Fluids, Vasopressors, and Inotropes to Restore Heart–Vessel Coupling in Sepsis: Treatment Options and Perspectives
Abstract
:1. Introduction
2. Fluids in Sepsis: Are Septic Patients Really Empty?
2.1. The First Bolus: What Is the Supporting Evidence?
2.2. Fluid Replacement after Early Resuscitation
3. From Sepsis to Septic Shock: Vasopressors for the Regulation of Peripheral Resistance
3.1. What Is the Correct Moment to Begin Vasopressors?
3.2. Will Vasopressors Worsen the Sepsis-Induced Myocardial Dysfunction?
3.3. What Is the Role and Timing of Vasopressin?
3.4. Is a Role for Other Vasopressors Foreseeable?
4. Inotropes in Septic Shock: Recruiting the Heart in the Fight!
4.1. The Use of Inotropes: What Is the Role of Dobutamine?
4.2. The Use of Inotropes: Do Medications Independent of the Adrenergic System Positively Impact Prognosis?
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Gusev, E.; Zhuravleva, Y. Inflammation: A New Look at an Old Problem. Int. J. Mol. Sci. 2022, 23, 4596. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.M.; Reeves, G.; Billman, G.E.; Sturmberg, J.P. Inflammation-Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front. Med. (Lausanne) 2018, 5, 316. [Google Scholar] [CrossRef]
- Zotova, N.V.; Chereshnev, V.A.; Gusev, E.Y. Systemic Inflammation: Methodological Approaches to Identification of the Common Pathological Process. PLoS ONE 2016, 11, e0155138. [Google Scholar] [CrossRef]
- Angus, D.C. The search for effective therapy for sepsis: Back to the drawing board? JAMA 2011, 306, 2614–2615. [Google Scholar] [CrossRef]
- Bernard, G.R.; Vincent, J.L.; Laterre, P.F.; LaRosa, S.P.; Dhainaut, J.F.; Lopez-Rodriguez, A.; Steingrub, J.S.; Garber, G.E.; Helterbrand, J.D.; Ely, E.W.; et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 2001, 344, 699–709. [Google Scholar] [CrossRef]
- Webster, N.R.; Galley, H.F. Immunomodulation in the critically ill. Br. J. Anaesth. 2009, 103, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, E1063–E1143. [Google Scholar] [CrossRef]
- Bakker, J.; Ince, C. Monitoring coherence between the macro and microcirculation in septic shock. Curr. Opin. Crit. Care 2020, 26, 267–272. [Google Scholar] [CrossRef]
- Malbrain, M.L.; Marik, P.E.; Witters, I.; Cordemans, C.; Kirkpatrick, A.W.; Roberts, D.J.; Van Regenmortel, N. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: A systematic review with suggestions for clinical practice. Anaesthesiol. Intensive Ther. 2014, 46, 361–380. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Ortiz, J.A.; Salgado, D. Coupling microcirculation to systemic hemodynamics. Curr. Opin. Crit. Care 2010, 16, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; de la Hoz, M.A.A.; Lee, G.; Lee, A.; Thoral, P.; Elbers, P.; Lee, H.C.; Munger, J.S.; Celi, L.A.; Kaufman, D.A. A novel Vascular Leak Index identifies sepsis patients with a higher risk for in-hospital death and fluid accumulation. Critical Care 26. ARTN 2022, 26, 103. [Google Scholar] [CrossRef]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef]
- Boyd, J.H.; Forbes, J.; Nakada, T.A.; Walley, K.R.; Russell, J.A. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit. Care Med. 2011, 39, 259–265. [Google Scholar] [CrossRef]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Marik, P.E.; Byrne, L.; van Haren, F. Fluid resuscitation in sepsis: The great 30 mL per kg hoax. J. Thorac. Dis. 2020, 12, S37–S47. [Google Scholar] [CrossRef]
- Johnson, M.R.; Reed, T.P.; Lowe, D.K.; Cahoon, W.D. Associated Mortality of Liberal Fluid Administration in Sepsis. J. Pharm. Pract. 2019, 32, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Kuttab, H.I.; Lykins, J.D.; Hughes, M.D.; Wroblewski, K.; Keast, E.P.; Kukoyi, O.; Kopec, J.A.; Hall, S.; Ward, M.A. Evaluation and Predictors of Fluid Resuscitation in Patients With Severe Sepsis and Septic Shock. Crit. Care Med. 2019, 47, 1582–1590. [Google Scholar] [CrossRef]
- Douglas, I.S.; Alapat, P.M.; Corl, K.A.; Exline, M.C.; Forni, L.G.; Holder, A.L.; Kaufman, D.A.; Khan, A.; Levy, M.M.; Martin, G.S.; et al. Fluid Response Evaluation in Sepsis Hypotension and Shock: A Randomized Clinical Trial. Chest 2020, 158, 1431–1445. [Google Scholar] [CrossRef]
- Meyhoff, T.S.; Hjortrup, P.B.; Wetterslev, J.; Sivapalan, P.; Laake, J.H.; Cronhjort, M.; Jakob, S.M.; Cecconi, M.; Nalos, M.; Ostermann, M.; et al. Restriction of Intravenous Fluid in ICU Patients with Septic Shock. N. Engl. J. Med. 2022, 386, 2459–2470. [Google Scholar] [CrossRef] [PubMed]
- Jessen, M.K.; Andersen, L.W.; Thomsen, M.H.; Kristensen, P.; Hayeri, W.; Hassel, R.E.; Messerschmidt, T.G.; Solling, C.G.; Perner, A.; Petersen, J.A.K.; et al. Restrictive fluids versus standard care in adults with sepsis in the emergency department (REFACED): A multicenter, randomized feasibility trial. Acad. Emerg. Med. 2022, 29, 1172–1184. [Google Scholar] [CrossRef] [PubMed]
- The National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Clinical Trials Network. Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension. N. Engl. J. Med. 2023, 388, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Shahnoor, H.; Divi, R.; Addi Palle, L.R.; Sharma, A.; Contractor, B.; Krupanagaram, S.; Batool, S.; Ali, N. The Effects of Restrictive Fluid Resuscitation on the Clinical Outcomes in Patients with Sepsis or Septic Shock: A Meta-Analysis of Randomized-Controlled Trials. Cureus 2023, 15, e45620. [Google Scholar] [CrossRef] [PubMed]
- Meyhoff, T.S.; Hjortrup, P.B.; Moller, M.H.; Wetterslev, J.; Lange, T.; Kjaer, M.N.; Jonsson, A.B.; Hjortso, C.J.S.; Cronhjort, M.; Laake, J.H.; et al. Conservative vs liberal fluid therapy in septic shock (CLASSIC) trial-Protocol and statistical analysis plan. Acta Anaesthesiol. Scand. 2019, 63, 1262–1271. [Google Scholar] [CrossRef]
- Lichtenstein, D.A.; Malbrain, M. Lung ultrasound in the critically ill (LUCI): A translational discipline. Anaesthesiol. Intensive Ther. 2017, 49, 430–436. [Google Scholar] [CrossRef]
- Varpula, M.; Tallgren, M.; Saukkonen, K.; Voipio-Pulkki, L.M.; Pettila, V. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005, 31, 1066–1071. [Google Scholar] [CrossRef]
- Vincent, J.L.; Nielsen, N.D.; Shapiro, N.I.; Gerbasi, M.E.; Grossman, A.; Doroff, R.; Zeng, F.; Young, P.J.; Russell, J.A. Mean arterial pressure and mortality in patients with distributive shock: A retrospective analysis of the MIMIC-III database. Ann. Intensive Care 2018, 8, 107. [Google Scholar] [CrossRef]
- Marik, P.E.; Varon, J. The hemodynamic derangements in sepsis—Implications for treatment strategies. Chest 1998, 114, 854–860. [Google Scholar] [CrossRef]
- Waechter, J.; Kumar, A.; Lapinsky, S.E.; Marshall, J.; Dodek, P.; Arabi, Y.; Parrillo, J.E.; Dellinger, R.P.; Garland, A.; Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Interaction between fluids and vasoactive agents on mortality in septic shock: A multicenter, observational study. Crit. Care Med. 2014, 42, 2158–2168. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhang, D. Timing of norepinephrine initiation in patients with septic shock: A systematic review and meta-analysis. Crit. Care 2020, 24, 488. [Google Scholar] [CrossRef] [PubMed]
- Jouffroy, R.; Hajjar, A.; Gilbert, B.; Tourtier, J.P.; Bloch-Laine, E.; Ecollan, P.; Boularan, J.; Bounes, V.; Vivien, B.; Gueye, P.N. Prehospital norepinephrine administration reduces 30-day mortality among septic shock patients. BMC Infect. Dis. 2022, 22, 345. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.J.; Lee, Y.S.; Kim, T.H.; Jang, J.H.; Lee, H.B.; Oh, D.K.; Park, M.H.; Lim, C.M.; Cho, W.H. Vasopressor Initiation Within 1 Hour of Fluid Loading Is Associated With Increased Mortality in Septic Shock Patients: Analysis of National Registry Data. Crit. Care Med. 2022, 50, e351–e360. [Google Scholar] [CrossRef] [PubMed]
- Elbouhy, M.A.; Soliman, M.; Gaber, A.; Taema, K.M.; Abdel-Aziz, A. Early Use of Norepinephrine Improves Survival in Septic Shock: Earlier than Early. Arch. Med. Res. 2019, 50, 325–332. [Google Scholar] [CrossRef]
- Permpikul, C.; Tongyoo, S.; Viarasilpa, T.; Trainarongsakul, T.; Chakorn, T.; Udompanturak, S. Early Use of Norepinephrine in Septic Shock Resuscitation (CENSER) A Randomized Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1097–1105. [Google Scholar] [CrossRef]
- Colon Hidalgo, D.; Patel, J.; Masic, D.; Park, D.; Rech, M.A. Delayed vasopressor initiation is associated with increased mortality in patients with septic shock. J. Crit. Care 2020, 55, 145–148. [Google Scholar] [CrossRef]
- Ospina-Tascon, G.A.; Hernandez, G.; Alvarez, I.; Calderon-Tapia, L.E.; Manzano-Nunez, R.; Sanchez-Ortiz, A.I.; Quinones, E.; Ruiz-Yucuma, J.E.; Aldana, J.L.; Teboul, J.L.; et al. Effects of very early start of norepinephrine in patients with septic shock: A propensity score-based analysis. Crit. Care 2020, 24, 52. [Google Scholar] [CrossRef]
- Ospina-Tascon, G.A.; Teboul, J.L.; Hernandez, G.; Alvarez, I.; Sanchez-Ortiz, A.I.; Calderon-Tapia, L.E.; Manzano-Nunez, R.; Quinones, E.; Madrinan-Navia, H.J.; Ruiz, J.E.; et al. Diastolic shock index and clinical outcomes in patients with septic shock. Ann. Intensive Care 2020, 10, 41. [Google Scholar] [CrossRef]
- Roberts, R.J.; Miano, T.A.; Hammond, D.A.; Patel, G.P.; Chen, J.T.; Phillips, K.M.; Lopez, N.; Kashani, K.; Qadir, N.; Cairns, C.B.; et al. Evaluation of Vasopressor Exposure and Mortality in Patients With Septic Shock*. Crit. Care Med. 2020, 48, 1445–1453. [Google Scholar] [CrossRef]
- Hamzaoui, O.; Jozwiak, M.; Geffriaud, T.; Sztrymf, B.; Prat, D.; Jacobs, F.; Monnet, X.; Trouiller, P.; Richard, C.; Teboul, J.L. Norepinephrine exerts an inotropic effect during the early phase of human septic shock. Br. J. Anaesth. 2018, 120, 517–524. [Google Scholar] [CrossRef]
- Hamzaoui, O.; Georger, J.F.; Monnet, X.; Ksouri, H.; Maizel, J.; Richard, C.; Teboul, J.L. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit. Care 2010, 14, R142. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Jabot, J.; Maizel, J.; Richard, C.; Teboul, J.L. Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit. Care Med. 2011, 39, 689–694. [Google Scholar] [CrossRef]
- Innocenti, F.; Palmieri, V.; Tassinari, I.; Capretti, E.; De Paris, A.; Gianno, A.; Marchesini, A.; Montuori, M.; Pini, R. Change in Myocardial Contractility in Response to Treatment with Norepinephrine in Septic Shock. Am. J. Respir. Crit. Care Med. 2021, 204, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Walley, K.R.; Singer, J.; Gordon, A.C.; Hebert, P.C.; Cooper, D.J.; Holmes, C.L.; Mehta, S.; Granton, J.T.; Storms, M.M.; et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N. Engl. J. Med. 2008, 358, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Sacha, G.L.; Bauer, S.R.; Lat, I. Vasoactive Agent Use in Septic Shock: Beyond First-Line Recommendations. Pharmacotherapy 2019, 39, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Sacha, G.L.; Lam, S.W.; Wang, L.; Duggal, A.; Reddy, A.J.; Bauer, S.R. Association of Catecholamine Dose, Lactate, and Shock Duration at Vasopressin Initiation With Mortality in Patients With Septic Shock. Crit. Care Med. 2022, 50, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Cai, H.; Zheng, X. Timing of vasopressin initiation and mortality in patients with septic shock: Analysis of the MIMIC-III and MIMIC-IV databases. BMC Infect. Dis. 2023, 23, 199. [Google Scholar] [CrossRef] [PubMed]
- Gordon, A.C.; Mason, A.J.; Thirunavukkarasu, N.; Perkins, G.D.; Cecconi, M.; Cepkova, M.; Pogson, D.G.; Aya, H.D.; Anjum, A.; Frazier, G.J.; et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial. JAMA 2016, 316, 509–518. [Google Scholar] [CrossRef]
- Hajjar, L.A.; Zambolim, C.; Belletti, A.; de Almeida, J.P.; Gordon, A.C.; Oliveira, G.; Park, C.H.L.; Fukushima, J.T.; Rizk, S.I.; Szeles, T.F.; et al. Vasopressin Versus Norepinephrine for the Management of Septic Shock in Cancer Patients: The VANCS II Randomized Clinical Trial. Crit. Care Med. 2019, 47, 1743–1750. [Google Scholar] [CrossRef]
- Hammond, D.A.; Cullen, J.; Painter, J.T.; McCain, K.; Clem, O.A.; Brotherton, A.L.; Chopra, D.; Meena, N. Efficacy and Safety of the Early Addition of Vasopressin to Norepinephrine in Septic Shock. J. Intensive Care Med. 2019, 34, 910–916. [Google Scholar] [CrossRef]
- Rydz, A.C.; Elefritz, J.L.; Conroy, M.; Disney, K.A.; Miller, C.J.; Porter, K.; Doepker, B.A. Early Initiation of Vasopressin Reduces Organ Failure and Mortality in Septic Shock. Shock 2022, 58, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.A.; de Almeida Beltrao, R.L.; de Oliveira Junior, F.M.; da Silva Junior, J.C.; de Arruda, E.P.C.; Lira, E.C.; da Rocha, M.J.A. Vasopressin and copeptin release during sepsis and septic shock. Peptides 2021, 136, 170437. [Google Scholar] [CrossRef] [PubMed]
- Wieruszewski, P.M.; Khanna, A.K. Vasopressor Choice and Timing in Vasodilatory Shock. Crit. Care 2022, 26, 76. [Google Scholar] [CrossRef]
- Levy, B.; Klein, T.; Kimmoun, A. Vasopressor use in cardiogenic shock. Curr. Opin. Crit. Care 2020, 26, 411–416. [Google Scholar] [CrossRef]
- Ammar, M.A.; Limberg, E.C.; Lam, S.W.; Ammar, A.A.; Sacha, G.L.; Reddy, A.J.; Bauer, S.R. Optimal norepinephrine-equivalent dose to initiate epinephrine in patients with septic shock. J. Crit. Care 2019, 53, 69–74. [Google Scholar] [CrossRef]
- Ammar, M.A.; Ammar, A.A.; Wieruszewski, P.M.; Bissell, B.D.; Long, M.T.; Albert, L.; Khanna, A.K.; Sacha, G.L. Timing of vasoactive agents and corticosteroid initiation in septic shock. Ann. Intensive Care 2022, 12, 47. [Google Scholar] [CrossRef]
- Hall, A.; Busse, L.W.; Ostermann, M. Angiotensin in Critical Care. Crit. Care 2018, 22, 69. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Ostermann, M.; Bellomo, R. Angiotensin II for the Treatment of Vasodilatory Shock. N. Engl. J. Med. 2017, 377, 2604. [Google Scholar] [CrossRef]
- Wieruszewski, P.M.; Wittwer, E.D.; Kashani, K.B.; Brown, D.R.; Butler, S.O.; Clark, A.M.; Cooper, C.J.; Davison, D.L.; Gajic, O.; Gunnerson, K.J.; et al. Angiotensin II Infusion for Shock: A Multicenter Study of Postmarketing Use. Chest 2021, 159, 596–605. [Google Scholar] [CrossRef]
- Bellomo, R.; Forni, L.G.; Busse, L.W.; McCurdy, M.T.; Ham, K.R.; Boldt, D.W.; Hastbacka, J.; Khanna, A.K.; Albertson, T.E.; Tumlin, J.; et al. Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock. A Clinical Trial. Am. J. Respir. Crit. Care Med. 2020, 202, 1253–1261. [Google Scholar] [CrossRef]
- Ruffolo, R.R., Jr.; Yaden, E.L. Vascular effects of the stereoisomers of dobutamine. J. Pharmacol. Exp. Ther. 1983, 224, 46–50. [Google Scholar] [PubMed]
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.; et al. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascon, G.A.; Marin, A.F.G.; Echeverri, G.J.; Bermudez, W.F.; Madrinan-Navia, H.; Valencia, J.D.; Quinones, E.; Rodriguez, F.; Marulanda, A.; Arango-Davila, C.A.; et al. Effects of dobutamine on intestinal microvascular blood flow heterogeneity and O-2 extraction during septic shock. J. Appl. Physiol. 2017, 122, 1406–1417. [Google Scholar] [CrossRef]
- Yealy, D.M.; Kellum, J.A.; Huang, D.T.; Barnato, A.E.; Weissfeld, L.A.; Pike, F.; Terndrup, T.; Wang, H.E.; Hou, P.C.; LoVecchio, F.; et al. A Randomized Trial of Protocol-Based Care for Early Septic Shock. N. Engl. J. Med. 2014, 370, 1683–1693. [Google Scholar] [CrossRef]
- Peake, S.L.; Delaney, A.; Bailey, M.; Bellomo, R.; Cameron, P.A.; Cooper, D.J.; Higgins, A.M.; Holdgate, A.; Howe, B.D.; Webb, S.A.R.; et al. Goal-Directed Resuscitation for Patients with Early Septic Shock. N. Engl. J. Med. 2014, 371, 1496–1506. [Google Scholar] [CrossRef] [PubMed]
- Mouncey, P.R.; Osborn, T.M.; Power, G.S.; Harrison, D.A.; Sadique, M.Z.; Grieve, R.D.; Jahan, R.; Tan, J.C.; Harvey, S.E.; Bell, D.; et al. Protocolised Management In Sepsis (ProMISe): A multicentre randomised controlled trial of the clinical effectiveness and cost-effectiveness of early, goal-directed, protocolised resuscitation for emerging septic shock. Health Technol. Assess 2015, 19, i-150. [Google Scholar] [CrossRef]
- Wilkman, E.; Kaukonen, K.M.; Pettila, V.; Kuitunen, A.; Varpula, M. Association between inotrope treatment and 90-day mortality in patients with septic shock. Acta Anaesth. Scand. 2013, 57, 431–442. [Google Scholar] [CrossRef]
- Cheng, L.; Yan, J.; Han, S.; Chen, Q.; Chen, M.; Jiang, H.; Lu, J. Comparative efficacy of vasoactive medications in patients with septic shock: A network meta-analysis of randomized controlled trials. Crit. Care 2019, 23, 168. [Google Scholar] [CrossRef]
- Palmieri, V.; Innocenti, F.; Guzzo, A.; Guerrini, E.; Vignaroli, D.; Pini, R. Left Ventricular Systolic Longitudinal Function as Predictor of Outcome in Patients With Sepsis. Circ. Cardiovasc. Imaging 2015, 8, e003865. [Google Scholar] [CrossRef]
- Innocenti, F.; Palmieri, V.; Guzzo, A.; Stefanone, V.T.; Donnini, C.; Pini, R. SOFA score and left ventricular systolic function as predictors of short-term outcome in patients with sepsis. Intern. Emerg. Med. 2018, 13, 51–58. [Google Scholar] [CrossRef]
- Ng, P.Y.; Sin, W.C.; Ng, A.K.; Chan, W.M. Speckle tracking echocardiography in patients with septic shock: A case control study (SPECKSS). Crit. Care 2016, 20, 145. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, F.; Corredor, C.; Fletcher, N.; Tritapepe, L.; Lorini, F.L.; Arcadipane, A.; Vieillard-Baron, A.; Cecconi, M. Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock: A systematic review and meta-analysis. Crit. Care 2018, 22, 183. [Google Scholar] [CrossRef] [PubMed]
- Dubin, A.; Lattanzio, B.; Gatti, L. The spectrum of cardiovascular effects of dobutamine—From healthy subjects to septic shock patients. Rev. Bras. Ter. Intensiv. 2017, 29, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Kattan, E.; Annane, D.; Castro, R.; Cecconi, M.; De Backer, D.; Dubin, A.; Evans, L.; Gong, M.N.; Hamzaoui, O.; et al. Current practice and evolving concepts in septic shock resuscitation. Intensive Care Med. 2022, 48, 148–163. [Google Scholar] [CrossRef]
- Takeuchi, K.; del Nido, P.J.; Ibrahim, A.E.; Poutias, D.N.; Glynn, P.; Cao-Danh, H.; Cowan, D.B.; McGowan, F.X., Jr. Increased myocardial calcium cycling and reduced myofilament calcium sensitivity in early endotoxemia. Surgery 1999, 126, 231–238. [Google Scholar] [CrossRef]
- Takechi, D.; Kuroda, N.; Dote, H.; Kim, E.; Yonekawa, O.; Watanabe, T.; Urano, T.; Homma, Y. Better documentation in electronic medical records would lead to an increased use of lower extremity venous ultrasound in the inpatient setting: A retrospective study. Acute Med. Surg. 2017, 4, 385–393. [Google Scholar] [CrossRef]
- Stamm, C.; Cowan, D.B.; Friehs, I.; Noria, S.; del Nido, P.J.; McGowan, F.X., Jr. Rapid endotoxin-induced alterations in myocardial calcium handling: Obligatory role of cardiac TNF-alpha. Anesthesiology 2001, 95, 1396–1405. [Google Scholar] [CrossRef]
- Papp, Z.; Agostoni, P.; Alvarez, J.; Bettex, D.; Bouchez, S.; Brito, D.; Cerny, V.; Comin-Colet, J.; Crespo-Leiro, M.G.; Delgado, J.F.; et al. Levosimendan Efficacy and Safety: 20 Years of SIMDAX in Clinical Use. J. Cardiovasc. Pharm. 2020, 76, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Endoh, M. Changes in intracellular Ca2+ mobilization and Ca2+ sensitization as mechanisms of action of physiological interventions and inotropic agents in intact myocardial cells. Jpn. Heart J. 1998, 39, 1–44. [Google Scholar] [CrossRef]
- Pollesello, P.; Papp, Z.; Papp, J.G. Calcium sensitizers: What have we learned over the last 25 years? Int. J. Cardiol. 2016, 203, 543–548. [Google Scholar] [CrossRef]
- Gordon, A.C.; Perkins, G.D.; Singer, M.; McAuley, D.F.; Orme, R.M.L.; Santhakumaran, S.; Mason, A.J.; Cross, M.; Al-Beidh, F.; Best-Lane, J.; et al. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis. N. Engl. J. Med. 2016, 375, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Chen, Y.; Li, M.; Yuan, J.J.; Chang, X.N.; Dong, C.M. Levosimendan does not reduce the mortality of critically ill adult patients with sepsis and septic shock: A meta-analysis. Chin. Med. J. (Engl.) 2019, 132, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Colucci, W.S.; Wright, R.F.; Braunwald, E. New positive inotropic agents in the treatment of congestive heart failure. Mechanisms of action and recent clinical developments. 2. N. Engl. J. Med. 1986, 314, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Jaski, B.E.; Fifer, M.A.; Wright, R.F.; Braunwald, E.; Colucci, W.S. Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose-response relationships and comparison to nitroprusside. J. Clin. Investig. 1985, 75, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Monrad, E.S.; Baim, D.S.; Smith, H.S.; Lanoue, A.; Brauwald, E.; Grossman, W. Effects of milrinone on coronary hemodynamics and myocardial energetics in patients with congestive heart failure. Circulation 1985, 71, 972–979. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Yin, H.Y.; Zhang, R.; Ye, X.L.; Wei, J.R. The effect of dobutamine vs. milrinone in sepsis: A big data, real-world study. Int. J. Clin. Pract. 2021, 75, e14689. [Google Scholar] [CrossRef]
Year | Study Population | Design | Protocol | End-Points | Main Results | |
---|---|---|---|---|---|---|
FRESH study Fluid Response Evaluation in Sepsis Hypotension and Shock [20] | 2020 | Patients admitted to the ED for sepsis, already treated with the first fluid bolus, with anticipated ICU admission: 83 patients in the intervention arm and 41 with usual care | Prospective, multicenter, randomized clinical trial | Intervention arm: assessment for fluid responsiveness before clinically driven fluid bolus or increase in vasopressors. Control arm: usual care. | Primary endpoint: the difference between the two treatment groups mean fluid balance at 72 h or ICU discharge | Lower fluid balance at 72 h or ICU discharge (−1.37 L) Reduced need of renal replacement therapy (5% vs. 18%) or mechanical ventilation (18% vs. 34%); |
CLOVERS study: Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension [23] | 2023 | 1563 patients: 782 assigned to the restrictive fluid group and 781 to the liberal fluid group | Multicenter, randomized, unblinded superiority trial | Restrictive fluid strategy: prioritizing vasopressors and lower intravenous fluid volumes. Liberal fluid strategy: prioritizing higher volumes of intravenous fluids before vasopressor use. | Primary outcome: all-cause mortality before discharge home by day 90. | Less fluids administered in the Group assigned to the restrictive strategy. No difference in the mortality rate and occurrence of serious adverse events. |
REFACED study: Restrictive fluids versus standard care in adults with sepsis in the emergency department [22] | 2022 | Sepsis patients without shock: 123 patients, with 61 in the Fluid restriction group and 62 assigned to standard care. | Multicenter, randomized feasibility trial | Fluid restriction: fluid boluses only permitted if predefined criteria for hypoperfusion occurred. Standard care: at the discretion of the treating team. | Primary outcome: total IV crystalloid fluid volumes at 24 h after randomization | At 24 h, significantly less fluids administered in the Fluid restriction group (mean difference—801 mL). No differences between groups in adverse events, use of mechanical ventilation or vasopressors, acute kidney failure, length of stay, or mortality |
CLASSIC trial: Restriction of Intravenous Fluid in ICU Patients with Septic Shock [25] | 2022 | Patients with septic shock in the ICU: 1554 patients; 770 in the restrictive-fluid group and 784 in the standard-fluid group | International, randomized trial | Restrictive-fluid group: intravenous fluid (1 L) could only be given under pre-specified-conditions. Standard fluid group: no upper limit for the amount of intravenous fluids | Primary outcome: all-cause mortality by day 90. | Restrictive fluid group: median of 1798 mL of intravenous fluids vs. 3811 mL the standard-fluid group No difference in the mortality rate or incidence of serious adverse events. |
Year | Study Population | Design | Protocol | End-Points | Main Results | |
---|---|---|---|---|---|---|
Early Use of Norepinephrine Improves Survival in Septic Shock: Earlier than Early [34] | 2019 | 101 patients admitted to the emergency department with septic shock, 57 in the Early group and 44 in the Late group | Randomized multicenter study | Early group: early NEP simultaneously with IV fluids Late group: after failed fluids trial | Primary outcome: in-hospital survival | The Early group showed:
|
Early Use of Norepinephrine in Septic Shock Resuscitation (CENSER study) [35] | 2019 | 310 adults diagnosed with sepsis with hypotension, 155 in each subgroup. | Single-center, randomized, double-blind, placebo-controlled clinical trial | Early norepinephrine: low-dose NE together with fluid resuscitation Standard treatment | Primary outcome: shock control rate by 6 h after diagnosis | In the Early group,
|
Delayed vasopressor initiation is associated with increased mortality in patients with septic shock [36] | 2019 | Patients with septic shock, 76 with early vasopressors and 43 with delayed vasopressors | Retrospective, single-centered, cohort study | Early vasopressors: within 6 h from initial hypotension Delayed vasopressors: after 6 h from initial hypotension | Primary outcome: all-cause 30-day mortality | In patients with Early vasopressors,
|
Effects of very early start of norepinephrine in patients with septic shock: a propensity score-based analysis [37] | 2020 | Patients with sepsis requiring VP support for at least 6 h selected from a prospectively collected database and classified into Very Early NE (VE-VPs, n = 93) or Delayed (D-VPs, n = 93) | Propensity score-based analysis |
Very early (VE-VPs) or delayed vasopressor start (D-VPs) categories according to whether norepinephrine was initiated or
not within/before the next hour of the first resuscitative fluid load. | Primary outcome: all-cause 30-day mortality |
In the VE-VPs group:
|
Vasopressor Initiation Within 1 Hour of Fluid Loading Is Associated With Increased Mortality in Septic Shock Patients: Analysis of National Registry Data [33] | 2022 | Patients with septic shock, classified into Early (n = 149), propensity matched to Late (n = 149) patients. | Prospective, multicenter, observational study | Early patients: VP initiated within 1 h of the first resuscitative fluid load. Late patients: VP initiated more than 1 h of the first resuscitative fluid load. | Primary outcome: all-cause 28-day mortality | In the Early group, compared to the late group:
|
Prehospital norepinephrine administration reduces 30-day mortality among septic shock patients [32] | 2022 | Patients with SS requiring prehospital Mobile Intensive Care Unit intervention | Retrospective, single center | 478 patients, 143 received prehospital norepinephrine | MAP > 65 mmHg at the end of the prehospital stage and 30-day mortality. | Cox regression analysis, after the propensity score, showed a significant association between prehospital norepinephrine administration and 30-day mortality (adjusted hazard ratio 0.42, 0.25–0.70) |
Year | Study Population | Design | Protocol | End-Points | Main Results | |
---|---|---|---|---|---|---|
Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock [44] | 2008 | Patients with septic shock (n = 778, 396 receiving vasopressin and 382 NA) | Multicenter, randomized, double-blind trial, | Patients receiving a minimum of NA 5 μg/min randomized to receive either low-dose vasopressin (0.01 to 0.03 U per minute) or NA (5 to 15 μg per minute) in addition to open-label vasopressors | 28-day mortality rate | No significant difference between the subgroups in the 28-day mortality rate (35% vs. 39%), in 90-day mortality (44% and 50%) and in the overall rates of serious adverse events (10% in both subgropus, all p > 0.05). |
Effect of Early Vasopressin vs. Norepinephrine on Kidney Failure in Patients With Septic Shock The VANISH Randomized Clinical Trial [48] | 2016 | Pts with septic shock | Prospective, open label trial | Random allocation to:
| Primary: kidney failure-free days Secondary: rates of renal replacement therapy, mortality, and serious adverse events. | Less use of renal replacement therapy in the vasopressin group (25% vs. 35%); no difference for the other end-points. |
Vasopressin Versus Norepinephrine for the Management of Septic Shock in Cancer Patients: The VANCS II Randomized Clinical Trial [49] | 2019 | Pts with septic shock and cancer | Single-center, randomized, double-blind clinical trial | Patients randomized to either vasopressin or norepinephrine as first-line vasopressor therapy (n = 125 in each subgroup) | Primary outcome: 28-day all-cause mortality; secondary outcomes: 90-day all-cause mortality rate; number of days alive and free of advanced organ support at day 28; 24-h and 96-h SOFA; prevalence of adverse effects in 28 days. | No significant difference in any of the prespecified outcome |
Efficacy and Safety of the Early Addition of Vasopressin to Norepinephrine in Septic Shock [50] | 2019 | Pts with septic shock (48 pts in each subgroup) | Retrospective cohort study | To compare early addition of vasopressin within 4 h of septic shock onset to norepinephrine versus initial norepinephrine monotherapy | Primary outcome: time to achieving and maintaining MAP > 65 mm Hg for at least 4 h
| Patients started on early vasopressin achieved and maintained goal MAP sooner (6.2 vs. 9.9 h, P ¼ 0.023), experienced greater reductions in SOFA scores at 72 h (_4 vs. _1, P ¼ 0.012), and had shorter hospital durations (343 vs. 604 h, P ¼ 0.014). |
Association of Catecholamine Dose, Lactate, and Shock Duration at Vasopressin Initiation With Mortality in Patients With Septic Shock [46] | 2022 | Pts with septic shock (n = 1610) | Retrospective, observational study | To evaluate the associations of catecholamine dose, lactate concentration, and timing from shock onset at vasopressin initiation with in-hospital mortality. | In-hospital mortality | For every 10 μg/min increase in norepinephrine-equivalent dose up to 60 μg/min at the time of vasopressin initiation, there was an increased odd of in-hospital mortality of 21% Linear association between increasing lactate concentration at the time of vasopressin initiation and increasing in-hospital mortality. No association with mortality rate for time elapsed from shock onset. |
Early initiation of vasopressin reduces organ failure and mortality in septic shock [51] | 2022 | Patients with septic shock (n = 385) | Multicenter, retrospective, cohort study | To determine whether initiating vasopressin earlier in septic shock reduces organ dysfunction and in-hospital all-cause mortality. | Primary composite outcome: proportion of patients with a change in the SOFA score greater than 3 from baseline to 72 h after initiation of vasopressin and/or in-hospital all-cause mortality. Secondary outcomes: time to hemodynamic stability, acute kidney injury, and intensive care unit length of stay. | Primary composite outcome significantly reduced in patients who had vasopressin initiated earlier in septic shock (odds ratio = 1.08, 95% confidence interval = 1.03–1.13), even after multivariate analysis. |
Timing of vasopressin initiation and mortality in patients with septic shock: analysis of the MIMIC-III and MIMIC-IV databases [47] | 2023 | Patients with septic shock. | Retrospective observational cohort study, | To compare low doses of NA group (NA < 0.25 μg/kg/min) and the high doses of NE group (NE ≥ 0.25 μg/kg/min, n = 535 for each subgroups) | 28-day mortality | Compared to those in the high dose of NA, patients in the low doses of NE group showed:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innocenti, F.; Palmieri, V.; Pini, R. Fluids, Vasopressors, and Inotropes to Restore Heart–Vessel Coupling in Sepsis: Treatment Options and Perspectives. Anesth. Res. 2024, 1, 128-145. https://doi.org/10.3390/anesthres1020013
Innocenti F, Palmieri V, Pini R. Fluids, Vasopressors, and Inotropes to Restore Heart–Vessel Coupling in Sepsis: Treatment Options and Perspectives. Anesthesia Research. 2024; 1(2):128-145. https://doi.org/10.3390/anesthres1020013
Chicago/Turabian StyleInnocenti, Francesca, Vittorio Palmieri, and Riccardo Pini. 2024. "Fluids, Vasopressors, and Inotropes to Restore Heart–Vessel Coupling in Sepsis: Treatment Options and Perspectives" Anesthesia Research 1, no. 2: 128-145. https://doi.org/10.3390/anesthres1020013
APA StyleInnocenti, F., Palmieri, V., & Pini, R. (2024). Fluids, Vasopressors, and Inotropes to Restore Heart–Vessel Coupling in Sepsis: Treatment Options and Perspectives. Anesthesia Research, 1(2), 128-145. https://doi.org/10.3390/anesthres1020013