Spectroscopic Advances in Real Time Monitoring of Pharmaceutical Bioprocesses: A Review of Vibrational and Fluorescence Techniques
Abstract
:1. Introduction
2. Real-Time Monitoring Methods
- In-line monitoring;
- On-line monitoring;
- At-line monitoring.
3. Principles of Vibrational and Fluorescence Spectroscopy
4. Applications
4.1. UV/Visible Spectroscopy Applications
Cost, Accuracy, and Limitations of UV/Vis
4.2. Applications of Infrared Spectroscopy
Cost, Accuracy, and Limitations of Infrared Spectroscopy
4.3. Raman Spectroscopy
Cost, Accuracy, and Limitations of Raman Spectroscopy
4.4. Fluorescence Spectroscopy
Cost, Accuracy, and Limitations of Fluorescence Spectroscopy
5. Data Preprocessing and Sensor Selection for Spectroscopic Methods
5.1. Data Preprocessing
5.2. Spectroscopic Sensor Selection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hinz, D.C. Process analytical technologies in the pharmaceutical industry: The FDA’s PAT initiative. Anal. Bioanal. Chem. 2006, 384, 1036–1042. [Google Scholar]
- Darrow, J.J.; Avorn, J.; Kesselheim, A.S. FDA approval and regulation of pharmaceuticals, 1983–2018. JAMA 2020, 323, 164–176. [Google Scholar]
- Sathyanarayana, D.N. Vibrational Spectroscopy: Theory and Applications; New Age International (P) Limited: Delhi, India, 2015. [Google Scholar]
- Chen, Z.; Dinh, H.N.; Miller, E.; Chen, Z.; Deutsch, T.G.; Dinh, H.N.; Domen, K.; Emery, K.; Forman, A.J.; Gaillard, N.; et al. UV-vis spectroscopy. In Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols; Springer: Berlin/Heidelberg, Germany, 2013; pp. 49–62. [Google Scholar]
- Royer, C.A. Fluorescence spectroscopy. In Protein Stability and Folding: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 1995; pp. 65–89. [Google Scholar]
- Vasilakou, E.; Machado, D.; Theorell, A.; Rocha, I.; Nöh, K.; Oldiges, M.; Wahl, S.A. Current state and challenges for dynamic metabolic modeling. Curr. Opin. Microbiol. 2016, 33, 97–104. [Google Scholar]
- Junker, B.; Wang, H. Bioprocess monitoring and computer control: Key roots of the current PAT initiative. Biotechnol. Bioeng. 2006, 95, 226–261. [Google Scholar]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar]
- McCreery, R.L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Workman, J.J., Jr.; Mobley, P.R.; Kowalski, B.R.; Bro, R. Review of chemometrics applied to spectroscopy: 1985–1995, Part I. Appl. Spectrosc. Rev. 1996, 31, 73–124. [Google Scholar] [CrossRef]
- Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar]
- De Juan, A.; Tauler, R. Multivariate curve resolution (MCR) from 2000: Progress in concepts and applications. Crit. Rev. Anal. Chem. 2006, 36, 163–176. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar]
- Kim, Y.J.; Kim, S.; Kim, J.W.; Yoon, G. Data preprocessing and partial least squares regression analysis for reagentless determination of hemoglobin concentrations using conventional and total transmission spectroscopy. J. Biomed. Opt. 2001, 6, 177–182. [Google Scholar] [CrossRef]
- Narayanan, H.; von Stosch, M.; Feidl, F.; Sokolov, M.; Morbidelli, M.; Butté, A. Hybrid modeling for biopharmaceutical processes: Advantages, opportunities, and implementation. Front. Chem. Eng. 2023, 5, 1157889. [Google Scholar] [CrossRef]
- Swami, A.; Hatolkar, S.; Patil, M.A.; Dhumal, M.K.; Shastri, A. Process Analytical Technology (PAT): Enhancing Quality and Efficiency in Pharmaceutical Development and Production. Korean J. Physiol. Pharmacol. 2023, 27, 394–408. [Google Scholar]
- Aghaee, M.; Krau, S.; Tamer, M.; Budman, H. Unsupervised Fault Detection of Pharmaceutical Processes Using Long Short-Term Memory Autoencoders. Ind. Eng. Chem. Res. 2023, 62, 9773–9786. [Google Scholar] [CrossRef]
- Agarwal, P.; Aghaee, M.; Tamer, M.; Budman, H. A novel unsupervised approach for batch process monitoring using deep learning. Comput. Chem. Eng. 2022, 159, 107694. [Google Scholar] [CrossRef]
- Aghaee, M.; Mishra, A.; Krau, S.; Tamer, I.M.; Budman, H. Artificial intelligence applications for fault detection and diagnosis in pharmaceutical bioprocesses: A review. Curr. Opin. Chem. Eng. 2024, 44, 101025. [Google Scholar] [CrossRef]
- Claßen, J.; Aupert, F.; Reardon, K.F.; Solle, D.; Scheper, T. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Anal. Bioanal. Chem. 2017, 409, 651–666. [Google Scholar] [CrossRef]
- Scarff, M.; Arnold, S.A.; Harvey, L.M.; McNeil, B. Near infrared spectroscopy for bioprocess monitoring and control: Current status and future trends. Crit. Rev. Biotechnol. 2006, 26, 17–39. [Google Scholar] [CrossRef]
- Faassen, S.M.; Hitzmann, B. Fluorescence spectroscopy and chemometric modeling for bioprocess monitoring. Sensors 2015, 15, 10271–10291. [Google Scholar] [CrossRef]
- Beutel, S.; Henkel, S. In situ sensor techniques in modern bioprocess monitoring. Appl. Microbiol. Biotechnol. 2011, 91, 1493–1505. [Google Scholar] [CrossRef]
- Zhao, L.; Fu, H.Y.; Zhou, W.; Hu, W.S. Advances in process monitoring tools for cell culture bioprocesses. Eng. Life Sci. 2015, 15, 459–468. [Google Scholar]
- Shek, C.F.; Betenbaugh, M. Taking the pulse of bioprocesses: At-line and in-line monitoring of mammalian cell cultures. Curr. Opin. Biotechnol. 2021, 71, 191–197. [Google Scholar]
- Kessler, R.W.; Kessler, W.; Zikulnig-Rusch, E. A critical summary of spectroscopic techniques and their robustness in industrial PAT applications. Chem. Ing. Tech. 2016, 88, 710–721. [Google Scholar] [CrossRef]
- Chalmers, J.M.; Edwards, H.G.; Hargreaves, M.D. Vibrational spectroscopy techniques: Basics and instrumentation. In Infrared and Raman Spectroscopy in Forensic Science; Wiley Online Library: Hoboken, NJ, USA, 2012; pp. 9–44. [Google Scholar]
- Penner, M.H. Basic principles of spectroscopy. In Food Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 79–88. [Google Scholar]
- Cialla-May, D.; Schmitt, M.; Popp, J. Theoretical principles of Raman spectroscopy. Phys. Sci. Rev. 2019, 4, 20170040. [Google Scholar]
- Wang, L.; Liu, W.; Tang, J.W.; Wang, J.J.; Liu, Q.H.; Wen, P.B.; Wang, M.M.; Pan, Y.C.; Gu, B.; Zhang, X. Applications of Raman spectroscopy in bacterial infections: Principles, advantages, and shortcomings. Front. Microbiol. 2021, 12, 683580. [Google Scholar] [CrossRef]
- Lakowicz, J.R.; Lakowicz, J.R. Introduction to fluorescence. In Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–23. [Google Scholar]
- Macheroux, P. UV-visible spectroscopy as a tool to study flavoproteins. In Flavoprotein Protocols; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–7. [Google Scholar]
- Shrake, N.L.; Amirtharajah, R.; Brenneman, C.; Boulton, R.; Knoesen, A. In-line measurement of color and total phenolics during red wine fermentations using a light-emitting diode sensor. Am. J. Enol. Vitic. 2014, 65, 463–470. [Google Scholar] [CrossRef]
- Drieschner, T.; Ostertag, E.; Boldrini, B.; Lorenz, A.; Brecht, M.; Rebner, K. Direct optical detection of cell density and viability of mammalian cells by means of UV/VIS spectroscopy. Anal. Bioanal. Chem. 2020, 412, 3359–3371. [Google Scholar]
- Kandelbauer, A.; Kessler, W.; Kessler, R. Online UV–visible spectroscopy and multivariate curve resolution as powerful tool for model-free investigation of laccase-catalysed oxidation. Anal. Bioanal. Chem. 2008, 390, 1303–1315. [Google Scholar] [CrossRef]
- Schiewe, T.; Gutschmann, B.; Santolin, L.; Waldburger, S.; Neubauer, P.; Hass, R.; Riedel, S.L. Real-time monitoring of biomass during Escherichia coli high-cell-density cultivations by in-line photon density wave spectroscopy. Biotechnol. Bioeng. 2023, 120, 2880–2889. [Google Scholar]
- Fazenda, M.L.; Dias, J.M.; Harvey, L.M.; Nordon, A.; Edrada-Ebel, R.; LittleJohn, D.; McNeil, B. Towards better understanding of an industrial cell factory: Investigating the feasibility of real-time metabolic flux analysis in Pichia pastoris. Microb. Cell Factories 2013, 12, 51. [Google Scholar]
- Kozma, B.; Salgó, A.; Gergely, S. On-line glucose monitoring by near infrared spectroscopy during the scale up steps of mammalian cell cultivation process development. Bioprocess Biosyst. Eng. 2019, 42, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Kornmann, H.; Valentinotti, S.; Marison, I.; Stockar, U.v. Real-time update of calibration model for better monitoring of batch processes using spectroscopy. Biotechnol. Bioeng. 2004, 87, 593–601. [Google Scholar] [CrossRef]
- Schenk, J.; Marison, I.W.; von Stockar, U. A simple method to monitor and control methanol feeding of Pichia pastoris fermentations using mid-IR spectroscopy. J. Biotechnol. 2007, 128, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Milewska, A.; Baekelandt, G.; Boutaieb, S.; Mozin, V.; Falconbridge, A. In-line monitoring of protein concentration with MIR spectroscopy during UFDF. Eng. Life Sci. 2023, 23, e2200050. [Google Scholar] [CrossRef]
- Clavaud, M.; Roggo, Y.; Von Daeniken, R.; Liebler, A.; Schwabe, J.O. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: Prediction of multiple cultivation variables. Talanta 2013, 111, 28–38. [Google Scholar] [CrossRef]
- Cimander, C.; Mandenius, C.F. Online monitoring of a bioprocess based on a multi-analyser system and multivariate statistical process modelling. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2002, 77, 1157–1168. [Google Scholar]
- Kornmann, H.; Valentinotti, S.; Duboc, P.; Marison, I.; Von Stockar, U. Monitoring and control of Gluconacetobacter xylinus fed-batch cultures using in situ mid-IR spectroscopy. J. Biotechnol. 2004, 113, 231–245. [Google Scholar] [CrossRef]
- Mazarevica, G.; Diewok, J.; Baena, J.R.; Rosenberg, E.; Lendl, B. On-line fermentation monitoring by mid-infrared spectroscopy. Appl. Spectrosc. 2004, 58, 804–810. [Google Scholar] [CrossRef]
- Alimagham, F.; Winterburn, J.; Dolman, B.; Domingues, P.M.; Everest, F.; Platkov, M.; Basov, S.; Izakson, G.; Katzir, A.; Elliott, S.R.; et al. Real-time bioprocess monitoring using a mid-infrared fibre-optic sensor. Biochem. Eng. J. 2021, 167, 107889. [Google Scholar]
- Kara, S.; Mueller, J.J.; Liese, A. Online analysis methods for monitoring of bioprocesses. Chem. Today 2011, 29. [Google Scholar]
- Biechele, P.; Busse, C.; Solle, D.; Scheper, T.; Reardon, K. Sensor systems for bioprocess monitoring. Eng. Life Sci. 2015, 15, 469–488. [Google Scholar]
- Rolinger, L.; Rüdt, M.; Hubbuch, J. A multisensor approach for improved protein A load phase monitoring by conductivity-based background subtraction of UV spectra. Biotechnol. Bioeng. 2021, 118, 905–917. [Google Scholar]
- Takahashi, M.B.; Leme, J.; Caricati, C.; Tonso, A.; Núñez, E.G.F.; Rocha, J.C. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes. Bioprocess Biosyst. Eng. 2015, 38, 1045–1054. [Google Scholar] [PubMed]
- Leme, J.; Núñez, E.G.F.; de Almeida Parizotto, L.; Chagas, W.A.; dos Santos, E.S.; Caricati, A.T.P.; Rezende, A.G.; Costa, B.L.V.; Monteiro, D.C.V.; Boldorini, V.L.; et al. A multivariate calibration procedure for UV/VIS spectrometric monitoring of BHK-21 cell metabolism and growth. Biotechnol. Prog. 2014, 30, 241–248. [Google Scholar]
- Dupuy, N.; Galtier, O.; Ollivier, D.; Vanloot, P.; Artaud, J. Comparison between NIR, MIR, concatenated NIR and MIR analysis and hierarchical PLS model. Application to virgin olive oil analysis. Anal. Chim. Acta 2010, 666, 23–31. [Google Scholar] [PubMed]
- Zimmerleiter, R.; Kager, J.; Nikzad-Langerodi, R.; Berezhinskiy, V.; Westad, F.; Herwig, C.; Brandstetter, M. Probeless non-invasive near-infrared spectroscopic bioprocess monitoring using microspectrometer technology. Anal. Bioanal. Chem. 2020, 412, 2103–2109. [Google Scholar]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and applications of miniaturized near-infrared (NIR) spectrometers. Chem.—Eur. J. 2021, 27, 1514–1532. [Google Scholar] [PubMed]
- Manley, M. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chem. Soc. Rev. 2014, 43, 8200–8214. [Google Scholar]
- Sales, K.; Rosa, F.; Sampaio, P.; Fonseca, L.; Lopes, M.; Calado, C. In Situ Near-Infrared (NIR) versus High-Throughput Mid-Infrared (MIR) Spectroscopy to Monitor Biopharmaceutical Production. Appl. Spectrosc. 2015, 69, 760–772. [Google Scholar]
- Riolo, D.; Piazza, A.; Cottini, C.; Serafini, M.; Lutero, E.; Cuoghi, E.; Gasparini, L.; Botturi, D.; Marino, I.G.; Aliatis, I.; et al. Raman spectroscopy as a PAT for pharmaceutical blending: Advantages and disadvantages. J. Pharm. Biomed. Anal. 2018, 149, 329–334. [Google Scholar]
- Esmonde-White, K.A.; Cuellar, M.; Lewis, I.R. The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing. Anal. Bioanal. Chem. 2022, 414, 969–991. [Google Scholar] [PubMed]
- Golabgir, A.; Herwig, C. Combining mechanistic modeling and Raman spectroscopy for real-time monitoring of fed-batch Penicillin production. Chem. Ing. Tech. 2016, 88, 764–776. [Google Scholar]
- Tsopanoglou, A.; del Val, I.J. Moving towards an era of hybrid modelling: Advantages and challenges of coupling mechanistic and data-driven models for upstream pharmaceutical bioprocesses. Curr. Opin. Chem. Eng. 2021, 32, 100691. [Google Scholar]
- Feidl, F.; Garbellini, S.; Vogg, S.; Sokolov, M.; Souquet, J.; Broly, H.; Butté, A.; Morbidelli, M. A new flow cell and chemometric protocol for implementing in-line Raman spectroscopy in chromatography. Biotechnol. Prog. 2019, 35, e2847. [Google Scholar]
- Wang, J.; Chen, J.; Studts, J.; Wang, G. In-line product quality monitoring during biopharmaceutical manufacturing using computational Raman spectroscopy. mAbs 2023, 15, 2220149. [Google Scholar]
- Hirsch, E.; Pataki, H.; Domján, J.; Farkas, A.; Vass, P.; Fehér, C.; Barta, Z.; Nagy, Z.K.; Marosi, G.J.; Csontos, I. Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation. Biotechnol. Prog. 2019, 35, e2848. [Google Scholar]
- Cannizzaro, C.; Rhiel, M.; Marison, I.; von Stockar, U. On-line monitoring of Phaffia rhodozyma fed-batch process with in situ dispersive Raman spectroscopy. Biotechnol. Bioeng. 2003, 83, 668–680. [Google Scholar]
- Nadadoor, V.R.; De la Hoz Siegler, H.; Shah, S.L.; McCaffrey, W.C.; Ben-Zvi, A. Online sensor for monitoring a microalgal bioreactor system using support vector regression. Chemom. Intell. Lab. Syst. 2012, 110, 38–48. [Google Scholar]
- Esmonde-White, K.A.; Cuellar, M.; Uerpmann, C.; Lenain, B.; Lewis, I.R. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 2017, 409, 637–649. [Google Scholar]
- Lee, H.; Boccazzi, P.; Gorret, N.; Ram, R.J.; Sinskey, A. In situ bioprocess monitoring of Escherichia coli bioreactions using Raman spectroscopy. Vib. Spectrosc. 2004, 35, 131–137. [Google Scholar]
- Wei, D.; Chen, S.; Liu, Q. Review of fluorescence suppression techniques in Raman spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 387–406. [Google Scholar]
- Mandenius, C.F.; Titchener-Hooker, N.J. Measurement, Monitoring, Modelling and Control of Bioprocesses; Springer: Berlin/Heidelberg, Germany, 2013; Volume 132. [Google Scholar]
- Peiris, R.; Budman, H.; Moresoli, C.; Legge, R. Identification of humic acid-like and fulvic acid-like natural organic matter in river water using fluorescence spectroscopy. Water Sci. Technol. 2011, 63, 2427–2433. [Google Scholar] [PubMed]
- Horvath, J.J.; Glazier, S.A.; Spangler, C.J. In situ fluorescence cell mass measurements of Saccharomyces cerevisiae using cellular tryptophan. Biotechnol. Prog. 1993, 9, 666–670. [Google Scholar]
- Hisiger, S.; Jolicoeur, M. A multiwavelength fluorescence probe: Is one probe capable for on-line monitoring of recombinant protein production and biomass activity? J. Biotechnol. 2005, 117, 325–336. [Google Scholar] [PubMed]
- Surribas, A.; Geissler, D.; Gierse, A.; Scheper, T.; Hitzmann, B.; Montesinos, J.L.; Valero, F. State variables monitoring by in situ multi-wavelength fluorescence spectroscopy in heterologous protein production by Pichia pastoris. J. Biotechnol. 2006, 124, 412–419. [Google Scholar] [PubMed]
- Teixeira, A.P.; Portugal, C.A.; Carinhas, N.; Dias, J.M.; Crespo, J.P.; Alves, P.M.; Carrondo, M.; Oliveira, R. In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol. Bioeng. 2009, 102, 1098–1106. [Google Scholar]
- Teixeira, A.P.; Duarte, T.M.; Carrondo, M.; Alves, P.M. Synchronous fluorescence spectroscopy as a novel tool to enable PAT applications in bioprocesses. Biotechnol. Bioeng. 2011, 108, 1852–1861. [Google Scholar]
- Graf, A.; Claßen, J.; Solle, D.; Hitzmann, B.; Rebner, K.; Hoehse, M. A novel LED-based 2D-fluorescence spectroscopy system for in-line monitoring of Chinese hamster ovary cell cultivations–Part I. Eng. Life Sci. 2019, 19, 352–362. [Google Scholar]
- Claßen, J.; Graf, A.; Aupert, F.; Solle, D.; Höhse, M.; Scheper, T. A novel LED-based 2D-fluorescence spectroscopy system for in-line bioprocess monitoring of Chinese hamster ovary cell cultivations—Part II. Eng. Life Sci. 2019, 19, 341–351. [Google Scholar]
- Ödman, P.; Johansen, C.L.; Olsson, L.; Gernaey, K.V.; Lantz, A.E. Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations. Appl. Microbiol. Biotechnol. 2010, 86, 1745–1759. [Google Scholar]
- König, J.C.; Steinwedel, T.; Solle, D.; Lindner, P.; de Vries, I.; Hentrop, T.; Findeis, M.; John, G.T.; Scheper, T.; Beutel, S. Development and characterisation of a new fluorescence sensor for online monitoring of bioprocesses. J. Sensors Sens. Syst. 2018, 7, 461–467. [Google Scholar]
- Karakach, T.K.; Dachon, A.; Choi, J.; Miguez, C.; Masson, L.; Tartakovsky, B. Fluorescence-based real time monitoring and diagnostics of recombinant Pichia pastoris cultivations in a bioreactor. Biotechnol. Prog. 2019, 35, e2761. [Google Scholar]
- Mishra, A.; Tamer, M.; Budman, H. In-line monitoring of Bordetella pertussis cultivation using fluorescence spectroscopy. Bioprocess Biosyst. Eng. 2023, 46, 789–802. [Google Scholar]
- Karakach, T.K.; McGinn, P.J.; Choi, J.; MacQuarrie, S.P.; Tartakovsky, B. Real-time monitoring, diagnosis, and time-course analysis of microalgae Scenedesmus AMDD cultivation using dual excitation wavelength fluorometry. J. Appl. Phycol. 2015, 27, 1823–1832. [Google Scholar]
- Xu, X.; Farnós, O.; Paes, B.C.; Nesdoly, S.; Kamen, A.A. Multivariate data analysis on multisensor measurement for inline process monitoring of adenovirus production in HEK293 cells. Biotechnol. Bioeng. 2024, 121, 2175–2192. [Google Scholar]
- Rowland-Jones, R.C.; van den Berg, F.V.D.; Racher, A.; Martin, E.B.; Jaques, C. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors. Biotechnol. Prog. 2017, 33, 337–346. [Google Scholar]
- Galinha, C.F.; Carvalho, G.; Portugal, C.; Guglielmi, G.; Guglielmi, G.; Oliveira, R.; Crespo, J.; Reis, M. Real-time monitoring of membrane bioreactors with 2D-fluorescence data and statistically based models. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2011, 63, 1381–1388. [Google Scholar]
- Zacharioudaki, D.E.; Fitilis, I.; Kotti, M. Review of fluorescence spectroscopy in environmental quality applications. Molecules 2022, 27, 4801. [Google Scholar] [CrossRef]
- Pauli, J.; Guttler, A.; Schneider, T.; Wurth, C.; Resch-Genger, U. Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification. Anal. Chem. 2023, 95, 5671–5677. [Google Scholar]
- Agharafeie, R.; Oliveira, R.; Ramos, J.R.C.; Mendes, J.M. Application of hybrid neural models to bioprocesses: A systematic literature review. Authorea Prepr. 2023, 9, 922. [Google Scholar]
- Xu, F.; Su, L.; Gao, H.; Wang, Y.; Ben, R.; Hu, K.; Mohsin, A.; Li, C.; Chu, J.; Tian, X. Harnessing near-infrared and Raman spectral sensing and artificial intelligence for real-time monitoring and precision control of bioprocess. Bioresour. Technol. 2025, 421, 132204. [Google Scholar]
- Mondal, P.P.; Galodha, A.; Verma, V.K.; Singh, V.; Show, P.L.; Awasthi, M.K.; Lall, B.; Anees, S.; Pollmann, K.; Jain, R. Review on machine learning-based bioprocess optimization, monitoring, and control systems. Bioresour. Technol. 2023, 370, 128523. [Google Scholar]
- Du, Y.H.; Wang, M.Y.; Yang, L.H.; Tong, L.L.; Guo, D.S.; Ji, X.J. Optimization and scale-up of fermentation processes driven by models. Bioengineering 2022, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Dayananda, B.; Cozzolino, D. Beyond the Black Box—Practical considerations on the use of chemometrics combined with sensing technologies in food science applications. Chemosensors 2022, 10, 323. [Google Scholar] [CrossRef]
- Narayana, S.; Christensen, L.; Skov, T.; van den Berg, F. Mid-infrared spectroscopy and multivariate analysis to characterize Lactobacillus acidophilus fermentation processes. Appl. Spectrosc. 2019, 73, 1087–1098. [Google Scholar]
- Mishra, A.; Vitelli, M.; Tartakovsky, B.; Tamer, I.M.; Budman, H. A model based approach for monitoring Bordetella pertussis fermentation with an inline spectro-fluorescence probe. Biochem. Eng. J. 2025, 217, 109674. [Google Scholar]
- Kandelbauer, A.; Rahe, M.; Kessler, R.W. Industrial perspectives. Handb. Biophotonics 2012, 3, 3–69. [Google Scholar]
- Mishra, A. Design of Online Estimator for Culture Monitoring and Media Development for Bordetella Pertussis. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2024. [Google Scholar]
Fermentation System | Application | Monitoring Method | Multivariate Analysis Method | References |
---|---|---|---|---|
Fermentation of red wine in a 200 L batch fermentor | Measurement and monitoring of color and total phenolics | On-line, UV/Vis | Multi-Variate Linear Regression | [34] |
Mammalian cells cultivated in 250 mL Erlenmeyer flasks | Monitoring and detection of cell density and cell viability | In-line, UV/Vis | PLS, MCR | [35] |
Fed-batch bioreactor cultivation of high-cell-density Escherichia coli in 3.7 L bioreactor | Monitoring of total cell density or biomass concentration | In-line, UV/Vis | Non-Linear Regression | [37] |
The laccase-catalysed transformation of indigo carmine (IC) | Monitoring of the final product (Isatin-5-sulfonic acid) in an enzyme catalysed reaction | In-line, UV/Vis | MCR | [36] |
Pichia Pastoris batch fermentations in 15 L bioreactor | Monitoring of biomass and glycerol | In-line, NIR | PLS | [38] |
Chinese hamster ovary cell cultivation in fed-batch mode in 20, 100, 1000, and 5000 L bioreactors | Monitoring of biomass, cell viability, and glucose concentration | In-line, NIR | PCA, PLS | [39] |
Gluconacetobacter Xylinus fermentations in a 15 L (10 L working volume) batch reactor | Prediction of fructose, acetate, and gluconacetan | In-line, MIR | PLS | [40] |
Pichia Pastoris fed-batch fermentations carried out in 2 L batch reactors | Monitoring and control of methanol feed | On-line, MIR | - | [41] |
Monoclonal antibodies (mAbs) IgG2 derived from Chinese hamster ovary (CHO) cell cultures used at in nanofiltration downstream bioprocessing purification sequence | Process parameters such as in ultrafiltration/diafiltration (UFDF) | In-line, MIR | One-Point Calibration Algorithm | [42] |
Fed-batch fermentation (12,500 L) of mammalian chinese hamster ovary (CHO) cells producing monoclonal antibody | Different cell culture parameters such as osmolality, glucose concentration, product titer, packed cell volume (PCV), integrated viable packed cell volume, viable cell density, and integrated viable cell count were monitored and predicted in-line | In-line, NIR | PCA, PLS | [43] |
Fed-batch fermentation of tryptophan-producing E. coli in a 4.2 L fermentor | Monitoring of bioprocess parameters such as biomass, tryptophan, phosphate, glucose, and acetate during a representative cultivation | In-line, NIR | PCA, Forward Selection Procedure, PLS | [44] |
Fermentation of Gluconacetobacter xylinus fed-batch cultures in a 15 L bioreactor with a working volume of 10.1 L | Monitoring and control of different batch parameters of Gluconacetobacter xylinuscultures such as fructose, ethanol, acetate, gluconacetan, ammonium, and phosphate concentrations | In-line, NIR | PLS | [45] |
Baker’s yeast fermentation in a 1 L batch fermentor | Monitoring of ethanol and glucose concentrations in the batch fermentation | On-line, MIR | PLS | [46] |
Fed-batch cultivation of Starmerella bombicola in a 2 L fermentor | Real-time monitoring of substrate consumption and biosurfactant production (sophorolipids) | In-line, MIR | MCR | [47] |
Fermentation System | Application | Monitoring Method | Chemometric Method | Reference |
---|---|---|---|---|
500 mL flask cultures of yeast | Monitoring the biotransformation of suger into ethanol | On-line, flow cell | PLS | [62] |
Escherichia coli batch fermentation in a 2.5 L stirred tank bioreactor | Concentration estimation of glucose, acetate, lactate, formate, and phenylalanine | In-line | Least square estimation | [61] |
Fed-batch Fermentation of Phaffia rhodozyma cultures in 15-L bioreactor | Monitoring of carotenoid concentration | In-line | PLSR and PCR | [65] |
A. protothecoides (Algae) cultivated in 2 L batch reactors | Monitoring of biomass, glucose, and oil content | In-line | Support vector regression | [66] |
Fed-batch feremntations of P. chrysogenum in a 10 L stirred tank reactors | Estimation of biomass concentration, specific growth rate, and specific pencillin production rate with the help of a mechanistic model coupled with Raman spectroscopy | In-line | PLS | [60] |
Chromatographic purification of IgG1 (MAb) in a 80 μL flow cell | Monitoring of monoclonal antibodies during a cell perfusion process in CHO cell fermentation | On-line, flow cell | PLS | [62] |
Chromatographic purification of IgG1 MAb in a 200 μL flow cell | Monitoring of IgG1 monoclonal antibodies during affinity chromatography | On-line, flow cell | CNN, PLS, PCR, and SVM | [63] |
Saccharomyces cerevisiae (Yeast) cultivated in 150 mL reactor | Monitoring of glucose and ethanol production | In-line | PLS regression | [64] |
Fermentation System | Application | Monitoring Method | Multivariate Analysis Method | References |
---|---|---|---|---|
Fermentation of S. coelicolor bacteria in 1.5 L fed-batch bioreactor system | Monitoring and prediction of cell dry weight and amino acids | In-line | Partial least squares (PLS), locally weighted regression, and multilinear PLS (N-PLS) | [79] |
Fed-batch fermentation of CHO cells in 2 L bioreactors | Monitoring of viable cell density and glycoprotein | In-line | PLS regression | [75] |
Batch cultures of CHO cell lines in 1 L bioreactor | Monitoring of cell viability and antibody concentration | In-line | PLS Regression | [76] |
Batch fermentations of E. coli in 10 to 30 L bioreactors | Monitoring of cell dry weight and biogenic fluorophores (tryptophan, NADH, and riboflavin) | In-line | PCA, PLS regression | [80] |
Fed-batch cultivation of mammalian (CHO) cells in 10 L Bioreactors | Monitoring the conentration of BSA, FAD, NADH, NAD, pyrodyxine, and riboflavin and estimating total cell count, viable cells, and lactate and oxygen shift in CHO cell culture | In-line | PCA, PLS regression | [77,78] |
Fed-batch cultivation of Pichia Pastoris cultures in a 14 L fermentor | Monitoring of cell density, protein production, glycerol, and methanol consumption | In-line | Multi-variate curve resolution method | [81] |
Fed-batch cultivation of B. Pertussis cultivation in a 2 L fermentor | Monitoring and prediction of biomass, carbon source (glutamate), and antigen (pertactin) productivity | In-line | PLS regression | [82] |
Cultivation of microalgae Scenedesmus AMDD in 300 L continuous photobioreactor | Monitoring of cell growth and proteins | In-line | Multivariate curve resolution, PCA | [83] |
Fed-batch cultivation of HEK293 cells in a 3 L bioreactor | Monitoring of adenovirus production | In-line | PLS regression | [84] |
Spectroscopy Method | Cost (USD) | Robust for Industrial Use? | Inline/Online Capable? | Commercial Availability |
---|---|---|---|---|
Fluorescence | 10 k–30 k | Yes (widely used) | Yes | Yes (widely available) |
UV/Vis | 20 k–40 k | Yes (for simple applications) | Yes | Yes |
NIR | 30 k–80 k | Yes (widely adopted) | Yes | Yes (common in PAT) |
MIR | 50 k–100 k | Moderate (ATR/flow cell required) | Yes | Yes (common in chemical industry) |
Raman | 100 k–200 k | Moderate (high sensitivity) | Yes | Yes, but costly |
Spectroscopy Method | Specificity | Sensitivity | Direct/Indirect |
---|---|---|---|
Fluorescence | Low (only autofluorescent molecules) | High (nM–µM) | Indirect (cofactor-based) |
UV/Vis | Low–Moderate | Moderate (µM–mM) | Indirect (requires derivatization) |
NIR | Low (overlapping bands) | Moderate (mM) | Indirect (correlated molecules) |
MIR | High (distinct absorption bands) | Moderate–High (µM–mM) | Indirect (calibration required) |
Raman | High (fingerprint region) | Moderate–High (µM) | Direct |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.; Aghaee, M.; Tamer, I.M.; Budman, H. Spectroscopic Advances in Real Time Monitoring of Pharmaceutical Bioprocesses: A Review of Vibrational and Fluorescence Techniques. Spectrosc. J. 2025, 3, 12. https://doi.org/10.3390/spectroscj3020012
Mishra A, Aghaee M, Tamer IM, Budman H. Spectroscopic Advances in Real Time Monitoring of Pharmaceutical Bioprocesses: A Review of Vibrational and Fluorescence Techniques. Spectroscopy Journal. 2025; 3(2):12. https://doi.org/10.3390/spectroscj3020012
Chicago/Turabian StyleMishra, Abhishek, Mohammad Aghaee, Ibrahim M. Tamer, and Hector Budman. 2025. "Spectroscopic Advances in Real Time Monitoring of Pharmaceutical Bioprocesses: A Review of Vibrational and Fluorescence Techniques" Spectroscopy Journal 3, no. 2: 12. https://doi.org/10.3390/spectroscj3020012
APA StyleMishra, A., Aghaee, M., Tamer, I. M., & Budman, H. (2025). Spectroscopic Advances in Real Time Monitoring of Pharmaceutical Bioprocesses: A Review of Vibrational and Fluorescence Techniques. Spectroscopy Journal, 3(2), 12. https://doi.org/10.3390/spectroscj3020012