Air Pollution Tolerance Index and Heavy Metals Accumulation of Tree Species for Sustainable Environmental Management in Megacity of Lahore
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Plants’ Leaves and Soil
2.2. Evaluation of Air Pollution Tolerance Index
2.3. Plants’ Leaves Samples Analysis
2.4. Soil Sample Analysis
2.5. Data Analysis
3. Results
3.1. Air Pollution Tolerance Index (APTI)
3.2. Heavy Metal Concentration in Soil and Plant Leaves
3.3. Correlation of APTI and Heavy Metals Uptake by Plants
3.4. Species Distribution of Trees along the Selected Roads
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miri, M.; Shendi, M.R.A.; Ghaffari, H.R.; Aval, H.E.; Ahmadi, E.; Taban, E.; Azari, A. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 2016, 163, 601–609. [Google Scholar] [CrossRef]
- Liptzin, D.; Ashton, P. Early-successional dynamics of single-aged mixed hardwood stands in a southern New England forest, USA. For. Ecol. Manag. 1999, 116, 141.e150. [Google Scholar] [CrossRef]
- Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K. Trees as bioindicator of heavy metal pollution in three European cities. Environ. Pollut. 2011, 159, 3560–3570. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, H.A.; Maher, B.A.; Karloukovski, V.; Lampronti, G.I.; Harrison, R.J. Biomagnetic characterization of air pollution particulates in Lahore, Pakistan. Geochem. Geophys. Geosyst. 2022, 23, e2021GC010293. [Google Scholar] [CrossRef]
- Parveen, R.; Ahmad, A. Public behavior in reducing urban air pollution: An application of the theory of planned behavior in Lahore. Environ. Sci. Pollut. Res. 2020, 27, 17815–17830. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.S.; Ali, S.M.; Subhani, M.A.; Anwar, M.N.; Nizami, A.S.; Ashraf, U.; Khokhar, M.F. An emerged challenge of air pollution and ever-increasing particulate matter in Pakistan; a critical review. J. Hazard. Mater. 2021, 402, 123943. [Google Scholar] [CrossRef] [PubMed]
- Wolf, K.L. Urban trees and traffic safety: Considering the US roadside policy and crash data. Arboricult. Urban For. 2006, 32, 170–179. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Leghari, S.K.; Akbar, A.; Qasim, S.; Ullah, S.; Asrar, M.; Rohail, H.; Ali, I. Estimating Anticipated Performance Index and Air Pollution Tolerance Index of Some Trees and Ornamental Plant Species for the Construction of Green Belts. Pol. J. Environ. Stud. 2019, 28, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Burden, D. The Durability of Concrete Containing High Levels of Fly Ash (No. PCA R&D Serial No. 2989). Master’s Thesis, Department of Civil Engineering, University of New Brunswick, Fredericton, NB, Canada, 2006. [Google Scholar]
- Nayak, D.; Patel, D.P.; Thakare, H.S.; Satashiya, K.; Shrivastava, P.K. Evaluation of air pollution tolerance index of trees. Res. Environ. Life Sci. 2015, 8, 7–10. [Google Scholar]
- Pathak, V.; Tripathi, B.D.; Mishra, V.K. Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban For. Urban Green 2011, 10, 61–66. [Google Scholar] [CrossRef]
- Das, S.; Prasad, P. Seasonal variation in air pollution tolerance indices and selection of plant species for industrial areas of Rourkela. Indian J. Environ. Prot. 2010, 30, 978–988. [Google Scholar]
- Liu, Y.; Ding, H. Variation in Air Pollution Tolerance Index of Plant near a Steel Factory; Implications for Landscape-plant Species Selection for Industrial Areas. WSEAS Trans. Environ. Dev. 2008, 4, 24–30. [Google Scholar]
- Lohe, R.N.; Tyagi, B.; Singh, V.; Kumar, P.T.; Khanna, D.R.; Bhutiani, A. Comparative Study for Air Pollution Tolerance Index of Some Terrestrial Plant Species. Glob. J. Environ. Sci. Manag. 2015, 1, 315. [Google Scholar]
- Manjunath, B.T.; Reddy, J. Comparative Evaluation of Air Pollution Tolerance of Plants from Polluted and Non-polluted Regions of Bengaluru. J. Appl. Biol. Biotechnol. 2019, 7, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Molnar, V.É.; Simon, E.; Tothmeresz, B.; Ninsawat, S.; Szabó, S. Air Pollution Induced Vegetation stress–The Air Pollution Tolerance Index as a Quick Tool for City Health Evaluation. Ecol. Indic. 2020, 113, 106234. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Oyedeji, S.; Adeniran, I.F.; Olorunmaiye, K.S.; Atoba, P.O. Thuja occidentalis and Duranta repens as indicators of urban air pollution in industrialized areas of southwest Nigeria. Agric. Conspec. Sci. 2018, 84, 193–202. [Google Scholar]
- Rai, P.K. Particulate matter tolerance of plants (APTI and API) in a biodiversity hotspot located in a tropical region: Implications for eco-control. Part. Sci. Technol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Erum FKazi, H.; Kulkarni, S. APTI (air pollution tolerance index) of trees in lohagaon area in Pune city in different seasons. EPRA Int. J. Econ. Bus. Rev. 2020, 8, 44–49. [Google Scholar] [CrossRef]
- Bux, R.K.; Haider, S.I.; Batool, M.; Solangi, A.R.; Shah, Z.; Karimi-Maleh, H.; Sen, F. Assessment of heavy metal contamination and its sources in urban soils of district Hyderabad, Pakistan using GIS and multivariate analysis. Int. J. Environ. Sci. Technol. 2021, 19, 7901–7913. [Google Scholar] [CrossRef]
- Sevik, H.; Ahmaida, E.A.; Cetin, M. Change of the air quality in the urban open and green spaces: Kastamonu sample. Ecol. Plan. Des. 2017, 31, 409–422. [Google Scholar]
- Liang, J.; Fang, H.L.; Zhang, T.L.; Wang, X.X.; Liu, Y.D. Heavy metal in leaves of twelve plant species from seven different areas in Shanghai, China. Urban For. Urban Green. 2017, 27, 390–398. [Google Scholar] [CrossRef]
- Brunner, I.; Luster, J.; Günthardt-Goerg, M.S.; Frey, B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ. Pollut. 2008, 152, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Alahabadi, A.; Ehrampoush, M.H.; Miri, M.; Aval, H.E.; Yousefzadeh, S.; Ghaffari, H.R.; Hosseini-Bandegharaei, A. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 2017, 172, 459–467. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, T.; Kumari, M. Air pollution tolerance, metal accumulation and dust capturing capacity of common tropical trees in commercial and industrial sites. Sci. Total Environ. 2020, 722, 137622. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.I.; Ugulu, I.; Zafar, A.; Mehmood, N.; Bashir, H.; Ahmad, K.; Sana, M. Biomonitoring of heavy metals accumulation in wild plants growing at Soon valley, Khushab, Pakistan. Pak. J. Bot. 2020, 53, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Climatological Normals of Lahore, Hong Kong Observatory. Available online: https://www.hko.gov.hk/en/wxinfo/pastwx/d1normal2012.htm (accessed on 6 May 2010).
- Punjab Portal. Government of Punjab. Archived from the Original on 25 June 2014. Available online: https://punjab.gov.pk (accessed on 7 July 2014).
- Irshad, M.A.; Nawaz, R.; Ahmad, S.; Arshad, M.; Rizwan, M.; Ahmad, N.; Ahmed, T. Evaluation of anticipated performance index of tree species for air pollution mitigation in Islamabad, Pakistan. J. Environ. Sci. Manag. 2020, 23, 50–59. [Google Scholar] [CrossRef]
- Achakzai, K.; Khalid, S.; Adrees, M.; Bibi, A.; Ali, S.; Nawaz, R.; Rizwan, R. Air Pollution Tolerance Index of Plants around Brick Kilns in Rawalpindi, Pakistan. J. Environ. Manag. 2017, 190, 252–258. [Google Scholar] [CrossRef]
- Ahmad, I.; Abdullah, B.; Dole, J.M.; Shahid, M.; Ziaf, K. Evaluation of the Air Pollution Tolerance Index of Ornamental Growing in an Industrial Area compared to a Less Polluted Area. Hortic. Environ. Biotechnol. 2019, 60, 595–601. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, D.; Wei, L.; Zhang, X.; Song, B. Bioaccumulation of heavy metals in plant leaves from Yan׳an city of the Loess Plateau, China. Ecotoxicol. Environ. Saf. 2014, 110, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.G.; Xu, Y.N.; Zhang, J.H.; Hu, S.H. Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China. Trans. Nonferrous Met. Soc. China 2010, 20, 688–694. [Google Scholar] [CrossRef]
- FAO/SIDA. Part 9. Analysis of metals and organochlorine in fish. In Manual of Methods in Aquatic Environment Research; Food & Agriculture Org: Rome, Italy, 1983. [Google Scholar]
- World Health Organization (WHO). Permissible Limits of Heavy Metals in Soil and Plants; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Bharti, S.K.; Trivedi, A.; Kumar, N. Air pollution tolerance index of plants growing near an industrial site. Urban Clim. 2018, 24, 820–829. [Google Scholar] [CrossRef]
- Aghajanzadeh, T.; Hawkesford, M.J.; de Kok, L.J. Atmospheric H2S and SO2 as Sulfur Sources for Brassica juncea and Brassica rapa: Regulation of Sulfur Uptake and Assimilation. Environ. Exp. Bot. 2016, 124, 1–10. [Google Scholar] [CrossRef]
- Nadgorska-Socha, A.; Kandziora-Ciupa, M.; Trzęsicki, M.; Barczyk, G. Air Pollution Tolerance Index and Heavy Metal Bioaccumulation in Selected Plant Species from Urban Biotopes. Chemosphere 2017, 183, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Zhang, J.; Luo, T.; Liu, J.; Rizwan, M.; Fahad, S.; Hu, L. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind. Crops Prod. 2019, 140, 111597. [Google Scholar] [CrossRef]
- Qi, J.; Song, C.P.; Wang, B.; Zhou, J.; Kangasjärvi, J.; Zhu, J.K.; Gong, Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J. Integr. Plant Biol. 2018, 60, 805–826. [Google Scholar]
- Shafiq, M.; Iqbal, M. Effect of Auto Exhaust Emission on Germination and Seedling Growth of An Important Arid Tree Cassia siamea Lamk. Emirates. J. Food Agric. 2012, 24, 234–242. [Google Scholar]
- WHO. Geneva, World Health Organization (Environmental Health Criteria, No. 134); World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Rogowska, W. Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals 2021, 11, 1290. [Google Scholar] [CrossRef]
- Szwalec, A.; Mundała, P.; Kędzior, R.; Pawlik, J. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environ. Monit. Assess. 2020, 192, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gucel, S.; Gherghel, D.; Bona, E. Determination of Cadmium in Roadside Soil and Plants in Erbil, Iraq. J. Adv. Lab. Res. Biol. 2020, 11, 24–27. [Google Scholar]
- Rout, G.R.; Das, P. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 2003, 23, 3–11. [Google Scholar] [CrossRef]
- Noman, A.; Ali, Q.; Maqsood, J.; Iqbal, N.; Javed, M.T.; Rasool, N.; Naseem, J. Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. Chemosphere 2018, 195, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, I.; Watanabe, I.; Kuno, K. As, Sb and Hg distribution and pollution sources in the roadside soil and dust around Kamikochi, Chubu Sangaku National Park, Japan. Geochem. J. 2004, 38, 473–484. [Google Scholar] [CrossRef]
- Suzuki, K.; Yabuki, T.; Ono, Y. Roadside Rhododendron pulchrum leaves as bioindicators of heavy metal pollution in traffic areas of Okayama, Japan. Environ. Monit Assess 2009, 149, 133–141. [Google Scholar] [CrossRef]
- Yola, M.L.; Eren, T.; İlkimen, H.; Atar, N.; Yenikaya, C. A sensitive voltammetric sensor for determination of Cd(II) in human plasma. J. Mol. Liq. 2014, 197, 58–64. [Google Scholar] [CrossRef]
- Göde, C.; Yola, M.L.; Yilmaz, A.; Atar, N.; Wang, S. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J. Colloid Interface Sci. 2017, 508, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Noman, A.; Aqeel, M.; Masood, A.; Tufail, A. Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides. Int. J. Environ. Sci. Technol. 2019, 16, 2091–2100. [Google Scholar] [CrossRef]
- Bityukova, V.R.; Mozgunov, N.A. Spatial features transformation of emission from motor vehicles in Moscow. Geography, Environment. Sustainability 2019, 12, 57–73. [Google Scholar]
- Abilov, A.Z.; Anzorova, M.A.; Bityukova, V.R.; Makhrova, A.G.; Khojikov, A.A.; Yaskevich, V.V. Vladimir and Yaskevich. Planning Structure As A Road Traffic Pollution Differentiation Factor: A Case Study Of Nur-Sultan. Geography, Environment. Sustainability 2021, 14, 6–13. [Google Scholar]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Hu, Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: A review. Environ. Pollut. 2010, 158, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.A.; Shakoor, M.B.; Ali, S.; Nawaz, R.; Rizwan, M. Synthesis and application of titanium dioxide nanoparticles for removal of cadmium from wastewater: Kinetic and equilibrium study. Water Air Soil Pollut. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Abbas, T.; Adrees, M.; Zia-ur-Rehman, M.; Ibrahim, M.; Nawaz, R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Environ. Manag. 2018, 206, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, M.H.; Gurkan, R.; Ozkan, A.; Akcay, M. Determination of manganese and lead in roadside soil samples by FAAS with ultrasound assisted leaching. J. Anal. Chem. 2005, 60, 469–474. [Google Scholar] [CrossRef]
- Salinitro, M. Plants Dealing with Heavy Metals: Bioindication Potential, Physiological Responses and Stress Assessment Techniques; Università di Bologna: Bologna, Italy, 2020. [Google Scholar]
- Amini, H.; Hoodaji, M.; Najafi, P.; Kar, S. Evaluation of some tree species for heavy metal biomonitoring and pollution tolerance index in urban zone in Isfahan. In Proceedings of the 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia, 14–18 February 2011; pp. 53–56. [Google Scholar]
- Karmakar, D.; Padhy, P.K. Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for greenbelt development in an urban industrial area. Chemosphere 2019, 237, 124522. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Singh, G. Air pollution tolerance, anticipated performance, and metal accumulation capacity of common plant species for green belt development. Environ. Sci. Pollut. Res. 2021, 29, 25507–25518. [Google Scholar] [CrossRef] [PubMed]
Sr. No | Common Name | Botanical Name | Family | Genus |
---|---|---|---|---|
1 | Sheesham | Dalbergia sissoo | Fabaceae | Dalbergia |
2 | Amaltas | Cassia fistula | Fabaceae | Cassia |
3 | Ashoka | Polyalthia longifolia | Annonaceae | Polyalthia |
4 | Safaida | Eucalyptus | Myrtaceae | Eucalyptus |
5 | Mango | Magnefera indica | Anacardiaceae | Magnefera |
6 | Dharaik | Melia azedarach | Meliaceae | Melia |
7 | Jaman | Syzygium cumini | Myrtaceae | Syzygium |
8 | Pepal | Ficus religiosa | Moraceae | Ficus |
9 | Kachnar | Bauhinia variegate | Fabaceae | Bauhinia |
10 | Devil tree | Alstonia schlorais | Apocynaceae | Alestonia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, R.; Aslam, M.; Nasim, I.; Irshad, M.A.; Ahmad, S.; Latif, M.; Hussain, F. Air Pollution Tolerance Index and Heavy Metals Accumulation of Tree Species for Sustainable Environmental Management in Megacity of Lahore. Air 2023, 1, 55-68. https://doi.org/10.3390/air1010004
Nawaz R, Aslam M, Nasim I, Irshad MA, Ahmad S, Latif M, Hussain F. Air Pollution Tolerance Index and Heavy Metals Accumulation of Tree Species for Sustainable Environmental Management in Megacity of Lahore. Air. 2023; 1(1):55-68. https://doi.org/10.3390/air1010004
Chicago/Turabian StyleNawaz, Rab, Muhammad Aslam, Iqra Nasim, Muhammad Atif Irshad, Sajjad Ahmad, Maria Latif, and Fida Hussain. 2023. "Air Pollution Tolerance Index and Heavy Metals Accumulation of Tree Species for Sustainable Environmental Management in Megacity of Lahore" Air 1, no. 1: 55-68. https://doi.org/10.3390/air1010004
APA StyleNawaz, R., Aslam, M., Nasim, I., Irshad, M. A., Ahmad, S., Latif, M., & Hussain, F. (2023). Air Pollution Tolerance Index and Heavy Metals Accumulation of Tree Species for Sustainable Environmental Management in Megacity of Lahore. Air, 1(1), 55-68. https://doi.org/10.3390/air1010004