Laminated Information Encryption with Printer Using Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of the LIBS Spectra of Inks and Original Paper
3.2. Sandwich Model Decryption
- The decrypted image obtained from the spatial distribution of the Cu element at 324.75 nm is shown in Figure 5. This spatially resolved decrypted image can be scanned through WeChat recognition on mobile applications, which is a URL composed of strings. However, the image still contains some noise. The intensity of the feature peaks is not uniform. The noise is particularly high at the edges, with some areas showing slightly higher levels. This will result in a decrypted image with poor contrast that cannot be recognized.
- The decrypted image using the spectral line 327.40 nm is shown in Figure 6. It can be seen that compared with the result of the decrypted image using the spectral line 324.75 nm, there is less noise, the intensity of the characteristic spectral peaks is more uniform and the peaks are much stronger, and the contrast is higher and better.
- The decrypted image using the spectral line 670.79 nm of Li element is shown in Figure 7. The spectral line intensity of Li is stronger than that of Cu. Although the overall recognizability is good, the baseline intensity remains high, and there is potential to further enhance recognizability by baseline subtraction.
3.3. Decrypted Image Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Q.Y.; Zhang, F.R.; Du, Y.; Zhang, X.X.; Lu, J.Y.; Yao, Q.F.; Huang, W.T.; Ding, X.Z.; Xia, L.Q. Graphene-based steganographically aptasensing system for information computing, encryption and hiding, fluorescence sensing and in vivo imaging of fish pathogens. ACS Appl. Mater. Interfaces 2019, 11, 8904–8914. [Google Scholar] [CrossRef] [PubMed]
- Manasrah, A.M.; Al-Din, B.N. Mapping private keys into one public key using binary matrices and masonic cipher: Caesar cipher as a case study. Secur. Commun. Netw. 2016, 9, 1450–1461. [Google Scholar] [CrossRef]
- Wu, K.N.; Hu, J.S.; Wu, X. Optical encryption for information security. Laser Optoelectron. Prog. 2008, 45, 30–38. [Google Scholar]
- Clemente, P.; Durán, V.; Torres-Company, V.; Tajahuerce, E.; Lancis, J. Optical encryption based on computational ghost imaging. Opt. Lett. 2010, 35, 2391–2393. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B. Optical image encryption based on interference. Opt. Lett. 2008, 33, 2443–2445. [Google Scholar] [CrossRef]
- Javidi, B.; Nomura, T. Securing information by use of digital holography. Opt. Lett. 2000, 25, 28–30. [Google Scholar] [CrossRef]
- Shi, Y.S.; Li, T.; Wang, Y.L.; Gao, Q.K.; Zhang, S.G.; Li, H.F. Optical image encryption via ptychography. Opt. Lett. 2013, 38, 1425–1427. [Google Scholar] [CrossRef]
- Bu, Z.Q.; Yao, Q.F.; Liu, Q.Y.; Quan, M.X.; Lu, J.Y.; Huang, W.T. Peptide-based sensing, logic computing, and information security on the antimonene platform. ACS Appl. Mater. Interfaces 2022, 14, 8311–8321. [Google Scholar] [CrossRef]
- Clelland, C.T.; Risca, V.; Bancroft, C. Hiding messages in DNA microdots. Nature 1999, 399, 533–534. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Samorì, P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun. 2016, 7, 11118. [Google Scholar] [CrossRef]
- Liang, L.; Sun, H.; Wu, Y.; Liu, G.; Li, L.; Chen, X.; Zhang, Y. Surface-enhanced Raman scattering-encoded gold nanostars for multiplexed steganographic anticounterfeiting labels. ACS Appl. Nano Mater. 2024, 7, 21791–21799. [Google Scholar] [CrossRef]
- Winefordner, J.D.; Gornushkin, I.B.; Correll, T.; Gibb, E.; Smith, B.W.; Omenetto, N. Comparing several atomic spectrometric methods to the super stars: Special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. J. Anal. At. Spectrom. 2004, 19, 1061–1083. [Google Scholar] [CrossRef]
- Guo, L.B.; Li, X.Y.; Xiong, W.; Zeng, X.Y.; Lu, Y.F. Recent technological progress in Asia from the First Asian Symposium on Laser-induced Breakdown Spectroscopy. Front. Phys. 2016, 11, 115208. [Google Scholar] [CrossRef]
- Yao, L.X.; Li, J.W.; Liu, Y.; Shen, L.; Wang, C. Traceability of cold medications with similar ingredients based on laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2024, 39, 735–742. [Google Scholar] [CrossRef]
- Rakovsky, J.; Cermák, P.; Musset, O.; Veis, P. A review of the development of portable laser induced breakdown spectroscopy and its applications. Spectrochim. Acta Part B At. Spectrosc. 2014, 101, 269–287. [Google Scholar] [CrossRef]
- Wu, X.; Shin, S.; Gondhalekar, C.; Patsekin, V.; Bae, E.; Robinson, J.P.; Rajwa, B. Rapid food authentication using a portable laser-induced breakdown spectroscopy system. Foods 2023, 12, 402. [Google Scholar] [CrossRef]
- Guo, L.B.; Zhang, D.; Sun, L.X.; Yao, S.C.; Zhang, L.; Wang, Z.Z.; Wang, Q.Q.; Ding, H.B.; Lu, Y.; Hou, Z.Y.; et al. Development in the application of laser-induced breakdown spectroscopy in recent years: A review. Front. Phys. 2021, 16, 25. [Google Scholar] [CrossRef]
- Harmon, R.S.; Senesi, G.S. Laser-induced breakdown spectroscopy—A geochemical tool for the 21st century. Appl. Geochem. 2021, 128, 55. [Google Scholar] [CrossRef]
- García-Escárzaga, A.; Martínez-Minchero, M.; Cobo, A.; Gutiérrez-Zugasti, I.; Arrizabalaga, A.; Roberts, P. Using Mg/Ca ratios from the limpet patella depressa pennant, 1777 measured by laser-induced breakdown spectroscopy (LIBS) to reconstruct paleoclimate. Appl. Sci. 2021, 11, 2959. [Google Scholar] [CrossRef]
- Nanou, E.; Pliatsika, N.; Couris, S. Rapid authentication and detection of olive oil adulteration using laser-induced breakdown spectroscopy. Molecules 2023, 28, 7960. [Google Scholar] [CrossRef]
- Harefa, E.; Zhou, W. Laser-induced breakdown spectroscopy combined with nonlinear manifold learning for improvement aluminum alloy classification accuracy. Sensors 2022, 22, 3129. [Google Scholar] [CrossRef] [PubMed]
- Gardette, V.; Motto-Ros, V.; Alvarez-Llamas, C.; Sancey, L.; Duponchel, L.; Busser, B. Laser-induced breakdown spectroscopy imaging for material and biomedical applications: Recent advances and future perspectives. Anal. Chem. 2023, 95, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.K.; Yang, E.L.; Chen, Y.Y.; Peng, Z.Y.; Li, D.; Duan, Y.X.; Lin, Q.Y. Multiplexing steganography based on laser-induced breakdown spectroscopy coupled with machine learning. Chem. Commun. 2021, 57, 7312–7315. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yao, L.X.; Zhang, X.; Tian, X.Y.; Su, X.; Lou, J.L.; Shen, L. Information encryption based on laser-induced breakdown spectroscopy. Laser Optoelectron. Prog. 2024, 61, 0530002. [Google Scholar] [CrossRef]
- Bhardwaj, C.; Garg, H.; Shekhar, S. An approach for securing QR code using cryptography and visual cryptography. In Proceedings of the 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India, 20–21 May 2022; pp. 284–288. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST Atomic Spectra Database, Version 5.10; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022. [CrossRef]
- Raymond, L.; Turcotte, R.; Gratton, R. The challenges of increasing filler in fine paper. Pap. Technol. 2004, 45, 34–40. [Google Scholar]
- Hirsch, G.; Kersten, A.; Putz, H.J.; Bobek, B.; Hamm, U.; Schabel, S. CaCO3 in the paper industry-blessing or curse? In Proceedings of the 2013 PEERS Conference, Co-Located with the 2013 International Bioenergy and Bioproducts Conference, Green Bay, WI, USA, 15–20 September 2013; pp. 1948–1988. [Google Scholar]
- Tognoni, E.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V. Calibration-free laser-induced breakdown spectroscopy: State of the art. Spectrochim. Acta Part B At. Spectrosc. 2010, 65, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.D.; Li, Z.G.; Zhao, Y.N.; Zhang, S.H.; Ye, Z.Y.; Zhang, D.J.; Liu, H.C.; Xiong, J.; Li, H.G. Fourier single-pixel imaging via arbitrary illumination patterns. Phys. Rev. Appl. 2023, 19, 044025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Shen, L.; Yao, L.; Liu, Y. Laminated Information Encryption with Printer Using Laser-Induced Breakdown Spectroscopy. Spectrosc. J. 2024, 2, 322-331. https://doi.org/10.3390/spectroscj2040019
Han X, Shen L, Yao L, Liu Y. Laminated Information Encryption with Printer Using Laser-Induced Breakdown Spectroscopy. Spectroscopy Journal. 2024; 2(4):322-331. https://doi.org/10.3390/spectroscj2040019
Chicago/Turabian StyleHan, Xiang, Li Shen, Lixing Yao, and Yu Liu. 2024. "Laminated Information Encryption with Printer Using Laser-Induced Breakdown Spectroscopy" Spectroscopy Journal 2, no. 4: 322-331. https://doi.org/10.3390/spectroscj2040019
APA StyleHan, X., Shen, L., Yao, L., & Liu, Y. (2024). Laminated Information Encryption with Printer Using Laser-Induced Breakdown Spectroscopy. Spectroscopy Journal, 2(4), 322-331. https://doi.org/10.3390/spectroscj2040019