Assessing Characteristics and Variability of Fluorescent Aerosol Particles: Comparison of Two Case Studies in Southeastern Italy Using a Wideband Integrated Bioaerosol Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Method and Particle Classification
- Channel A (excitation: 280 nm, emissions: 310–400 nm);
- Channel B (excitation: 280 nm, emissions: 420–650 nm);
- Channel C (excitation: 370 nm, emissions: 420–650 nm).
- (I)
- Type ‘A’ (exhibiting fluorescence only in Channel A);
- (II)
- Type ‘B’ (exhibiting fluorescence only in Channel B);
- (III)
- Type ‘C’ (exhibiting fluorescence only in Channel C);
- (IV)
- Type ‘AB’ (exhibiting fluorescence in both Channel A and Channel B);
- (V)
- Type ‘BC’ (exhibiting fluorescence in both Channel B and Channel C);
- (VI)
- Type ‘AC’ (exhibiting fluorescence in both Channel A and Channel C);
- (VII)
- Type ‘ABC’ (exhibiting fluorescence in all the three channels).
3. Results
- Category A particles: 10 January: composed mainly of soot and bacteria, with a size range of 1–2 μm and low mass and number concentrations; 6 March: composed of fungal spores and mineral dust, with a size range of 1–6 μm and low concentrations.
- Category B particles: 10 January: predominantly soot particles, around 1 μm in size, with significant diurnal variations in mass and number concentrations; 6 March: mineral dust particles, with a size range of 1–5 μm, showing increased concentrations in the morning and late afternoon.
- Category C particles: 10 January: likely pollen fragments, around 1 μm in size, with low mass and number concentrations; 6 March: increased number concentrations compared to January, still likely pollen fragments.
- Category AB particles: 10 January: size range of 1–7 μm, possibly including fungal spores, pollen fragments, and bacteria, with low concentrations; 6 March: high size variability (up to 9 μm), including bacteria, fungal spores, pollen fragments, and mineral dust, with low concentrations.
- Category AC particles: 10 January and 6 March: small size range (~1–2 μm), likely including fungal spores and pollen fragments, with low concentrations and variable asphericity.
- Category BC particles: 10 January and 6 March: size range of 1–5 μm, likely including pollen fragments, with low concentrations and variable asphericity.
- Category ABC particles: 10 January: high variability, size range of 1–7 μm, possibly including fungal spores, pollen fragments, and clothing fibers, with low concentrations; 6 March: size range of 1–4 μm, likely including fungal spores, pollen fragments, and clothing fibers, with low concentrations.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perrino, C.; Marcovecchio, F. A New Method for Assessing the Contribution of Primary Biological Atmospheric Particles to the Mass Concentration of the Atmospheric Aerosol. Environ. Int. 2016, 87, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Després, V.R.; Huffman, J.A.; Burrows, S.M.; Hoose, C.; Safatov, A.S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.O.; Pöschl, U.; et al. Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus B Chem. Phys. Meteorol. 2012, 64, 15598. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth System: Climate, Health, and Ecosystem Interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef]
- Pöschl, U.; Shiraiwa, M. Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chem. Rev. 2015, 115, 4440–4475. [Google Scholar] [CrossRef] [PubMed]
- Forde, E.; Gallagher, M.; Walker, M.; Foot, V.; Attwood, A.; Granger, G.; Sarda-Estève, R.; Stanley, W.; Kaye, P.; Topping, D. Intercomparison of Multiple UV-LIF Spectrometers Using the Aerosol Challenge Simulator. Atmosphere 2019, 10, 797. [Google Scholar] [CrossRef]
- Whitehead, J.D.; Darbyshire, E.; Brito, J.; Barbosa, H.M.J.; Crawford, I.; Stern, R.; Gallagher, M.W.; Kaye, P.H.; Allan, J.D.; Coe, H.; et al. Biogenic Cloud Nuclei in the Central Amazon during the Transition from Wet to Dry Season. Atmos. Chem. Phys. 2016, 16, 9727–9743. [Google Scholar] [CrossRef]
- Smith, D.J.; Griffin, D.W.; Jaffe, D.A. The High Life: Transport of Microbes in the Atmosphere. Eos 2011, 92, 249–250. [Google Scholar] [CrossRef]
- Cheng, B.; Yue, S.; Hu, W.; Ren, L.; Deng, J.; Wu, L.; Fu, P. Summertime Fluorescent Bioaerosol Particles in the Coastal Megacity Tianjin, North China. Sci. Total Environ. 2020, 723, 137966. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.E.; Sands, D.C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P.A.; Psenner, R. Microbiology and Atmospheric Processes: Research Challenges Concerning the Impact of Airborne Micro-Organisms on the Atmosphere and Climate. Biogeosciences 2011, 8, 17–25. [Google Scholar] [CrossRef]
- Pöschl, U. Atmospheric Aerosols: Composition, Transformation, Climate and Health Effects. Angew. Chem. Int. Ed. Engl. 2005, 44, 7520–7540. [Google Scholar] [CrossRef]
- Pöschl, U.; Martin, S.T.; Sinha, B.; Chen, Q.; Gunthe, S.S.; Huffman, J.A.; Borrmann, S.; Farmer, D.K.; Garland, R.M.; Helas, G.; et al. Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science 2010, 329, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Walser, S.M.; Gerstner, D.G.; Brenner, B.; Bünger, J.; Eikmann, T.; Janssen, B.; Kolb, S.; Kolk, A.; Nowak, D.; Raulf, M.; et al. Evaluation of Exposure–Response Relationships for Health Effects of Microbial Bioaerosols—A Systematic Review. Int. J. Hyg. Environ. Health 2015, 218, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wan, M.P.; Schiavon, S.; Tham, K.W.; Zuraimi, S.; Xiong, J.; Fang, M.; Gall, E. Size-resolved Dynamics of Indoor and Outdoor Fluorescent Biological Aerosol Particles in a Bedroom: A One-month Case Study in Singapore. Indoor Air 2020, 30, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Gamble, J.L. Aeroallergens, Allergic Disease, and Climate Change: Impacts and Adaptation. Ecohealth 2009, 6, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, Z.; Yang, D.; Diao, Y.; Wang, W.; Zhang, H.; Zhu, W.; Zheng, J. On-Line Measurement of Fluorescent Aerosols near an Industrial Zone in the Yangtze River Delta Region Using a Wideband Integrated Bioaerosol Spectrometer. Sci. Total Environ. 2019, 656, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, W.D.; DeCosemo, G.A.L. The Assessment of Bioaerosols: A Critical Review. J. Aerosol Sci. 1994, 25, 1425–1458. [Google Scholar] [CrossRef]
- Blais-Lecours, P.; Perrott, P.; Duchaine, C. Non-Culturable Bioaerosols in Indoor Settings: Impact on Health and Molecular Approaches for Detection. Atmos. Environ. 2015, 110, 45–53. [Google Scholar] [CrossRef]
- Klimczak, L.J.; Ebner von Eschenbach, C.; Thompson, P.M.; Buters, J.T.M.; Mueller, G.A. Mixture Analyses of Air-Sampled Pollen Extracts Can Accurately Differentiate Pollen Taxa. Atmos. Environ. 2020, 243, 117746. [Google Scholar] [CrossRef]
- Daunys, G.; Šukienė, L.; Vaitkevičius, L.; Valiulis, G.; Sofiev, M.; Šaulienė, I. Clustering Approach for the Analysis of the Fluorescent Bioaerosol Collected by an Automatic Detector. PLoS ONE 2021, 16, e0247284. [Google Scholar] [CrossRef]
- Plaza, M.P.; Kolek, F.; Leier-Wirtz, V.; Brunner, J.O.; Traidl-Hoffmann, C.; Damialis, A. Detecting Airborne Pollen Using an Automatic, Real-Time Monitoring System: Evidence from Two Sites. Int. J. Environ. Res. Public Health 2022, 19, 2471. [Google Scholar] [CrossRef]
- Lancia, A.; Gioffrè, A.; Di Rita, F.; Magri, D.; D’Ovidio, M.C. Aerobiological Monitoring in an Indoor Occupational Setting Using a Real-Time Bioaerosol Sampler. Atmosphere 2023, 14, 118. [Google Scholar] [CrossRef]
- Fennelly, M.; Sewell, G.; Prentice, M.; O’Connor, D.; Sodeau, J. Review: The Use of Real-Time Fluorescence Instrumentation to Monitor Ambient Primary Biological Aerosol Particles (PBAP). Atmosphere 2018, 9, 1. [Google Scholar] [CrossRef]
- Kaye, P.H.; Stanley, W.R.; Hirst, E.; Foot, E.V.; Baxter, K.L.; Barrington, S.J. Single Particle Multichannel Bio-Aerosol Fluorescence Sensor. Opt. Express 2005, 13, 3583. [Google Scholar] [CrossRef] [PubMed]
- Pöhlker, C.; Huffman, J.A.; Pöschl, U. Autofluorescence of Atmospheric Bioaerosols—Fluorescent Biomolecules and Potential Interferences. Atmos. Meas. Tech. 2012, 5, 37–71. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Hill, S.C.; Mayo, M.W.; Chang, R.K. Fluorescence of Bacteria, Pollens, and Naturally Occurring Airborne Particles: Excitation/Emission Spectra; Army Research Laboratory: Adelphi, MD, USA, 2009. [Google Scholar]
- Schumacher, C.J.; Pöhlker, C.; Aalto, P.; Hiltunen, V.; Petäjä, T.; Kulmala, M.; Pöschl, U.; Huffman, J.A. Seasonal Cycles of Fluorescent Biological Aerosol Particles in Boreal and Semi-Arid Forests of Finland and Colorado. Atmos. Chem. Phys. 2013, 13, 11987–12001. [Google Scholar] [CrossRef]
- Santander, M.V.; Mitts, B.A.; Pendergraft, M.A.; Dinasquet, J.; Lee, C.; Moore, A.N.; Cancelada, L.B.; Kimble, K.A.; Malfatti, F.; Prather, K.A. Tandem Fluorescence Measurements of Organic Matter and Bacteria Released in Sea Spray Aerosols. Environ. Sci. Technol. 2021, 55, 5171–5179. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.S.; Wu, T.; Wagner, D.N.; Jiang, J.; Boor, B.E. Real-Time Measurements of Fluorescent Aerosol Particles in a Living Laboratory Office under Variable Human Occupancy and Ventilation Conditions. Build. Environ. 2021, 205, 108249. [Google Scholar] [CrossRef]
- Bhangar, S.; Huffman, J.A.; Nazaroff, W.W. Size-resolved Fluorescent Biological Aerosol Particle Concentrations and Occupant Emissions in a University Classroom. Indoor Air 2014, 24, 604–617. [Google Scholar] [CrossRef]
- Huffman, J.A.; Perring, A.E.; Savage, N.J.; Clot, B.; Crouzy, B.; Tummon, F.; Shoshanim, O.; Damit, B.; Schneider, J.; Sivaprakasam, V.; et al. Real-Time Sensing of Bioaerosols: Review and Current Perspectives. Aerosol Sci. Technol. 2020, 54, 465–495. [Google Scholar] [CrossRef]
- Toprak, E.; Schnaiter, M. Fluorescent Biological Aerosol Particles Measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: Laboratory Tests Combined with a One Year Field Study. Atmos. Chem. Phys. 2013, 13, 225–243. [Google Scholar] [CrossRef]
- Crawford, I.; Ruske, S.; Topping, D.O.; Gallagher, M.W. Evaluation of Hierarchical Agglomerative Cluster Analysis Methods for Discrimination of Primary Biological Aerosol. Atmos. Meas. Tech. 2015, 8, 4979–4991. [Google Scholar] [CrossRef]
- Romano, S.; Fragola, M.; Alifano, P.; Perrone, M.R.; Talà, A. Potential Human and Plant Pathogenic Species in Airborne PM10 Samples and Relationships with Chemical Components and Meteorological Parameters. Atmosphere 2021, 12, 654. [Google Scholar] [CrossRef]
- Fragola, M.; Perrone, M.R.; Alifano, P.; Talà, A.; Romano, S. Seasonal Variability of the Airborne Eukaryotic Community Structure at a Coastal Site of the Central Mediterranean. Toxins 2021, 13, 518. [Google Scholar] [CrossRef] [PubMed]
- Fragola, M.; Arsieni, A.; Carelli, N.; Dattoli, S.; Maiellaro, S.; Perrone, M.R.; Romano, S. Pollen Monitoring by Optical Microscopy and DNA Metabarcoding: Comparative Study and New Insights. Int. J. Environ. Res. Public Health 2022, 19, 2624. [Google Scholar] [CrossRef] [PubMed]
- Romano, S.; Di Salvo, M.; Rispoli, G.; Alifano, P.; Perrone, M.R.; Talà, A. Airborne Bacteria in the Central Mediterranean: Structure and Role of Meteorology and Air Mass Transport. Sci. Total Environ. 2019, 697, 134020. [Google Scholar] [CrossRef]
- Romano, S.; Becagli, S.; Lucarelli, F.; Rispoli, G.; Perrone, M.R. Airborne Bacteria Structure and Chemical Composition Relationships in Winter and Spring PM10 Samples over Southeastern Italy. Sci. Total Environ. 2020, 730, 138899. [Google Scholar] [CrossRef] [PubMed]
- Basart, S.; Pérez, C.; Cuevas, E.; Baldasano, J.M.; Gobbi, G.P. Aerosol Characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from Direct-Sun AERONET Observations. Atmos. Chem. Phys. 2009, 9, 8265–8282. [Google Scholar] [CrossRef]
- Contini, D.; Cesari, D.; Genga, A.; Siciliano, M.; Ielpo, P.; Guascito, M.R.; Conte, M. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci. Total Environ. 2014, 472, 248–261. [Google Scholar] [CrossRef]
- Perrone, M.R.; Romano, S.; Orza, J.A.G. Columnar and Ground-Level Aerosol Optical Properties: Sensitivity to the Transboundary Pollution, Daily and Weekly Patterns, and Relationships. Environ. Sci. Pollut. Res. Int. 2015, 22, 16570–16589. [Google Scholar] [CrossRef]
- Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; et al. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) Summer 2013 Campaign. Atmos. Chem. Phys. 2016, 16, 455–504. [Google Scholar] [CrossRef]
- Contini, D.; Genga, A.; Cesari, D.; Siciliano, M.; Donateo, A.; Bove, M.C.; Guascito, M.R. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos. Res. 2010, 95, 40–54. [Google Scholar] [CrossRef]
- Santese, M.; De Tomasi, F.; Perrone, M.R. Advection patterns and aerosol optical and microphysical properties by AERONET over south-east Italy in the central Mediterranean. Atmos. Chem. Phys. 2008, 8, 1881–1896. [Google Scholar] [CrossRef]
- Larssen, S.; Sluyter, R.; Helmis, C. Criteria for EUROAIRNET, the EEA Air Quality Monitoring and Information Network. 1999. Available online: http://reports.eea.eu.int/TEC12/en (accessed on 18 July 2024).
- O’Connor, D.J.; Healy, D.A.; Hellebust, S.; Buters, J.T.M.; Sodeau, J.R. Using the WIBS-4 (Waveband Integrated Bioaerosol Sensor) Technique for the on-Line Detection of Pollen Grains. Aerosol Sci. Technol. 2014, 48, 341–349. [Google Scholar] [CrossRef]
- Healy, D.A.; O’Connor, D.J.; Sodeau, J.R. Measurement of the Particle Counting Efficiency of the “Waveband Integrated Bioaerosol Sensor” Model Number 4 (WIBS-4). J. Aerosol Sci. 2012, 47, 94–99. [Google Scholar] [CrossRef]
- Gabey, A.M.; Gallagher, M.W.; Whitehead, J.; Dorsey, J.R.; Kaye, P.H.; Stanley, W.R. Measurements and Comparison of Primary Biological Aerosol above and below a Tropical Forest Canopy Using a Dual Channel Fluorescence Spectrometer. Atmos. Chem. Phys. 2010, 10, 4453–4466. [Google Scholar] [CrossRef]
- Perring, A.E.; Schwarz, J.P.; Baumgardner, D.; Hernandez, M.T.; Spracklen, D.V.; Heald, C.L.; Gao, R.S.; Kok, G.; McMeeking, G.R.; McQuaid, J.B.; et al. Airborne Observations of Regional Variation in Fluorescent Aerosol across the United States. J. Geophys. Res. 2015, 120, 1153–1170. [Google Scholar] [CrossRef]
- Calvo, A.I.; Baumgardner, D.; Castro, A.; Fernández-González, D.; Vega-Maray, A.M.; Valencia-Barrera, R.M.; Oduber, F.; Blanco-Alegre, C.; Fraile, R. Daily Behavior of Urban Fluorescing Aerosol Particles in Northwest Spain. Atmos. Environ. 2018, 184, 262–277. [Google Scholar] [CrossRef]
- Yang, S.; Bekö, G.; Wargocki, P.; Williams, J.; Licina, D. Human Emissions of Size-Resolved Fluorescent Aerosol Particles: Influence of Personal and Environmental Factors. Environ. Sci. Technol. 2021, 55, 509–518. [Google Scholar] [CrossRef]
- Savage, N.J.; Krentz, C.E.; Könemann, T.; Han, T.T.; Mainelis, G.; Pöhlker, C.; Huffman, J.A. Systematic Characterization and Fluorescence Threshold Strategies for the Wideband Integrated Bioaerosol Sensor (WIBS) Using Size-Resolved Biological and Interfering Particles. Atmos. Meas. Tech. 2017, 10, 4279–4302. [Google Scholar] [CrossRef]
- Romano, S.; Perrone, M.R.; Pavese, G.; Esposito, F.; Calvello, M. Optical Properties of PM2.5 Particles: Results from a Monitoring Campaign in Southeastern Italy. Atmos. Environ. 2019, 203, 35–47. [Google Scholar] [CrossRef]
- Stone, E.A.; Mampage, C.B.A.; Hughes, D.D.; Jones, L.M. Airborne Sub-Pollen Particles from Rupturing Giant Ragweed Pollen. Aerobiologia 2021, 37, 625–632. [Google Scholar] [CrossRef]
- Tang, D.; Wei, T.; Yuan, J.; Xia, H.; Dou, X. Observation of Bioaerosol Transport Using Wideband Integrated Bioaerosol Sensor and Coherent Doppler Lidar. Atmos. Meas. Tech. 2022, 15, 2819–2838. [Google Scholar] [CrossRef]
- Wu, G.; Wan, X.; Gao, S.; Fu, P.; Yin, Y.; Li, G.; Zhang, G.; Kang, S.; Ram, K.; Cong, Z. Humic-like Substances (HULIS) in Aerosols of Central Tibetan Plateau (Nam Co, 4730 m Asl): Abundance, Light Absorption Properties, and Sources. Environ. Sci. Technol. 2018, 52, 7203–7211. [Google Scholar] [CrossRef] [PubMed]
- Pani, S.K.; Lee, C.-T.; Griffith, S.M.; Lin, N.-H. Humic-like Substances (HULIS) in Springtime Aerosols at a High-Altitude Background Station in the Western North Pacific: Source Attribution, Abundance, and Light-Absorption. Sci. Total Environ. 2022, 809, 151180. [Google Scholar] [CrossRef]
- Stafoggia, M.; Zauli-Sajani, S.; Pey, J.; Samoli, E.; Alessandrini, E.; Basagaña, X.; Cernigliaro, A.; Chiusolo, M.; Demaria, M.; Díaz, J.; et al. Desert dust outbreaks in Southern Europe: Contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions. Environ. Health Perspect. 2016, 124, 413–419. [Google Scholar] [CrossRef]
WIBS Fluorescent Category | Aerosol/Bioaerosol Particles (Size Range) |
---|---|
A | Bacteria (<5 μm), fungi (2–9 μm), soot (<1 μm), mineral dust (2–7 μm) |
B | Soot (<1 μm), HULIS (≈1 μm), mineral dust (2–7 μm) |
C | Pollen fragments (<10 μm) |
AB | Bacteria (1–5 μm), fungi (2–9 μm), pollen fragments (<10 μm), mineral dust (2–7 μm) |
AC | |
BC | HULIS (≈1 μm), pollen fragments (<10 μm) |
ABC | Fungi (2–9 μm), pollen fragments (<10 μm), clothing fibers (3–10 μm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragola, M.; Peccarrisi, D.; Romano, S.; Quarta, G.; Calcagnile, L. Assessing Characteristics and Variability of Fluorescent Aerosol Particles: Comparison of Two Case Studies in Southeastern Italy Using a Wideband Integrated Bioaerosol Sensor. Aerobiology 2024, 2, 44-58. https://doi.org/10.3390/aerobiology2030004
Fragola M, Peccarrisi D, Romano S, Quarta G, Calcagnile L. Assessing Characteristics and Variability of Fluorescent Aerosol Particles: Comparison of Two Case Studies in Southeastern Italy Using a Wideband Integrated Bioaerosol Sensor. Aerobiology. 2024; 2(3):44-58. https://doi.org/10.3390/aerobiology2030004
Chicago/Turabian StyleFragola, Mattia, Dalila Peccarrisi, Salvatore Romano, Gianluca Quarta, and Lucio Calcagnile. 2024. "Assessing Characteristics and Variability of Fluorescent Aerosol Particles: Comparison of Two Case Studies in Southeastern Italy Using a Wideband Integrated Bioaerosol Sensor" Aerobiology 2, no. 3: 44-58. https://doi.org/10.3390/aerobiology2030004