ESG Ratings and Real Estate Key Metrics: A Case Study
Abstract
:1. Introduction
2. Institutional Background and Regulation of ESG Ratings
Regulation of Sustainability Matters in Switzerland
3. Review of Literature
4. Materials and Methods
4.1. Conceptual Framework to Identify Influencing Channels
4.2. Method
4.3. Data
5. Results
5.1. Appraisal-Based and Transaction-Based Discount Rates
5.2. Rental Incomes and Vacancy Rates
5.3. Exploring ESG Rating Levels
5.4. Assessing Model Specifications
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Variable Name | Description | Classification |
---|---|---|
ESG rating | Total location-based ESG rating (Min = 1, Max = 5) | Continuous |
E-rating | Location-based rating for the environment (E) (Min = 1, Max = 5) | Continuous |
S-rating | Location-based rating for the society (S) (Min = 1, Max = 5) | Continuous |
G-rating | Location-based rating for the governance (G) (Min = 1, Max = 5) | Continuous |
Appraisal-based discount rate | Continuous | |
Transaction-based discount rate | Continuous | |
Rental_I_sqm | Effective rental income in Swiss Francs (CHF) derived from accounting figures divided by the total usable area | Continuous |
Vacancy_R | Vacancy rate derived from accounting figures | Continuous |
Age | Difference between the construction year of a given object and the valuation date | Continuous |
LogSqm | Logarithm of the usable area, measured in square meters (sqm) | Continuous |
Micro_L | Rating for the location of a given object within a given municipality (Min = 1, Max = 5) | Continuous |
Macro_L | Locational rating characterizing the municipality of a given object municipality (Min = 1, Max = 5) | Continuous |
Object_R | Standardized rating characterizing the overall quality of given object (Min = 1, Max = 5) | Continuous |
Standard_R | Standardized rating characterizing the standard of a given object (Min = 1, Max = 5) | Continuous |
Condtion_R | Standardized rating characterizing the condition of a given object (Min = 1, Max = 5) | Continuous |
IR_20 | Yields on governmental bonds with 20-year maturity | Continuous |
Inflation | Inflation according to the consumer price index | Continuous |
YD_19 | Year dummy for the year 2019 | Dummy |
YD_20 | Year dummy for the year 2020 | Dummy |
YD_21 | Year dummy for the year 2021 | Dummy |
YD_22 | Year dummy for the year 2022 | Dummy |
Type_D1 | Real estate type dummy for residential real estate properties | Dummy |
Type_D2 | Real estate type dummy for mixed usages (residential, industrial, or office purposes) | Dummy |
Type_D3 | Real estate type dummy for industrial real estate properties | Dummy |
Type_D4 | Real estate type dummy for special usages | Dummy |
CT_D1 | Regional type dummy for canton Zurich | Dummy |
CT_D2 | Regional type dummy for canton Berne | Dummy |
CT_D3 | Regional type dummy for canton Lucerne | Dummy |
CT_D4 | Regional type dummy for canton Uri | Dummy |
CT_D5 | Regional type dummy for canton Schwyz | Dummy |
CT_D6 | Regional type dummy for canton Obwalden | Dummy |
CT_D7 | Regional type dummy for canton Nidwalden | Dummy |
CT_D8 | Regional type dummy for canton Glarus | Dummy |
CT_D9 | Regional type dummy for canton Zug | Dummy |
CT_D10 | Regional type dummy for canton Fribourg | Dummy |
CT_D11 | Regional type dummy for canton Solothurn | Dummy |
CT_D12 | Regional type dummy for canton Basel-City | Dummy |
CT_D13 | Regional type dummy for canton Basel-Country | Dummy |
CT_D14 | Regional type dummy for canton Schaffhausen | Dummy |
CT_D15 | Regional type dummy for canton Appenzell Ausserrhoden | Dummy |
CT_D16 | Regional type dummy for canton Appenzell Innerrhoden | Dummy |
CT_D17 | Regional type dummy for canton St. Gallen | Dummy |
CT_D18 | Regional type dummy for canton Graubünden | Dummy |
CT_D19 | Regional type dummy for canton Aargau | Dummy |
CT_D20 | Regional type dummy for canton Thurgau | Dummy |
CT_D21 | Regional type dummy for canton Ticino | Dummy |
CT_D22 | Regional type dummy for canton Vaud | Dummy |
CT_D23 | Regional type dummy for canton Valais | Dummy |
CT_D24 | Regional type dummy for canton Neuchâtel | Dummy |
CT_D25 | Regional type dummy for canton Geneva | Dummy |
CT_D26 | Regional type dummy for canton Jura | Dummy |
Appendix A.2
ESG Sub-Rating | Criteria (Weight) | Indicator | Radius | Source |
---|---|---|---|---|
Environment Indicators (E) | Climate change and risks (12) | Heat days in 2020 (RCP45) | Point | National Centre for Climate Services |
Difference in heat days between 2060 and 2020 (RCP45) | Point | National Centre for Climate Services | ||
Cooling degree days in 2020 (RCP45) | Point | National Centre for Climate Services | ||
Difference in cooling degree days between 2060 and 2020 (RCP45) | Point | National Centre for Climate Services | ||
Greenery and sealing (12.5) | Proportion greening | 50 m | LFI | |
Diversity greening | 50 m | LFI | ||
Surface sealing | 50 m | Copernicus | ||
Mobility (12.5) | Public transport quality class | Point | ARE | |
Car sharing locations | 2000 m | BAV, BAKOM, Wüest Partner | ||
Future public transport infrastructure | Municipality | Wüest Partner | ||
Public e-car charging stations | 4000 m | BFE | ||
Resource utilization (10.5) | Population density | 300 m | BFS | |
Employment density | 300 m | BFS | ||
Social Indicators (S) | Health and well-being (12.5) | Road noise during the day | Point | BFS |
Road noise at night | Point | BFS | ||
Railway noise during the day | Point | BFS | ||
Railway noise at night | Point | BFS | ||
Aircraft noise | Point | Wüest Partner | ||
Long-term air pollution index | Point | Meteotest | ||
Radon | Point | BAG, Wüest Partner | ||
Safety and natural hazards (12.5) | Mudslide | Point (50 m buffer) | BAFU, Geotest AG, Wüest Partner | |
Hail | Point | MeteoSchweiz, Wüest Partner | ||
Flood | Point (50 m buffer) | BAFU, Geotest AG, Wüest Partner | ||
Fall | Point (50 m buffer) | BAFU, Geotest AG, Wüest Partner | ||
Landslide | Point (50 m buffer) | BAFU, Wüest Partner | ||
Storm | Point | BAFU, Wüest Partner | ||
Debris flow | Point (50 m buffer) | BAFU, Geotest AG, Wüest Partner | ||
Avalanche | Point (50 m buffer) | BAFU, Geotest AG, Wüest Partner | ||
Earthquake | Point | BAFU, Geotest AG, Wüest Partner | ||
Surface runoff | Point (50 m buffer) | BAFU, Geotest AG, Wüest Partner | ||
Socioeconomic structure (9) | Diversity of household sizes | 300 m | BFS STATPOP, Wüest Partner | |
Diversity of age structure | 300 m | BFS STATPOP, Wüest Partner | ||
Diversity of socio-economic milieus | 300 m | Microm, Wüest Partner | ||
Diversity of income | 300 m | Wüest Partner | ||
Price range distribution | Municipality | Wüest Partner | ||
Building stock (7.5) | Diversity of building categories | 300 m | GWR, Wüest Partner | |
Mix of dwelling sizes | 300 m | GWR, Wüest Partner | ||
Diversity of building ages | 300 m | GWR, Wüest Partner | ||
Recreational areas (6) | Recreational and green areas | Municipality | BFS | |
Public meeting places, e.g., fire pits and playgrounds | 1000 m | BAV, BAKOM, Wüest Partner | ||
Governance Indicators (G) | Real estate market (2) | Supply ratio | Municipality | Wüest Partner |
Vacancy rates | Municipality | Wüest Partner | ||
Renewable energy (1.5) | Energy city label | Municipality | Energiestadtlabel | |
Utilization of solar potentials | Municipality | Energyreporter geoimpact AG | ||
Spatial planning (1.5) | Building permits, densification potential | Municipality | Wüest Partner | |
Densification potential population | Municipality | Wüest Partner | ||
Densification potential employees | Municipality | Wüest Partner | ||
Conversion shares in building permits | Municipality | Wüest Partner |
Appendix A.3
Variable | Min. | Max. | Mean | Median | Std. Dev. |
---|---|---|---|---|---|
1.50 | 6.00 | 2.99 | 2.95 | 0.45 | |
Rental_I_sqm | 30.48 | 788.36 | 230.70 | 216.49 | 86.67 |
Vacancy_R | 0.00 | 100.00 | 4.33 | 1.45 | 8.55 |
Macro_L | 1.18 | 5.00 | 4.37 | 4.53 | 0.62 |
Micro_L | 1.00 | 5.00 | 3.58 | 3.50 | 0.62 |
Quality_R | 1.18 | 5.00 | 3.42 | 3.40 | 0.49 |
Standard_R | 1.30 | 5.00 | 3.36 | 3.30 | 0.53 |
Condition_R | 1.00 | 5.00 | 3.50 | 3.40 | 0.75 |
Age | 1.00 | 822.00 | 52.21 | 48.00 | 42.64 |
Sqm | 130.00 | 97425.00 | 4209.61 | 2418.75 | 5996.55 |
IR_20 | −0.41 | 1.20 | 0.15 | −0.06 | 0.52 |
Inflation | −0.70 | 2.80 | 1.16 | 0.60 | 1.38 |
ESG rating | 1.00 | 5.00 | 3.89 | 4.10 | 0.91 |
E-rating | 1.00 | 5.00 | 3.61 | 3.80 | 1.04 |
S-rating | 1.10 | 5.00 | 3.66 | 3.70 | 0.90 |
G-rating | 1.00 | 5.00 | 3.70 | 4.00 | 1.00 |
Variable | Min. | Max. | Mean | Median | Std. Dev. |
---|---|---|---|---|---|
1.36 | 6.85 | 2.74 | 2.71 | 0.61 | |
Macro_L | 1.20 | 5.00 | 4.20 | 4.40 | 0.82 |
Micro_L | 1.80 | 5.00 | 3.68 | 3.60 | 0.63 |
Quality_R | 2.30 | 4.88 | 3.39 | 3.32 | 0.47 |
Age | 0.00 | 599.00 | 58.88 | 51.00 | 47.90 |
Sqm | 77.00 | 73383.00 | 3060.90 | 1731.30 | 5054.85 |
IR_20 | −0.41 | 1.20 | 0.23 | 0.06 | 0.57 |
Inflation | −0.70 | 2.80 | 1.13 | 0.60 | 1.48 |
ESG rating | 1.00 | 5.00 | 3.85 | 4.20 | 1.04 |
E-rating | 1.00 | 5.00 | 3.48 | 3.6 | 1.15 |
S-rating | 1.30 | 5.00 | 3.68 | 3.80 | 0.92 |
G-rating | 1.00 | 5.00 | 3.55 | 3.70 | 1.11 |
References
- United Nations. Who Cares Wins: Connecting Financial Markets to a Changing World. 2004. Available online: https://www.unepfi.org/fileadmin/events/2004/stocks/who_cares_wins_global_compact_2004.pdf (accessed on 1 February 2024).
- Richardson, B. Keeping Ethical Investment Ethical: Regulatory Issues for Investing for Sustainability. J. Bus. Ethics 2009, 87, 555–572. [Google Scholar] [CrossRef]
- Kiernan, M. Universal Owners and ESG: Leaving Money on the Table? Corp. Gov. Int. Rev. 2007, 15, 478–485. [Google Scholar] [CrossRef]
- Billio, M.; Costola, M.; Hristova, I.; Latino, C. Inside the ESG ratings: (Dis)agreement and Performance. Corp. Soc. Responsib. Environ. Manag. 2020, 28, 1426–1445. [Google Scholar] [CrossRef]
- Lucarelli, C.; Mazzoli, C.; Rancan, M.; Severini, S. Classification of Sustainable Activities: EU Taxonomy and Scientific Literature. Sustainability 2020, 12, 6460. [Google Scholar] [CrossRef]
- TEG European Commission. Taxonomy Report: Technical Annex; TEG European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Dumrose, M.; Rink, S.; Eckert, J. Disaggregating confusion? The EU Taxonomy and its relation to ESG rating. Financ. Res. Lett. 2022, 48, 102928. [Google Scholar] [CrossRef]
- Holúbek, I.; Skýpalová, R.; Ruschak, M.; Savov, R. EU Taxonomy in the Context of Environmental, Social and Governance (ESG) Ratings. In Proceedings of the 16th International Conference Liberec Economic Forum, Liberec, Czech Republic, 5–6 September 2023. [Google Scholar] [CrossRef]
- Sica, F.; Tajani, F.; Sáez-Pérez, M.P.; Marín-Nicolás, J. Taxonomy and Indicators for ESG Investments. Sustainability 2023, 15, 15979. [Google Scholar] [CrossRef]
- ESMA. ESG ratings: Status and Key Issues ahead. In ESMA Report on Trends, Risks and Vulnerabilities; European Securities and Markets Authority (ESMA): Paris, France, 2021; pp. 105–115. [Google Scholar]
- GRI and SASB. A Practical Guide to Sustainability Reporting Using GRI and SASB Standards. Report 2021. Available online: https://www.globalreporting.org/media/mlkjpn1i/gri-sasb-joint-publication-april-2021.pdf (accessed on 7 March 2024).
- Escrig-Olmedo, E.; Fernandez-Izquierdo, M.; Ferrero-Ferrero, I.; Rivera-Lirio, J.; Muñoz-Torres, M. Rating the Raters: Evaluating how ESG rating Agencies integrate Sustainability Principles. Sustainability 2019, 11, 915. [Google Scholar] [CrossRef]
- Berger, F.; Kölbel, J.; Rigobon, R. Aggregate Confusion: The Divergence of ESG Ratings. Rev. Financ. 2022, 26, 1315–1344. [Google Scholar] [CrossRef]
- Tsang, A.; Frost, T.; Cao, H. Environmental, Social, and Governance (ESG) Disclosure: A Literature Review. Br. Account. Rev. 2023, 55, 101149. [Google Scholar] [CrossRef]
- Abhayawansa, S.; Tyagi, S. Sustainable Investing: The Black Box of Environmental, Social, and Governance (ESG) Ratings. J. Wealth Manag. Summer 2021, 24, 49–54. [Google Scholar] [CrossRef]
- Eberwein, G.; Lobsiger, E.; Eschenauer, U.; Jetel, M.; Carabias-Hütter, V. Subtask 2—Switzerland: The 2000 Watt Society; IEA DSM Task 24 Expert Workshop; ZHAW Institute of Sustainable Development: Winterthur, Switzerland, 2014. [Google Scholar] [CrossRef]
- The Federal Council. The Federal Council Enacts the Completely Revised Energy Act Effective in 2018. 2017. Available online: https://www.admin.ch/gov/de/start/dokumentation/medienmitteilungen.msg-id-68637.html (accessed on 1 December 2023).
- The Federal Council. Climate Protection: The Federal Council adopts Switzerland’s Long-Term Climate Strategy. 2019. Available online: https://www.admin.ch/gov/de/start/dokumentation/medienmitteilungen.msg-id-82140.html (accessed on 20 December 2023).
- The Federal Council. The Federal Council Enacts the Regulation on Mandatory Climate Reporting for Large Companies. 2022. Available online: https://www.sif.admin.ch/sif/de/home/dokumentation/medienmitteilungen/medienmitteilungen.msg-id-91859.html (accessed on 1 January 2024).
- FINMA. Preventing and Combating Greenwashing. In FINMA Guidance; FINMA: Bern, Switzerland, 2024. [Google Scholar]
- Federal Office for the Environment. Greenhouse Gas Emissions from Buildings. 2022. Available online: https://www.bafu.admin.ch/bafu/en/home/topics/climate/state/data/greenhouse-gas-inventory/buildings.html (accessed on 1 April 2024).
- Eichholtz, P.; Kok, N.; Yonder, E. Portfolio Greeness and the Financial Performance of REITs. J. Int. Money Financ. 2012, 31, 1911–1929. [Google Scholar] [CrossRef]
- Fuerst, F. The Financial Rewards of Sustainability: A Global Performance Study of Real Estate Investment Trusts. 2015. Available online: https://ssrn.com/abstract=2619434 (accessed on 1 March 2024). [CrossRef]
- Brounen, D.; Marcato, G. Sustainable Insights in Public Real Estate Performance: ESG Scores and Effects in REIT Markets; Berkeley Lab.: Berkeley, CA, USA, 2018. [Google Scholar]
- Aroul, R.; Sebherwal, S.; Villupuram, S. ESG, Operational Efficiency and Operational Performance: Evidence from Real Estate Investment Trusts. Mangerial Financ. 2022, 48, 1206–1220. [Google Scholar] [CrossRef]
- Bruegge, C.; Carrión-Flores, C.; Pop, J. Does the Housing Market Value Energy efficient Homes? Evidence from the energy star program. Reg. Sci. Urban Econ. 2016, 57, 63–76. [Google Scholar] [CrossRef]
- Fuerst, F.; Shimizu, C. Green luxury Goods? The Economics of Eco-Labels in the Japanese Housing Market. J. Jpn. Int. Econ. 2016, 39, 108–122. [Google Scholar] [CrossRef]
- Addae-Dapaah, K.; Wilkinson, J. Green Premium: What is the Implied Prognosis for Sustainability? J. Sustain. Real Estate 2020, 12, 16–33. [Google Scholar] [CrossRef]
- Fuerst, F.; McAllister, P. An Investigation of the Effect of Eco-Labeling on Office Occupancy Rates. J. Sustain. Real Estate 2009, 1, 49–64. [Google Scholar] [CrossRef]
- Holtermans, R.; Kok, N. On the Value of Environmental Certification in the Commercial Real Estate Market. Real Estate Econ. 2017, 47, 685–722. [Google Scholar] [CrossRef]
- Fuerst, F.; Dalton, B. Is there a Scientific Consensus on the Economic Viability of Sustainable Buildings? Z Immobilienökonomie 2019, 5, 173–191. [Google Scholar] [CrossRef]
- McGrath, K. The Effects of Eco-Certification on Office Properties: A Cap Rates-Based Analysis. J. Prop. Res. 2013, 30, 345–365. [Google Scholar] [CrossRef]
- Fuerst, F.; Oikarinen, E.; Harjunen, O. Green Signalling Effects in the Market for Energy-Efficient Residential Buildings. Appl. Energy 2016, 180, 560–571. [Google Scholar] [CrossRef]
- Feige, A.; Mcallister, P.; Wallbaum, H. Rental Price and Sustainability Ratings: Which Sustainability Criteria are really paying back? Constr. Manag. Econ. 2013, 31, 322–334. [Google Scholar] [CrossRef]
- Kempf, C.; Syz, J. Why Pay for Sustainable Housing? Decomposing the Green Premium of the Residential Property Market in the Canton of Zurich, Switzerland. SN Bus. Econ. 2022, 2, 170. [Google Scholar] [CrossRef]
- Marty, R.; Meins, E. Der Schweizer Mietimmobilienmarkt belohnt andere Nachhaltigkeitsmerkmale als Energieeffizienz. Swiss Real Estate J. 2017, 15, 47–54. [Google Scholar]
- Meins, E.; Wallbaum, H.; Hardziewski, R.; Feige, A. Sustainability and Property Valuation: A Risk-based Approach. Build. Res. Inf. 2010, 38, 280–300. [Google Scholar] [CrossRef]
- Gunnelin, A.; Hendershott, P.; Hoesli, M.; Söderberg, B. Determinants of Cross-Sectional Variation in Discount Rates, Growth Rates and Exit Cap Rates. Real Estate Econ. 2004, 32, 217–237. [Google Scholar] [CrossRef]
- Fuerst, F.; McAllister, P. The Impact of Energy Performance Certificates on the Rental and Capital Values of Commercial Property Assets. Energy Policy 2011, 39, 6608–6614. [Google Scholar] [CrossRef]
- Leskinen, N.; Vimpari, J.; Junnils, S. Using Real Estate Market Fundamentals to Determine the Correct Discount Rate for Decentralised Energy Investments. Sustain. Cities Soc. 2020, 53, 101953. [Google Scholar] [CrossRef]
- Chuangdumrongsomsuk, M.; Fuerst, F. Determinants of Cap Rates in U.S. Office Markets. J. Real Estate Lit. 2017, 25, 265–282. [Google Scholar] [CrossRef]
- Chaney, A.; Hoesli, M. Transaction-Based and Appraisal-Based Capitalization Rate Determinants; Swiss Finance Institute Research Paper Series No. 12-28; Swiss Finance Institute: Zürich, Switzerland, 2012. [Google Scholar]
- Galema, R.; Gerritsen, D. ESG Rating Score Revisions and Stock Returns. 2022. Available online: https://ssrn.com/abstract=4218969 (accessed on 1 April 2024). [CrossRef]
- Belloni, A.; Chernozhukov, V. Least Squares after Model Selection in High-Dimensional Sparse Models. Int. Stat. Inst. (ISI) Bernoulli Soc. Math. Stat. Probab. 2013, 19, 521–547. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Letdin, M.; Sirmans, G.; Smersh, G.; Zhou, T. The Role of Tenant Characteristics in Retail Cap Rate Variation. J. Real Estate Financ. Econ. 2023. [Google Scholar] [CrossRef]
- Marcot, B.; Hanea, A. What is an Optimal Value of k in k-fold Cross-Validation in Discrete Bayesian Network Analysis? Comput. Stat. 2021, 36, 2009–2031. [Google Scholar] [CrossRef]
- Kempeneer, S.; Peeters, M.; Compernolle, T. Bringing the User Back in the Building: An Analysis of ESG in Real Estate and a Behavioral Framework to Guide Future Research. Sustainability 2021, 13, 3239. [Google Scholar] [CrossRef]
- Djurdjevic, D.; Eugster, C.; Haase, R. Estimation of Hedonic Models Using a Multilevel Approach: An Application for the Swiss Rental Market. Swiss J. Econ. Stat. 2008, 144, 679–701. [Google Scholar] [CrossRef]
- Hilber, A.L.; Schöni, O. Housing Policies in the United Kingdow, Switzerland, and the United States; US Department of Housing and Urban Development: Washington, DC, USA, 2016; Volume 18, pp. 291–332. [Google Scholar]
- Basten, C.; Von Ehrlich, M.; Lassmann, A. Income Taxes, Sorting and the Costs of Housing: Evidence from Municipal Boundaries in Switzerland. Econ. J. 2017, 127, 653–687. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Society. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Zou, H. The Adaptive Lasso and its Oracle Properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef]
ESG Sub-Rating | Criteria | Indicators |
---|---|---|
Environment indicators (E) | Climate change and risks | Heat days in 2020 (RCP45), difference in heat days between 2060 and 2020 (RCP45), cooling degree days in 2020 (RCP45), difference in cooling degree days between 2060 and 2020 (RCP45). |
Greenery and sealing | Proportion of shrubs, proportion and diversity of greening, surface sealing. | |
Mobility | Public transport quality class, car sharing locations, future public transport infrastructure, public e-car charging stations. | |
Resource utilization | Population density. | |
Social indicators (S) | Health and well-being | Road noise during the day, road noise at night, railway noise during the day, railway noise at night, aircraft noise, long-term air pollution index, radon. |
Safety and natural hazards | Hail, flood, fall, landslide, storm, debris flow, avalanche, earthquake, surface runoff. | |
Socioeconomic structure | Diversity of household sizes, diversity of age structure, diversity of socio-economic milieus, diversity of income, price range distribution. | |
Building stock | Diversity of building categories, mix of dwelling sizes, diversity of building ages. | |
Recreational areas | Recreational and green areas, public meeting places. | |
Governance indicators (G) | Real estate market | Supply ratio, vacancy rates. |
Renewable energy | Energy city label, utilization of solar potentials. | |
Spatial planning | Building permits, conversion shares in building permits, densification potential. |
Variable Name and Description | Source |
---|---|
ESG rating Total location-based ESG rating (Min = 1, Max = 5) | Wüest Partner AG |
E-rating Location-based rating for the environment (E) (Min = 1, Max = 5) | Wüest Partner AG |
S-Rating Location-based rating for the society (S) (Min = 1, Max = 5) | Wüest Partner AG |
G-Rating Location-based rating for the governance (G) (Min = 1, Max = 5) | Wüest Partner AG |
Appraisal-based discount rate | Wüest Partner AG |
Transaction-based discount rate | Wüest Partner AG |
Rental_I_sqm Effective rental income in Swiss Francs (CHF) derived from rent rolls divided by the total usable area | Wüest Partner AG |
Vacancy_R Vacancy rate derived from rent rolls | Wüest Partner AG |
Age Difference between the construction year of a given object and the valuation date | Wüest Partner AG |
LogSqm Logarithm of the usable area, measured in square meters (sqm) | Wüest Partner AG |
Micro_L Rating for the location of a given object within a given municipality (Min = 1, Max = 5) | Wüest Partner AG |
Macro_L Locational rating characterizing the municipality of a given object (Min = 1, Max = 5) | Wüest Partner AG |
Object_R Standardized rating characterizing the overall quality of a given object (Min = 1, Max = 5) | Wüest Partner AG |
Standard_R Standardized rating characterizing the standard of a given object (Min = 1, Max = 5) | Wüest Partner AG |
Condtion_R Standardized rating characterizing the condition of a given object (Min = 1, Max = 5) | Wüest Partner AG |
IR_20 Quarterly yields on governmental bonds with 20-year maturity | Swiss National Bank |
Inflation Yearly inflation according to the consumer price index | Federal Statistical Office |
Dependent Variable: | ) | Log () | Log () | ) |
---|---|---|---|---|
Model: | 1 | 2 | 3 | 4 |
Constant | 1.558 *** | 1.553 *** | 1.333 *** | 1.318 *** |
(0.018) | (0.019) | (0.070) | (0.072) | |
Macro_L | −0.056 *** | −0.050 *** | −0.031 *** | −0.014 |
(0.003) | (0.003) | (0.011) | (0.013) | |
Micro_L | −0.032 *** | −0.031 *** | −0.042 *** | −0.038 *** |
(0.002) | (0.002) | (0.010) | (0.010) | |
Quality_R | −0.041 *** | −0.042 *** | ||
(0.003) | (0.003) | |||
Age | −0.0004 *** | −0.0003 *** | −0.001 *** | −0.001 *** |
(0.00003) | (0.00003) | (0.0001) | (0.0001) | |
LogSqm | 0.022 *** | 0.021 *** | 0.016 ** | 0.012 * |
(0.001) | (0.001) | (0.007) | (0.007) | |
IR_20 | −0.045 *** | −0.045 *** | −0.039 *** | −0.040 *** |
(0.004) | (0.004) | (0.013) | (0.013) | |
Inflation | 0.002 | 0.002 | ||
(0.002) | (0.002) | |||
ESG rating | −0.032 *** | −0.042 *** | ||
(0.002) | (0.007) | |||
E-rating | −0.024 *** | −0.053 *** | ||
(0.002) | (0.007) | |||
S-rating | −0.004 ** | |||
(0.002) | ||||
G-rating | −0.011 *** | −0.006 | ||
(0.002) | (0.007) | |||
Regional dummies | Yes | Yes | Yes | Yes |
Year dummies | Yes | Yes | Yes | Yes |
Type dummies | Yes | Yes | Yes | Yes |
Observations | 6166 | 6166 | 836 | 836 |
Adjusted | 0.593 | 0.598 | 0.435 | 0.45 |
Residual Std. Error | 0.094 (df = 6127) | 0.093 (df = 6130) | 0.159 (df = 812) | 0.156 (df = 799) |
Dependent Variable: | Log (Rental_I_sqm) | Log (Rental_I_sqm) | Vacancy_R | Vacancy_R |
---|---|---|---|---|
Model: | 5 | 6 | 7 | 8 |
Constant | 4.441 *** | 4.374 *** | 8.859 *** | 8.966 *** |
(0.061) | (0.061) | (1.655) | (1.703) | |
Macro_L | 0.075 *** | 0.069 *** | −0.746 ** | −0.694 ** |
(0.011) | (0.011) | (0.295) | (0.277) | |
Micro_L | 0.094 *** | 0.089*** | −0.521 *** | −0.481 *** |
(0.007) | (0.007) | (0.183) | (0.184) | |
Standard_R | 0.090 *** | 0.091 *** | ||
(0.010) | (0.010) | |||
Condition_R | 0.076 *** | 0.081 *** | ||
(0.007) | (0.007) | |||
Quality_R | 0.547 ** | 0.518 ** | ||
(0.237) | (0.237) | |||
Age | −0.0004 *** | −0.003 | −0.003 | |
(0.0001) | (0.003) | (0.003) | ||
LogSqm | −0.069 *** | −0.063 *** | 0.366 *** | 0.341 *** |
(0.005) | (0.005) | (0.126) | (0.126) | |
ESG rating | 0.063 *** | −0.809 *** | ||
(0.007) | (0.185) | |||
E-rating | 0.043 *** | −0.797 *** | ||
(0.006) | (0.146) | |||
S-rating | 0.009 * | −0.149 | ||
(0.006) | (0.149) | |||
G-rating | 0.017 *** | |||
(0.006) | ||||
Regional dummies | Yes | Yes | Yes | Yes |
Year dummies | Yes | Yes | Yes | Yes |
Type dummies | Yes | Yes | Yes | Yes |
Observations | 6261 | 6261 | 6166 | 6166 |
0.256 | 0.256 | 0.058 | 0.060 | |
Residual Std. Error | 0.317 (df = 6228) | 0.317 (df = 6225) | 8.284 (df = 6131) | 8.277 (df = 6127) |
Dependent Variable | ) | ) | Log (Rental_I_sqm) | Vacancy_R | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||
Method | EN | AL | EN | AL | EN | AL | EN | AL | EN | AL | EN | AL | EN | AL | EN | AL |
Macro_L | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Micro_L | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Quality_R | Y | Y | Y | Y | N | N | N | N | Y | Y | Y | Y | ||||
Standard_R | Y | Y | Y | Y | ||||||||||||
Condition_R | Y | Y | Y | Y | ||||||||||||
Age | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | Y | Y | Y | Y |
LogSqm | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
IR_20 | Y | Y | Y | Y | Y | Y | Y | Y | ||||||||
Inflation | Y | Y | Y | Y | N | N | N | N | ||||||||
ESG rating | Y | Y | Y | Y | Y | Y | Y | Y | ||||||||
E-rating | Y | Y | Y | Y | Y | Y | Y | Y | ||||||||
S-rating | Y | Y | N | N | Y | Y | Y | Y | ||||||||
G-rating | Y | Y | Y | Y | Y | Y | N | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vonlanthen, J. ESG Ratings and Real Estate Key Metrics: A Case Study. Real Estate 2024, 1, 267-292. https://doi.org/10.3390/realestate1030014
Vonlanthen J. ESG Ratings and Real Estate Key Metrics: A Case Study. Real Estate. 2024; 1(3):267-292. https://doi.org/10.3390/realestate1030014
Chicago/Turabian StyleVonlanthen, Joël. 2024. "ESG Ratings and Real Estate Key Metrics: A Case Study" Real Estate 1, no. 3: 267-292. https://doi.org/10.3390/realestate1030014
APA StyleVonlanthen, J. (2024). ESG Ratings and Real Estate Key Metrics: A Case Study. Real Estate, 1(3), 267-292. https://doi.org/10.3390/realestate1030014