1997–2016, Twenty Years of Pollen Monitoring Activity in Rome Tor Vergata (Rome South-East): Trends Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Vegetation
2.3. Pollen Data
2.4. Meteorological Data
2.5. Statistical Methods
3. Results
3.1. Linear Regression Analysis—RMA (Reduced Major Axis)
3.1.1. Pollen
3.1.2. Meteorological Data
3.2. Spearman’s Correlation Test
3.3. Wilcoxon Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bargagli, R. Ecologia Applicata. Per un uso Consapevole Dell’aria, Dell’acqua e del Suolo; Amon: Roma, Italy, 2012; ISBN 9788866030997. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Michaels, P.J.; Wojick, D.E. Climate Modeling Dominates Climate Science. 2016. Available online: https://wattsupwiththat.com/category/climate-models-2/page/12/ (accessed on 14 September 2024).
- Travaglini, A.; De Franco, D.; Di Menno di Bucchianico, A.; Brighetti, M.A. Twenty years of pollen monitoring activity at Rome Tor Vergata (Rome south south-east): Trends analysis. In Abstract Book 118° Congresso Della Società Botanica Italiana—IX International Plant Science Conference; Società Botanica Italiana: Pisa, Italy, 2023; p. 92. ISBN 978-88-85915-28-2. [Google Scholar]
- Esposito, S. Un’analisi dell’Andamento Pluviometrico sul Territorio Nazionale nell’Anno Appena Concluso. Pianeta PSR 2022, 110. CREA. Available online: https://www.pianetapsr.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2888 (accessed on 14 September 2024).
- Mercuri, A.M.; Torri, P.; Fornaciari, R.; Florenzano, A. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna). Plants 2016, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Woldearegay, M. Climate change impacts on the distribution and phenology of plants: A review. J. Soc. Trop. Plant Res. 2020, 7, 196–204. [Google Scholar] [CrossRef]
- Mall, R.K.; Gupta, A.; Sonkar, G. Effect of the climate change on agricultural crops. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–46. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. A review on the observed climate change in Europe and its impacts on viticulture. Atmosphere 2022, 13, 837. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Barandica, J.M.; Aguilera, P.A.; Rescia, A. Examining Potential Environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture 2020, 10, 509. [Google Scholar] [CrossRef]
- Cristofolini, F.; Cristofori, A.; Corradini, S.; Gottardini, E. The impact of temperature on increased airborne pollen and earlier onset of the pollen season in Trentino, Northern Italy. Reg. Environ. Chang. 2024, 24, 60. [Google Scholar] [CrossRef]
- Kluska, K.; Piotrowicz, K.; Kasprzyk, I. The impact of rainfall on the diurnal patterns of atmospheric pollen concentrations. Agric. For. Meteorol. 2020, 291, 108042. [Google Scholar] [CrossRef]
- Vasilevskaya, N. Pollution of the environment and pollen: A review. Stresses 2022, 2, 515–530. [Google Scholar] [CrossRef]
- Galan, C.; Alcazar, P.; Oteros, J.; Garcia-Mozo, H.; Aira, M.J.; Belmonte, J.; Diaz De La Guardia, C.; Fernandez, D.; Gutierrez-Bustillo, M.; Moreno, S.; et al. Airborne pollen trends in the Iberian Peninsula. In Abstract Book Mediterranean Palynology Symposium; Mediterranean Palynology Symposium: Roma, Italy, 2015; p. 44. [Google Scholar]
- Available online: https://www.comune.roma.it/web-resources/cms/documents/Verde_2016.pdf (accessed on 9 November 2024).
- Portale della Flora di Roma. Available online: http://dryades.units.it/Roma/ (accessed on 7 November 2024).
- Brighetti, M.A.; De Franco, D.; Di Cosmo, C.; Di Menno di Bucchianico, A.; Froio, F.; Miraglia, A.; Moselli, D.; Travaglini, A. Aerobiological Biodiversity in the Metropolitan City of Rome. Int. J. Environ. Sci. Nat. Resour. 2022, 30, 556283. [Google Scholar]
- EEA—European Environment Agency. Updated CLC Illustrated Nomenclature Guidelines, Service Contract No 3436/R0-Copernicus/EEA.57441; Environment Agency Austria EAA: Vienna, Austria, 2019. [Google Scholar]
- CEN/TS 16868:2019; Ambient Air-Sampling and Analysis of Airborne Pollen Grains and Fungal Spores for Allergy Networks-Volumetric Hirst Method. UNI, Italian National Unification: Milano, Italy, 2019.
- Mandrioli, P.; Caneva, G. Aerobiologia e Beni Culturali. Metodologie e Tecniche di Misura; Nardini: Firenze, Italy, 1998; pp. 121–156. [Google Scholar]
- Travaglini, A.; Albertini, R.; Zieger, E.; Brighetti, M.A.; Ugolotti, M.; Torrigiani, T. Manuale di Gestione e Qualità della Rete Italiana di Monitoraggio in Aerobiologia R.I.M.A.®; Lego: Bologna, Italy, 2009; ISBN 978-88-900277-1-0. [Google Scholar]
- Ziello, C.; Sparks, T.; Estrella, N.; Belmonte, J.; Bergmann, K.C.; Bucher, E.; Brighetti, M.A.; Damialis, A.; Detandt, M.; Galán, C.; et al. Changes to Airborne Pollen Counts across Europe. PLoS ONE 2012, 7, e34076. [Google Scholar] [CrossRef]
- Galán, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, A.; Dahl, A.; Fernandez-González, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Jäger, S.; Nilsson, S.; Berggren, B.; Pessi, A.; Helander, M.; Ramfjord, H. Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. Grana 1996, 35, 171–178. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4–9. [Google Scholar]
- IBM Corp. Released. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Cristofolini, F.; Anelli, P.; Billi, B.M.; Bocchi, C.; Borney, M.F.; Bucher, E.; Cassoni, F.; Coli, S.; De Gironimo, V.; Gottardini, E.; et al. Temporal trends in airborne pollen seasonality: Evidence from the Italian POLLnet network data. Aerobiologia 2019, 36, 63–70. [Google Scholar] [CrossRef]
- López-Orozco, R.; García-Mozo, H.; Oteros, J.; Galán, C. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest. Sci. Total Environ. 2023, 897, 165400. [Google Scholar] [CrossRef]
- Schramm, P.J.; Brown, C.L.; Saha, S.; Conlon, K.C.; Manangan, A.P.; Bell, J.E.; Jess, J.J. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health. Int. J. Biometeorol. 2021, 65, 1615–1628. [Google Scholar] [CrossRef]
- Di Menno Di Bucchianico, A.; Gaddi, R.; Cattani, G.; Brini, S.; Bucher, E.; Rossi, M.; Corona, M.; Pellegrini, E.; Scopano, E.; Bartiromo, M.; et al. Pollini allergenici in Italia: Analisi dei trend 2010–2019. In Rapporti 335/2020; ISPRA: Roma, Italy, 2020; ISBN 978-88-448-1033-7. [Google Scholar]
- Di Menno Di Bucchianico, A.; Gaddi, R.; Cattani, G.; Brini, S.; Bucher, E.; Rossi, M.; Corona, M.; Pellegrini, E.; Scopano, E.; Bartiromo, M.; et al. Stato e trend dei principali pollini allergenici in Italia (2003–2019). In Rapporti 338/2021; ISPRA: Roma, Italy, 2021; ISBN 978-88-448-1037-5. [Google Scholar]
- Di Menno di Bucchianico, A.; Gaddi, R.; Brighetti, M.A.; De Franco, D.; Miraglia, A.; Travaglini, A. Status and Trend of the Main Allergenic Pollen Grains and Alternaria Spores in the City of Rome (2003–2019). Sustainability 2023, 15, 6150. [Google Scholar] [CrossRef]
- Markey, E.; Hourihane Clancy, J.; Martínez-Bracero, M.; María Maya-Manzano, J.; Smith, M.; Skjøth, C.; Dowding, P.; Sarda-Estève, R.; Baisnée, D.; Donnelly, A.; et al. A comprehensive aerobiological study of the airborne pollen in the Irish environment. Aerobiologia 2022, 38, 343–366. [Google Scholar] [CrossRef]
- Rute Guerra Caeiro, E.; Pisa Camacho, R.A.; Ferreira, M.; Carreiro-Martins, P.; Gomes Câmara Camacho, I. Trends in airborne grass pollen in Évora City (Portugal). Aerobiologia 2024, 40, 175–189. [Google Scholar] [CrossRef]
- Alarcòn, M.; del Carmen Casas-Castillo, M.; Rodríguez-Solà, R.; Periago, C.; Belmonte, J. Projections of the start of the airborne pollen season in Barcelona (NE Iberian Peninsula) over the 21st century. Sci. Total Environ. 2024, 937, 173363. [Google Scholar] [CrossRef]
- Picornell, A.; Buters, J.; Rojo, J.; Traidl-Hoffmann, C.; Damialis, A.; Menzel, A.; Bergmann, K.C.; Werchan, M.; Schmidt-Weber, C.; Oteros, J. Predicting the start, peak and end of the Betula pollen season in Bavaria, Germany. Sci. Total Environ. 2019, 690, 1299–1309. [Google Scholar] [CrossRef]
- Grewling, L.; Ribeiro, H.; Antunes, C.; Philliam Apangu, G.; Çelenk, S.; Costa, A.; Eguiluz-Gracia, I.; Galveias, A.; Gonzalez Roldan, N.; Lika, M.; et al. Outdoor airborne allergens: Characterization, behavior and monitoring in Europe. Sci. Total Environ. 2023, 905, 167042. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.W. Pollen Allergy. In Pollen Allergy in a Changing World; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Ghitarrini, S.; Tedeschini, E.; Timorato, V.; Frenguelli, G. Climate change: Consequences on the pollination of grasses in Perugia (Central Italy). A 33-years-long study. Int. J. Biometeorol. 2017, 61, 149–158. [Google Scholar] [CrossRef]
- Ščevková, J.; Vašková, Z.; Sepšiová, R.; Kováč, J. Seasonal variation in the allergenic potency of airborne grass pollen in Bratislava (Slovakia) urban environment. Environ. Sci. Pollut. Res. 2021, 28, 62583–62592. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Regional Office for Europe. In Proceedings of the Phenology and Human Health: Allergic Disorders: Report on a WHO Meeting, Rome, Italy, 16–17 January 2003; WHO Regional Office for Europe: Copenaghen, Denmark, 2003. [Google Scholar]
- Rojo, J.; Fernández-González, F.; Lara, B.; Bouso, V.; Crespo, G.; Hernández-Palacios, G.; Pilar Rodríguez-Rojo, M.; Rodríguez-Torres, A.; Smith, M.; Pérez-Badia, R. The effects of climate change on the flowering phenology of alder trees in Southwestern Europe. Mediterr. Bot. 2021, 42, e67360. [Google Scholar] [CrossRef]
- Velasco-Jiménez, M.J.; Alcázar, P.; Díaz de la Guardia, C.; del Mar Trigo, M.; de Linares, C.; Recio, M.; Galán, C. Pollen season trends in winter flowering trees in South Spain. Aerobiologia 2020, 36, 13–224. [Google Scholar] [CrossRef]
- Bhattacharya, A. Effect of Soil Water Deficit on Growth and Development of Plants: A Review. In Soil Water Deficit and Physiological Issues in Plants; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wjid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Cariñanos, P.; Guerrero-Rascado, J.L.; Valle, A.M.; Cazorla, A.; Titos, G.; Foyo-Moreno, I.; Alados-Arboledas, L.; Díaz de la Guardia, C. Assessing pollen extreme events over a Mediterranean site: Role of local surface meteorology. Atmos. Environ. 2022, 272, 118928. [Google Scholar] [CrossRef]
- Aznar, F.; Negral, L.; Moreno-Grau, S.; Elvira-Rendueles, B.; Costa-Gòmez, I.; Moreno, J.M. Cannabis, an emerging aeroallergen in southeastern Spain (Region of Murcia). Sci. Total Environ. 2022, 833, 155156. [Google Scholar] [CrossRef]
- Pfaar, O.; Bastl, K.; Berger, U.; Buters, J.; Calderon, M.A.; Clot, B.; Darsow, U.; Demoly, P.; Durham, S.R.; Galán, C.; et al. Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis-An EAACI position paper. Allergy 2017, 72, 713–722. [Google Scholar] [CrossRef]
- Bergmann, K.C.; Buters, J.; Karatzas, K.; Tasioulis, T.; Werchen, B.; Werchan, M.; Pfaar, O. The development of birch pollen season over 30 years in Munich, Germany-An EAACI Task Force report*. Allergy 2020, 75, 3024–3026. [Google Scholar] [CrossRef]
Taxon | Linear Regression | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Production Indicators | ||||||||||
APIn | Peak Daily Concentration (p/m3) | Peak Day | ||||||||
R2 | b (Trend) | p | R2 | b (Trend) | p | R2 | b (Trend) | p | ||
Herbaceous | Amaranthaceae | 0.301 | −18.722 | 0.012 * | 0.216 | −0.812 | 0.039 * | 0.229 | −4818 | 0.033 * |
Euphorbiaceae | 0.005 | −2645 | 0.769 | 0.009 | −0.401 | 0.688 | 0.059 | 4813 | 0.302 | |
Poaceae | 0.008 | 27.599 | 0.706 | 0.121 | −8843 | 0.133 | 0.031 | −0.385 | 0.457 | |
Plantaginaceae | 0.470 | 60.371 | 0.001 ** | 0.646 | 2131 | 0.001 ** | 0.202 | 2330 | 0.047 * | |
Polygonaceae | 0.108 | 5648 | 0.158 | 0.024 | 0.187 | 0.513 | 0.001 | −0.072 | 0.918 | |
Urticaceae | 0.407 | 366.460 | 0.002 ** | 0.393 | 10.520 | 0.003 ** | 0.025 | −0.530 | 0.508 | |
herbaceous TOTAL | 0.231 | 429.928 | 0.032 * | - | - | - | - | - | - | |
Arboreous | Carpinus/Ostrya | 0.042 | 51.101 | 0.401 | 0.013 | 5344 | 0.643 | 0.004 | −0.140 | 0.797 |
Castanea | 0.322 | −122.600 | 0.009 ** | 0.260 | −56.326 | 0.022 * | 0.038 | −0.223 | 0.410 | |
Corylus | 0.001 | 0.818 | 0.957 | 0.004 | 0.570 | 0.787 | 0.007 | 0.363 | 0.726 | |
Cupressaceae | 0.003 | −37.017 | 0.829 | 0.015 | −12.617 | 0.613 | 0.020 | −0.365 | 0.563 | |
Fraxinus | 0.007 | 4260 | 0.751 | 0.060 | 1558 | 0.583 | 0.005 | 0.393 | 0.360 | |
Myrtaceae | 0.255 | −24.098 | 0.023 * | 0.203 | −2151 | 0.046 * | 0.026 | −0.311 | 0.497 | |
Olea | 0.122 | −94.343 | 0.132 | 0.112 | −15.725 | 0.150 | 0.011 | −0.143 | 0.654 | |
Pinaceae | 0.008 | −12.840 | 0.710 | 0.004 | 1846 | 0.792 | 0.110 | −0.377 | 0.154 | |
Platanaceae | 0.146 | 20.048 | 0.096 | 0.079 | 2324 | 0.232 | 0.002 | 0.072 | 0.843 | |
Populus | 0.108 | 140.370 | 0.157 | 0.126 | 16.938 | 0.125 | 0.315 | −628.000 | 0.010 ** | |
Quercus | 0.027 | 22.961 | 0.491 | 0.041 | 7097 | 0.391 | 0.001 | 0.029 | 0.940 | |
Ulmus | 0.052 | 18.439 | 0.334 | 0.069 | 3005 | 0.263 | 0.075 | −0.671 | 0.243 | |
arboreous TOTAL | 0.002 | −61.950 | 0.853 | - | - | - | - | - | - | |
POLLEN TOTAL | 0.048 | 450.017 | 0.354 | - | - | - | - | - | - |
Taxon | % (APIn Taxon/APIn Tot) | |
---|---|---|
herbaceous | Amaranthaceae | 1.4 |
Euphorbiaceae | 1.0 | |
Plantaginaceae | 0.8 | |
Poaceae | 12.0 | |
Polygonaceae | 0.5 | |
Urticaceae | 15.1 | |
Arboreous | Carpinus/Ostrya | 3.7 |
Castanea | 5.1 | |
Corylus | 1.3 | |
Cupressaceae | 24.8 | |
Fraxinus | 1.2 | |
Myrtaceae | 1.0 | |
Olea | 6.3 | |
Pinaceae | 6.6 | |
Platanaceae | 1.2 | |
Populus | 2.8 | |
Quercus | 9.2 | |
Ulmaceae | 1.4 | |
Others | 4.8 | |
Total | 100.0 |
Taxon | Pollen Season | ||||||
---|---|---|---|---|---|---|---|
Phenological Indicators | Production Indicators | ||||||
Start Dates | End Dates | Length (n Days) | APIn | Peak Daily Concentration (p/m3) | Peak Day | ||
Herbaceous | Amaranthaceae | 25/5 | 20/10 | 149 | 621 | 23 | 23/7 |
Euphorbiaceae | 28/1 | 21/11 | 299 | 470 | 19 | 14/5 | |
Poaceae | 23/4 | 16/7 | 85 | 5998 | 328 | 14/5 | |
Plantaginaceae | 5/4 | 7/8 | 125 | 607 | 22 | 10/6 | |
Polygonaceae | 29/3 | 17/7 | 112 | 257 | 14 | 18/5 | |
Urticaceae | 17/3 | 28/9 | 196 | 8177 | 222 | 22/4 | |
Arboreous | Carpinus/Ostrya | 27/3 | 6/5 | 41 | 2034 | 284 | 12/4 |
Castanea | 11/6 | 16/7 | 35 | 2104 | 538 | 25/6 | |
Corylus | 2/1 | 14/3 | 72 | 653 | 76 | 12/2 | |
Cupressaceae | 1/2 | 26/4 | 85 | 11,717 | 1007 | 26/2 | |
Fraxinus | 23/2 | 11/5 | 79 | 542 | 57 | 28/3 | |
Myrtaceae | 26/5 | 12/8 | 79 | 419 | 37 | 5/7 | |
Olea | 13/5 | 12/6 | 31 | 2900 | 389 | 27/5 | |
Pinaceae | 14/4 | 11/6 | 59 | 2932 | 405 | 5/5 | |
Platanaceae | 23/3 | 24/4 | 33 | 624 | 86 | 2/4 | |
Populus | 2/3 | 5/4 | 35 | 1243 | 209 | 22/3 | |
Quercus | 14/4 | 2/6 | 51 | 5048 | 383 | 12/5 | |
Ulmus | 10/2 | 5/4 | 56 | 683 | 80 | 27/2 |
Months | Linear Regression | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Meteorological Variables | ||||||||||||
mm Rain | Rainy Days | T max | T min | |||||||||
R2 | Slope | p | R2 | Slope | p | R2 | Slope | p | R2 | Slope | p | |
January | 0.041 | 1.971 | 0.406 | 0.202 | 0.295 | 0.053 | 0.006 | 0.016 | 0.749 | 0.004 | 0.020 | 0.8 |
February | 0.193 | 2.921 | 0.060 | 0.209 | 0.332 | 0.049 * | 0.001 | 0.003 | 0.996 | 0.005 | 0.028 | 0.773 |
March | 0.170 | 2.856 | 0.079 | 0.224 | 0.342 | 0.041 * | 0.122 | 0.092 | 0.148 | 0.014 | 0.028 | 0.65 |
April | 0.004 | −0.348 | 0.810 | 0.081 | −0.214 | 0.252 | 0.709 | 0.274 | 0.001 ** | 0.039 | 0.034 | 0.395 |
May | 0.134 | 2.658 | 0.124 | 0.093 | 0.191 | 0.203 | 0.173 | 0.114 | 0.078 | 0.158 | −0.080 | 0.093 |
June | 0.203 | 3.676 | 0.053 | 0.233 | 0.167 | 0.036 * | 0.276 | 0.166 | 0.021 * | 0.020 | −0.031 | 0.578 |
July | 0.118 | 1.833 | 0.150 | 0.100 | 0.137 | 0.187 | 0.420 | 0.246 | 0.003 ** | 0.090 | 0.063 | 0.212 |
August | 0.079 | −1.108 | 0.245 | 0.073 | −0.098 | 0.262 | 0.195 | 0.185 | 0.058 | 0.007 | −0.016 | 0.738 |
September | 0.002 | −0.365 | 0.865 | 0.071 | 0.130 | 0.271 | 0.254 | 0.138 | 0.029 * | 0.206 | 0.0945 | 0.047 * |
October | 0.049 | −1.981 | 0.363 | 0.001 | 0.007 | 0.965 | 0.090 | 0.056 | 0.215 | 0.020 | 0.0255 | 0.586 |
November | 0.012 | 1.345 | 0.657 | 0.030 | −0.121 | 0.478 | 0.167 | 0.095 | 0.075 | 0.023 | 0.0436 | 0.533 |
December | 0.035 | −6.275 | 0.445 | 0.005 | −0.060 | 0.764 | 0.017 | 0.028 | 0.619 | 0.000 | −0.004 | 0.980 |
annual | 0.024 | 5.958 | 0.515 | 0.162 | 1.241 | 0.079 | 0.520 | 0.116 | 0.000 | 0.022 | 0.015 | 0.499 |
Months | Linear Regression | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cumulated Meteorological Variables | ||||||||||||
mm Rain | Rainy Days | T max | T min | |||||||||
R2 | Slope | p | R2 | Slope | p | R2 | Slope | p | R2 | Slope | p | |
January | 0.041 | 1.971 | 0.406 | 0.202 | 0.295 | 0.053 | 0.001 | 0.280 | 0.886 | 0.003 | 0.568 | 0.824 |
February | 0.186 | 4.874 | 0.066 | 0.239 | 0.626 | 0.034 * | 0.000 | 0.257 | 0.940 | 0.005 | 1.320 | 0.769 |
March | 0.359 | 7.730 | 0.007 ** | 0.327 | 0.968 | 0.011 * | 0.035 | 3.453 | 0.446 | 0.010 | 2.250 | 0.687 |
April | 0.203 | 7.378 | 0.061 | 0.135 | 0.746 | 0.134 | 0.287 | 13.483 | 0.022 * | 0.039 | 5.160 | 0.431 |
May | 0.282 | 10.899 | 0.019 * | 0.199 | 1.091 | 0.056 | 0.463 | 23.722 | 0.001 ** | 0.024 | 4.059 | 0.523 |
June | 0.341 | 14.574 | 0.009 ** | 0.228 | 1.258 | 0.039 * | 0.500 | 28.685 | 0.001 ** | 0.014 | 3.145 | 0.630 |
July | 0.349 | 16.407 | 0.008 ** | 0.269 | 1.395 | 0.023 * | 0.585 | 36.296 | 0.001 ** | 0.034 | 5.109 | 0.448 |
August | 0.311 | 15.314 | 0.013 * | 0.261 | 1.297 | 0.025 * | 0.542 | 42.043 | 0.001 ** | 0.023 | 4.627 | 0.532 |
September | 0.281 | 15.745 | 0.020 * | 0.292 | 1.426 | 0.017 * | 0.557 | 46.631 | 0.001 ** | 0.063 | 7.846 | 0.299 |
October | 0.192 | 14.642 | 0.060 | 0.260 | 1.433 | 0.026 * | 0.531 | 47.475 | 0.001 ** | 0.060 | 7.991 | 0.311 |
November | 0.171 | 16.254 | 0.073 | 0.176 | 1.326 | 0.078 | 0.538 | 50.331 | 0.001 ** | 0.062 | 9.036 | 0.303 |
December | 0.063 | 10.126 | 0.301 | 0.146 | 1.265 | 0.106 | 0.527 | 50.807 | 0.001 ** | 0.041 | 7.628 | 0.409 |
annual | 0.024 | 5.958 | 0.515 | 0.162 | 1.241 | 0.079 | 0.628 | 1.702 | 0.001 ** | 0.075 | 0.323 | 0.247 |
Pollen Indicator | Wilcoxon’s Test | |||
---|---|---|---|---|
Z | p | |||
Tmax JFM | vs | Ulmus START | −3.358 | 0.005 |
Platanaceae START | −2.192 | 0.011 | ||
Populus START | −3.892 | 0.028 | ||
Populus LENGTH | −3.268 | 0.008 | ||
mm rain JFM | vs | Quercus APIn | −3.421 | 0.001 |
Urticaceae APIn | −0.747 | 0.455 | ||
Polygonaceae APIn | −3.810 | 0.001 | ||
Plantaginaceae APIn | −3.920 | 0.000 | ||
Poaceae START | −3.660 | 0.002 | ||
mm rain JAS | vs | Olea LENGTH | −2.890 | 0.011 |
Platanaceae LENGTH | −2.483 | 0.002 | ||
Euphorbiaceae APIn | −3.710 | 0.001 | ||
mm rain OND | vs | Castanea START | −2.782 | 0.004 |
Euphorbiaceae APIn | −3.531 | 0.001 | ||
Olea LENGTH | −2.781 | 0.010 | ||
Urticaceae APIn | −3.781 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Franco, D.; Di Menno di Bucchianico, A.; Travaglini, A.; Brighetti, M.A. 1997–2016, Twenty Years of Pollen Monitoring Activity in Rome Tor Vergata (Rome South-East): Trends Analysis. Aerobiology 2024, 2, 105-117. https://doi.org/10.3390/aerobiology2040008
De Franco D, Di Menno di Bucchianico A, Travaglini A, Brighetti MA. 1997–2016, Twenty Years of Pollen Monitoring Activity in Rome Tor Vergata (Rome South-East): Trends Analysis. Aerobiology. 2024; 2(4):105-117. https://doi.org/10.3390/aerobiology2040008
Chicago/Turabian StyleDe Franco, Denise, Alessandro Di Menno di Bucchianico, Alessandro Travaglini, and Maria Antonia Brighetti. 2024. "1997–2016, Twenty Years of Pollen Monitoring Activity in Rome Tor Vergata (Rome South-East): Trends Analysis" Aerobiology 2, no. 4: 105-117. https://doi.org/10.3390/aerobiology2040008
APA StyleDe Franco, D., Di Menno di Bucchianico, A., Travaglini, A., & Brighetti, M. A. (2024). 1997–2016, Twenty Years of Pollen Monitoring Activity in Rome Tor Vergata (Rome South-East): Trends Analysis. Aerobiology, 2(4), 105-117. https://doi.org/10.3390/aerobiology2040008