023, 27, 490–495. [Google Scholar] [CrossRef]
- Araújo, E.D.; Assis, M.O.; Guimarães, C.M.; Araújo, E.F.; Borges, A.C.; Cunha, F.F. Superabsorbent polymers and sanitary sewage change water availability during the cowpea emergence phase. Nativa 2024, 12, 37–48. [Google Scholar] [CrossRef]
- UPL. Hidratação Dinâmica, UPDT®. UPL: Campinas, São Paulo, Brazil. 2025. Available online: http://www.uplcorp.com/br/defensivos-agricolas/condicionador-do-solo/updt (accessed on 30 July 2025).
- Choi, H.; Park, J.; Lee, J. Sustainable bio-based superabsorbent polymer: Poly (itaconic acid) with superior swelling properties. ACS Appl. Polym. Mater. 2022, 4, 4098–4108. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Y.; Xu, K.; Lu, C.; Wang, P. A biodegradable starch hydrogel synthesized via thiol-ene click chemistry. Polym. Degrad. Stab. 2017, 137, 75–82. [Google Scholar] [CrossRef]
- Botaro, V.R.; Rodrigues, J.S. Hidrogéis Derivados de Polímeros Naturais; Editora UFSCar: Sorocaba, Brazil, 2020; 235p. [Google Scholar]
- Hazra, D.K.; Purkait, A. Role of pesticide formulations for sustainable crop protection and environment management: A review. J. Pharmacogn. Phytochem. 2019, 8, 686–693. [Google Scholar]
- Qamruzzaman, M.; Ahmed, F.; Mondal, M.I.H. An overview on starch-based sustainable hydrogels: Potential applications and aspects. J. Environ. Polym. Degrad. 2022, 30, 19–50. [Google Scholar] [CrossRef]
- Han, J.; Hu, Y.; Xue, T.; Wu, F.; Duan, H.; Yang, J.; Xue, L.; Liang, H.; Liu, X.; Yang, Q.; et al. Superabsorbent polymer reduces β-ODAP content in grass pea by improving soil water status and plant drought tolerance. J. Soil Sci. Plant. Nutr. 2024, 24, 5724–5739. [Google Scholar] [CrossRef]
- Saha, A.; Sekharan, S.; Manna, U. Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review. Soil Till. Res. 2020, 204, 104736. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Meteorologia (INMET). Normais Climatológicas do Brasil; INMET: Brasília, Brazil, 2024. Available online: https://portal.inmet.gov.br/normais (accessed on 17 April 2024).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; 356p. [Google Scholar]
- USDA—Soil Survey Staff. Soil Taxonomy: A basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA: Washington, DC, USA, 1999; 436p. [Google Scholar]
- Ribeiro, A.C.; Guimarães, P.T.G.; Alvarez, V.H. Recomendações Para o uso de Corretivos e Fertilizantes em Minas Gerais, 5th ed.; Editora SBCS: Viçosa, Brazil, 1999; 359p. [Google Scholar]
- UPL do Brasil Indústria e Comércio de Insumos Agropecuários S.A. (UPL). Hidratação Dinâmica—Condicionador de Solo Classe A.; UPL: Campinas, Brazil, 2023; Available online: http://www.upl-ltd.com/br (accessed on 10 December 2024).
- Gomide, C.A.M.; Gomide, J.A. Morphogenesis of Panicum maximum Jacq. cultivars. Rev. Bras. Zootec. 2000, 29, 341–348. [Google Scholar] [CrossRef]
- Baungratz, A.R.; Borba, L.P.; Menezes, B.M.; Porsch, J.L.M.; Venturini, T.; Borquis, R.R.A.; Mesquita, E.E.; Valente, É.E.L.; Macedo, V.P. Nutrient characterization and mineral composition of aruana in a silvopastoral system with nitrogen fertilization. Grasses 2024, 3, 11–18. [Google Scholar] [CrossRef]
- Silva, E.A.; Silva, W.J.; Barreto, A.C.; Oliveira Junior, A.B.; Paes, J.M.V.; Ruas, J.R.M.; Queiroz, D.S. Dry matter yield, thermal sum and base temperatures in irrigated tropical forage plants. Rev. Bras. Zootec. 2012, 41, 574–582. [Google Scholar] [CrossRef]
- Jesus, F.L.F.; Sanches, A.C.; Souza, D.P.; Mendonça, F.C.; Gomes, E.P.; Santos, R.C.; Santos, J.E.O.; Silva, J.L.B. Seasonality of biomass production of irrigated Mombaça ‘Guinea grass’. Acta Agric. Scand. 2021, 71, 156–164. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing, 4.4.2 version; R Development Core Team: Vienna, Austria, 2023. Available online: http://www.r-project.org/ (accessed on 26 November 2024).
- Tyagi, P.; Agate, S.; Velev, O.D.; Lucia, L.; Pal, L. A critical review of the performance and soil biodegradability profiles of biobased natural and chemically synthesized polymers in industrial applications. Environ. Sci. Technol. 2022, 56, 2071–2095. [Google Scholar] [CrossRef]
- Ali, K.; Asad, Z.; Agbna, G.H.D.; Saud, A.; Khan, A.; Zaidi, S.J. Progress and innovations in hydrogels for sustainable agriculture. Agronomy 2024, 14, 2815. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO: Rome, Italy, 1998; 300p. [Google Scholar]
- Ordoñes, S.R.; Rueda, J.A.; Cisneros, C.M.A.; Hernández, M.A.S.; Bautista, J.H. Yield and quality of Guinea grass cv. Mombasa according to plant spacing and season of the year. Agro Prod. 2022, 15, 195–203. [Google Scholar] [CrossRef]
- Franco, T.M.; Plazas, G.M.R.; Silva, V.L.; Oliveira, R.A.; Lima, M.J.A.; Cunha, F.F.; Pereira, O.G.; Cecon, P.R.; Alencar, C.A.B. Using mining waste from the Fundão Dam in Mariana for Mombasa grass production. Rev. Bras. Eng. Agric. Ambient. 2024, 28, e275196. [Google Scholar] [CrossRef]
- Reis, M.C.G.; Borges, A.C.; Ferreira, F.S.; Cunha, F.F.; Silva, R.R. A preliminary experimental study simulating evapotranspiration process in TEvap tanks cultivated with different forages. Environ. Technol. 2024, 45, 3129–3140. [Google Scholar] [CrossRef]
- Lage Filho, N.M.; Lopes, A.R.; Rêgo, A.C.; Domingues, F.N.; Faturi, C.; Silva, T.C.; Cândido, E.P.; Silva, W.L. Effects of stubble height and season of the year on morphogenetic, structural and quantitative traits of Tanzania grass. Trop. Grassl. Forrajes Trop. 2021, 9, 256–267. [Google Scholar] [CrossRef]
- Rouet, S.; Barillot, R.; Leclercq, D.; Bernicot, M.H.; Combes, D.; Gutiérrez, A.E.; Durand, J.L. Interactions between environment and genetic diversity in perennial grass phenology: A review of processes at plant scale and modeling. Front. Plant Sci. 2021, 12, 672156. [Google Scholar] [CrossRef] [PubMed]
- Marín, J.M.C.; Jiménez, E.O.; Quiroz, J.F.E.; Huerta, H.V.; Estrada, J.A.S.E.; Medina, A.A. Analysis of the growth of Chetumal grass established in a tropical climate. Agro Prod. 2023, 16, 147–153. [Google Scholar] [CrossRef]
- Baird, A.S.; Taylor, S.H.; Kok, J.P.; Vuong, C.; Zhang, Y.; Watcharamongkol, T.; Scoffoni, C.; Edwards, E.J.; Christin, P.A.; Osborne, C.P.; et al. Developmental and biophysical determinants of grass leaf size worldwide. Nature 2021, 592, 242–247. [Google Scholar] [CrossRef]
- Li, X.; Song, X.; Zhao, J.; Lu, H.; Qian, C.; Zhao, X. Shifts and plasticity of plant leaf mass per area and leaf size among slope aspects in a subalpine meadow. Ecol. Evol. 2021, 11, 14042–14055. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gong, Z.; Ji, L.; Ma, J. Estimating daily minimum grass temperature to quantify frost damage to winter wheat during stem elongation in the central area of Huang-Huai plain in China. Environ. Sci. Pollut. Res. 2023, 30, 61072–61088. [Google Scholar] [CrossRef]
- Konno, T.; Homma, K. Impact assessment of main stem elongation and wind speed on lodging of soybean cultivar ‘Miyagishirome’. Plant Prod. Sci. 2024, 27, 185–196. [Google Scholar] [CrossRef]
- Costa, A.B.G.; Difante, G.S.; Campelo, B.A.M.; Gurgel, A.L.C.; Costa, C.M.; Theodoro, G.F.; Silva, Á.T.A.; Emerenciano Neto, J.V.; Dias, A.M.; Fernandes, P.B. Morphogenetic, structural and production traits of marandu grass under nitrogen rates in Neo soil. Arq. Bras. Med. Vet. Zootec. 2021, 73, 658–664. [Google Scholar] [CrossRef]
- Zhang, K.; Xie, H.; Wen, J.; Zhang, J.; Wang, Z.Y.; Xu, B.; Chai, M. Leaf senescence in forage and turf grass: Progress and prospects. Grass Res. 2024, 4, e004. [Google Scholar] [CrossRef]
- Silva, J.T.; Costa, K.A.P.; Silva, V.C.S.; Souza, W.F.; Teixeira, D.A.A.; Severiano, E.C. Morphogenesis, structure, and dynamics of paiaguas palisadegrass tillering after intercropping with sorghum for the recovery of pasture in different forage systems. Biosci. J. 2020, 36, 1663–1675. [Google Scholar] [CrossRef]
- Githui, F.; Beverly, C.; Aiad, M.; Mccaskill, M.; Liu, K.; Harrison, M.T. Modelling waterlogging impacts on crop growth: A review of aeration stress definition in crop models and sensitivity analysis of APSIM. Int. J. Plant Biol. 2022, 13, 180–200. [Google Scholar] [CrossRef]
- Martuscello, J.A.; Rios, J.F.; Ferreira, M.R.; Assis, J.A.; Braz, T.G.S.; Cunha, D.N.F.V. Production and morphogenesis of brs tamani grass under different nitrogen rates and defoliation intensities. Bol. Ind. Anim. 2019, 76, e1441. [Google Scholar] [CrossRef]
- Ostrand, M.S.; Desutter, T.M.; Daigh, A.L.M.; Limb, R.F.; Steele, D.D. Superabsorbent polymer characteristics, properties and applications. Agro Geosci. Environ. 2020, 3, e20074. [Google Scholar] [CrossRef]
- Oladosu, Y.; Rafii, M.Y.; Arolu, F.; Chukwu, S.C.; Salisu, M.A.; Fagbohun, I.K.; Muftaudeen, T.K.; Swaray, S.; Haliru, B.S. Superabsorbent polymerhydrogels for sustainable agriculture: A review. Horticulturae 2022, 8, 605. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979; 193p. [Google Scholar]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Cadenas, A.G. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2017, 162, 2–12. [Google Scholar] [CrossRef]
- Brunetti, H.B.; Cavalcanti, P.P.; Dias, C.T.S.; Pezzopane, J.R.M.; Santos, P.M. Climate risk and seasonal forage production of marandu palisadegrass in Brazil. An. Acad. Bras. Ciênc. 2020, 92, e20190046. [Google Scholar] [CrossRef]
- Barros, D.; Edvan, R.; Pessoa, J.P.; Lacerda, J.; Nascimento, R.; Camboim, L.F.; Bezerra, L.; Rakte, R.F.; Sousa, H.; Nascimento, A.M.; et al. Potential use of hydrogel based on Anacardium occidentale gum in the growth of forage grasses. Discov. Plants 2024, 1, 45. [Google Scholar] [CrossRef]
- Malik, S.; Chaudhary, K.; Malik, A.; Punia, H.; Sewhag, M.; Berkesia, N.; Nagora, M.; Kalia, S.; Malik, K.; Kumar, D.; et al. Superabsorbent polymers as a soil amendment for increasing agriculture production with reducing water losses under water stress condition. Polymers 2023, 15, 161. [Google Scholar] [CrossRef]
- Ying, C.; Li, C.; Li, L.; Zhou, C. Combined effects of polymer SH and ryegrass on the water-holding characteristics of loess. J. Arid Land 2024, 16, 1686–1700. [Google Scholar] [CrossRef]
Coarse | Fine sand | Silt | Clay | FC | PWP | Bd | K0 | Textural class | |||||||
---------------------------------- kg kg−1 ---------------------------------- | g dm−3 | cm h−1 | |||||||||||||
0.307 | 0.137 | 0.128 | 0.427 | 0.247 | 0.137 | 1.132 | 0.054 | Clay | |||||||
pH | pH | P | K+ | Na+ | Ca2+ | Mg2+ | Al3+ | H + Al | |||||||
H2O | KCl | ------------ mg dm−3 ------------ | ------------------ cmolc dm−3 ------------------ | ||||||||||||
6.30 | 5.69 | 117.3 | 46.0 | 6.60 | 5.68 | 0.55 | 0.00 | 1.90 | |||||||
SB | t | T | V | m | SSI | OM | N–total | P–rem | |||||||
---------- cmolc dm−3 ---------- | ---------------- % ---------------- | ------ dag kg−1 ------ | mg L−1 | ||||||||||||
6.38 | 6.38 | 8.28 | 77.1 | 0.00 | 0.35 | 2.96 | 0.115 | 37.0 | |||||||
S | B | Cu | Mn | Fe | Zn | Cr | Ni | Cd | Pb | ||||||
-------------------------------------------------------- mg dm−3 -------------------------------------------------------- | |||||||||||||||
1.90 | 0.26 | 2.54 | 40.5 | 54.1 | 12.93 | 0.00 | 0.78 | 0.42 | 1.26 |
Variable | Mean Square | CV (%) | HP (kg ha−1) | Cultivation Cycles | |||||
---|---|---|---|---|---|---|---|---|---|
Cycle | HP | C × HP | 1 | 2 | 3 | 4 | |||
NEmL | 1.845 × 100 ** | 5.002 × 10−2 ns | 2.563 × 10−1 * | 27.09 | 0 | 0.875 a | 1.250 a | 1.250 a | 1.125 a |
7.5 | 1.125 a | 1.500 a | 1.375 a | 0.500 b | |||||
15 | 1.125 b | 1.875 a | 1.125 b | 0.750 b | |||||
22.5 | 1.125 b | 1.750 a | 1.125 b | 0.750 b | |||||
30 | 1.250 ab | 1.625 a | 0.875 b | 1.250 ab | |||||
NEpL | 4.365 × 10−1 ** | 1.687 × 10−1 ** | 4.583 × 10−2 ** | 81.26 | 0 | 0.500 a | 0.000 b | 0.000 b | 0.000 b |
7.5 | 0.125 a | 0.000 a | 0.000 a | 0.125 a | |||||
15 | 0.375 a | 0.125 ab | 0.000 b | 0.125 ab | |||||
22.5 | 0.625 a | 0.125 b | 0.125 b | 0.375 ab | |||||
30 | 0.125 a | 0.000 a | 0.000 a | 0.125 a | |||||
NLL | 1.558 × 100 ** | 2.312 × 10−1 ns | 2.458 × 10−1 * | 24.64 | 0 | 1.375 a | 1.250 a | 1.250 a | 1.125 a |
7.5 | 1.250 a | 1.500 a | 1.375 a | 0.625 b | |||||
15 | 1.500 ab | 2.000 a | 1.125 bc | 0.875 c | |||||
22.5 | 1.750 ab | 1.875 a | 1.250 bc | 1.125 c | |||||
30 | 1.375 ab | 1.625 a | 0.875 b | 1.375 ab | |||||
SER (cm tiller−1 d−1) | 1.980 × 10−2 ** | 6.329 × 10−4 * | 9.521 × 10−4 ** | 37.11 | 0 | 0.104 a | 0.008 c | 0.036 b | 0.020 bc |
7.5 | 0.076 a | 0.013 b | 0.018 b | 0.013 b | |||||
15 | 0.089 a | 0.024 b | 0.000 b | 0.020 b | |||||
22.5 | 0.069 a | 0.037 b | 0.020 b | 0.020 b | |||||
30 | 0.081 a | 0.062 a | 0.008 b | 0.030 b | |||||
LAR (leaves tiller−1 d−1) | 6.070 × 10−3 ** | 6.102 × 10−4 * | 4.514 × 10−4 ** | 24.16 | 0 | 0.073 a | 0.040 b | 0.040 b | 0.050 ab |
7.5 | 0.073 a | 0.054 ab | 0.040 bc | 0.020 c | |||||
15 | 0.073 a | 0.054 ab | 0.040 b | 0.040 b | |||||
22.5 | 0.085 a | 0.049 bc | 0.036 c | 0.065 ab | |||||
30 | 0.089 a | 0.067 ab | 0.031 c | 0.060 b | |||||
LER (cm tiller−1 d−1) | 1.251 × 100 * | 1.916 × 10−1 ns | 8.122 × 10−1 ** | 15.42 | 0 | 2.906 ab | 2.193 b | 3.135 a | 2.809 ab |
7.5 | 2.889 a | 2.715 a | 3.080 a | 1.873 b | |||||
15 | 3.050 a | 2.661 a | 3.192 a | 2.680 a | |||||
22.5 | 2.756 a | 2.684 a | 3.119 a | 2.613 a | |||||
30 | 2.834 b | 2.092 b | 2.796 b | 3.903 a | |||||
LSR (cm tiller−1 d−1) | 3.936 × 100 ** | 6.137 × 10−1 ** | 3.163 × 10−1 ** | 23.12 | 0 | 1.513 a | 0.538 b | 1.567 a | 1.825 a |
7.5 | 1.538 a | 0.667 b | 1.227 ab | 1.249 ab | |||||
15 | 1.427 a | 0.470 b | 1.442 a | 1.143 a | |||||
22.5 | 1.364 ab | 0.894 b | 1.638 a | 1.339 ab | |||||
30 | 1.625 b | 0.709 c | 1.622 b | 2.520 a |
Variable | Mean Square | CV (%) | HP (kg ha−1) | Cultivation Cycles | |||||
---|---|---|---|---|---|---|---|---|---|
Cycle | HP | C × HP | 1 | 2 | 3 | 4 | |||
WC (L pot−1) | 3.940 × 101 ** | 1.462 × 10−1 ** | 1.995 × 10−2 ns | 6.32 | 0 | 4.420 d | 5.913 c | 6.491 b | 7.716 a |
7.5 | 4.260 d | 5.876 c | 6.395 b | 7.668 a | |||||
15 | 4.037 d | 5.705 c | 6.377 b | 7.608 a | |||||
22.5 | 4.169 d | 5.746 c | 6.364 b | 7.513 a | |||||
30 | 4.181 c | 5.802 b | 6.163 b | 7.483 a | |||||
SFM (g pot−1) | 1.018 × 103 ** | 2.611 × 101 * | 4.181 × 100 ns | 8.16 | 0 | 41.289 c | 47.772 b | 42.625 bc | 55.301 a |
7.5 | 39.130 c | 48.965 b | 43.681 bc | 55.562 a | |||||
15 | 39.192 c | 48.944 b | 44.589 bc | 57.383 a | |||||
22.5 | 37.118 c | 47.173 b | 43.520 b | 54.548 a | |||||
30 | 35.951 c | 44.767 b | 42.337 b | 54.059 a | |||||
SDM (g pot−1) | 8.307 × 101 ** | 3.209 × 100 ** | 3.426 × 10−1 ns | 6.48 | 0 | 8.358 c | 9.729 b | 10.336 b | 12.535 a |
7.5 | 7.594 c | 9.782 b | 10.860 b | 12.446 a | |||||
15 | 7.447 c | 9.427 b | 10.391 b | 12.653 a | |||||
22.5 | 7.354 c | 9.873 b | 10.358 b | 12.234 a | |||||
30 | 6.439 c | 8.565 b | 9.542 b | 11.942 a | |||||
WP (kg m−3) | 8.307 × 101 ** | 3.209 × 100 ** | 3.426 × 10−1 ns | 6.53 | 0 | 1.886 a | 1.642 b | 1.591 b | 1.625 b |
7.5 | 1.769 a | 1.668 a | 1.700 a | 1.624 a | |||||
15 | 1.842 a | 1.660 a | 1.630 a | 1.663 a | |||||
22.5 | 1.759 a | 1.723 a | 1.630 a | 1.629 a | |||||
30 | 1.524 a | 1.485 a | 1.548 a | 1.596 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miranda, A.G.S.d.; Silva, P.A.d.; Oliveira, J.T.d.; Cunha, F.F.d. Performance of Mombaça Grass Under Irrigation and Doses of Biodegradable Hydroretentive Polymer. Grasses 2025, 4, 32. https://doi.org/10.3390/grasses4030032
Miranda AGSd, Silva PAd, Oliveira JTd, Cunha FFd. Performance of Mombaça Grass Under Irrigation and Doses of Biodegradable Hydroretentive Polymer. Grasses. 2025; 4(3):32. https://doi.org/10.3390/grasses4030032
Chicago/Turabian StyleMiranda, Amilton Gabriel Siqueira de, Policarpo Aguiar da Silva, Job Teixeira de Oliveira, and Fernando França da Cunha. 2025. "Performance of Mombaça Grass Under Irrigation and Doses of Biodegradable Hydroretentive Polymer" Grasses 4, no. 3: 32. https://doi.org/10.3390/grasses4030032
APA StyleMiranda, A. G. S. d., Silva, P. A. d., Oliveira, J. T. d., & Cunha, F. F. d. (2025). Performance of Mombaça Grass Under Irrigation and Doses of Biodegradable Hydroretentive Polymer. Grasses, 4(3), 32. https://doi.org/10.3390/grasses4030032