Integrative Interventions for Improving Outcomes in Depression: A Narrative Review
Abstract
:1. Introduction
2. Epidemiology
3. Aims and Methods
4. Nutritional Support for Depression Treatment
Factor | Impact | Optimal Serum Levels | Daily Intake in Depression Treating Context | Sources |
---|---|---|---|---|
Zinc | Zinc supplementation significantly lowered depressive symptom scores (Beck’s Depression Inventory, BDI) WMD = −4.15; [−6.56, −1.75] [83] | 70–120 micrograms per deciliter (mcg/dL) for adults | 25 mg zinc sulfate or 30 mg zinc gluconate [83] | Meat, shellfish, dairy, legumes, nuts |
Magnesium | Consumption associated with lower risk of depression RR = 0.81 [0.70, 0.92] [35] | 0.75–0.95 millimoles per liter (mmol/L) for adults | 248 mg [84] | Leafy greens, nuts and seeds, legumes |
Caffeine | Associated with reduced depression risk RR = 0.72 [0.52, 1.00] highest vs. lowest consumption [85] | N/A | Between 68 mg/day and 509 mg/day [85] | Coffee, tea |
Cocoa | Decrease in depressive symptoms g = −0.42 [−0.67, −0.17] [39] | N/A | 50–100 g/day cocoa | Cocoa |
Fish | Lowers depression risk RR = 0.89 [0.80, 0.99] highest vs. lowest consumption [86] RR = 0.83 [0.74, 0.93] highest vs. lowest consumption [87] | N/A | >1 serving per week [86] | Fish |
Omega 3 polyunsaturated fatty acids | Lowered depression risk RR = 0.87 [0.74, 1.04] highest vs. lowest consumption [86] EPA + DHA consumption associated with lower depression risk [88] | N/A | 500 mg/day [86] | Fatty Fish |
Selenium | Intake associated with lower risk of postpartum depression OR = 0.97 [0.95, 0.99] and reduction in depressive symptoms WMD = −0.37 [−0.56, −0.18] [89] | Average level 124 ng/mL [90] | 100 to 200 μg [89] | Wheat products, meat [91] |
B-vitamins | Non-significant reduction in depressive symptoms (SMD = 0.15 [−0.01, 0.32]) [43] | N/A | N/A | Liver, fish, leafy greens, eggs, seeds |
Biotin | Associated with lower odds of depression (OR = 0.71 [0.55, 0.91]) [92] | >400 ng/L [93] | 30 μg [94] | Organ meat, egg yolk, some vegetables, milk [95] |
Folic acid | Associated with lower odds of depression OR = 0.78 [0.61, 0.99] [92] | Deficiency is defined as serum folate < 10 nmol/L and RBC folate < 340 nmol/L [96] | 240 μg [94] | Legumes, leafy greens, citrus, vegetables, liver, dairy products [97] |
Vitamin B12 | No significant effect on depressive symptoms [98] | Deficiency is defined as plasma vitamin B12 < 150 pmol/L [96] | 2.4 μg [94] | Liver, fish, leafy greens, eggs, seeds |
Vitamin D | In cases of deficiency, vitamin D supplementation may help depressive symptoms [99] Inverse correlation between serum vitamin D levels and depression [100] | Serum 25-Hydroxyvitamin D: 50–100 nmol/L [101] | >1000 IU [99] | Sunlight [102], oily fish, fortified foods [103] |
Probiotics | Small but significant effects for trials lasting at least one month (SMD = −0.28, [−0.44, −0.13]) [104] Significant difference in depression score (SMD = −0.47 [−0.67, −0.27]) [105] Other meta-analyses reveal no significant difference, though very close to statistical threshold of p = 0.05 (SMD = −0.128, [−0.261, 0.005]) [106] | Biomarkers are multifactorial [107] | 10 billion CFU [108] | Yogurts, kefir [109], kombucha [110], fermented meat and fish products, sauerkraut, kimchi, natto, miso, sourdough bread [111,112] |
Acetyl-L-Carnitine | Significant reduction in depressive symptoms (SMD = −1.10, [−1.65, −0.56]) [113] | 10–15 μmol/L [114] | 2 g [115] | Meat [116] |
Creatine | Reduction in depression associated with level of dietary creatine consumption AOR = 0.68 [0.52, 0.88] [117] | N/A | 2–10 g [118] | Meat [119] |
Amino acids (a.a.) | Reduction in depressive symptoms greater than placebo SMD = −1.21 [0.57, 1.95] [120] | Varies by specific a.a. For tryptophan: 40–120 µmol/L [121] | Recommended Daily Allowance (RDA) doses of 8 essential and 2 semi-essential amino acids (arginine and histidine) [122] | Protein rich foods, supplements |
Methylfolate | Improvement in depression profile SMD = −0.38 [−0.59, −0.17] [123] SMD = −0.61 [−0.97, −0.24] [124] | Serum 5-methyltetrahydrofolate 24–51 nmol/L [125] | 15 mg [124] | Leafy greens, legumes, fortified cereals, liver |
5-HTP | Significant improvements in depression symptoms (g = 1.11 [0.53, 1.69] [126] | N/A | 150–300 mg [126] | Turkey, chicken, fish, dairy products, supplements |
St. John’s Wort | Similar response to SSRI treatment. RR = 0.96 [0.83, 1.10] relative to second generation antidepressants [127] | N/A | 500 mg [128] | Hypericum perforatum |
Saffron | Significantly better than placebo improvement in depressive symptoms g = 0.891 [0.369, –1.412] [129] | N/A | 100 mg [129] | Saffron spice derived from the Crocus sativus flower |
Curcumin | Significant clinical efficacy in depression (HAM-D SMD = −0.34 [−0.56 to −0.13]) [130] Effective as adjunctive therapy [131] | N/A | 1 g [130] | Turmeric spice, commonly used in curry dishes and various recipes |
Methylene Blue | Reduction in manic depressive attacks [132] Marked improvement in depressive symptoms SMD = −0.99 [−1.82, −0.16] [133] | N/A | 15 mg/day | Supplements |
Chinese Herbal Medicine | Positive effect [134,135] CHM better than placebo (HAMD-17, MD = −4.53, [−5.69, −3.37]) [134] | N/A | N/A | Depends on formulation |
Nigella Sativa | Decreased depression score SMD = −1.4 [−1.94, −0.86] [136] | N/A | 1000 mg oil extract | Black cumin seed |
S-adenosyl methionine | Low-quality evidence for efficacy [137] | N/A | 1600 mg orally [138] | Supplements |
Bacopa Monnieri | Nonsignificant improvement SMD = −0.32 [−0.86, 0.22] [139] | N/A | 300 mg extract [139] | Bacopa Monnieri |
SHR-5 (Rhodiola metabolite) | Improves depressive symptoms SMD = −1.66 [−2.17, −1.16] [140] | N/A | 340−680 mg Rhodiola [140] | Rhodiola rosea L. |
Kava kava | Improvement in symptoms in human subjects SMD = 2.24 (p < 0.0001) [141] | N/A | 3.2 g [141] | Piper methysticum |
Inositol | Equivocal evidence [68] | 7 μg/mL [142] | 12 g [143] | Fruits, beans, grains, and nuts [144] |
Chromium | RCT shows effectiveness compared to placebo nonsignificant SMD = −0.538 [−1.72, 0.65] [145] | <0.60 μg/L [146] | 600 μg chromium picolinate [145] | Meats, grain products, fruits, vegetables, nuts, spices, brewer’s yeast, beer, and wine [147] |
Co-enzyme Q10 | SMD = 0.97 [0.01, 1.93] p < 0.00001 [69] | Males: 0.9 μmol/L Females: 0.8 μmol/L [148] | 300 mg [69] | Meat, fish, nuts, and some oils [149] |
Crocin | SMD = 6.04 [3.43, 8.65] p = 0.01 [69] | N/A | 30 mg [69] | Saffron |
Antioxidant supplements | Significant improvement (SMD = 0.40, 95% CI = 0.28–0.51, p < 0.00001) [69] | N/A | N/A | Supplements |
Extra Virgin Olive Oil | Antidepressant activity in severely depressed patients SMD = −0.75 [−1.23, −0.27] [150] | N/A | 25 mL extra virgin olive oil [150] | Extra virgin olive oil |
Lavender | Positive impact of lavender with imipramine (antidepressant) compared to imipramine monotherapy SMD = 2.45 [1.67, 3.23] [78] | N/A | 60 drops lavandula tincture [151] | Lavandula angustifolia |
Dan zhi xiao yao | Decrease in Self-Rating Depression Scale scores [WMD = 0.89, 95% CI (−6.33, 8.11); p = 0.81] [152] | N/A | 24 g [152] | Mixture of Bupleurum chinense, Scutellaria baicalensis, Paeonia lactiflora, Glycyrrhiza uralensis, Mentha haplocalyx, Zingiber officinale, and Ziziphus jujuba |
Alpha Lipoic Acid | Equivocal evidence [68] | N/A | 600–1800 mg [153] | Muscle meats, heart, kidney, and liver [154] |
N-acetyl Cysteine (NAC) | Positive evidence from trials [155,156] | N/A | 1 g [156] | Supplements |
Ginseng | Improvements in QOL in patients complaining of stressor fatigue [157] | N/A | 17.4 mg Panax Ginseng extract with a blend of multivitamins [157] | Ginseng |
4.1. The Gut Microbiome and Depression: The Importance of the Gut–Brain Axis
4.1.1. The Gut–Brain Axis
4.1.2. The Role of the Gut Microbiome in Depression
4.1.3. Mechanisms
4.1.4. Clinical Implications and Treatment Approaches
4.2. The Link between Depression and Inflammation
4.3. The Complex Relationship between Thyroid Dysfunction and Depression
5. Lifestyle Changes for Treatment of Depression
5.1. Exercise
5.2. Time in Nature
Animal-Assisted Therapy
5.3. Mindfulness
5.4. Connection with Others
Purpose and Goals
5.5. Gratitude
5.6. Deep Brain Stimulation
5.7. Whole-Body Hyperthermia
5.8. Photobiomodulation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, T.; Zhao, X.; Wu, M.; Li, Z.; Luo, L.; Yang, C.; Yang, F. Prevalence of depression in older adults: A systematic review and meta-analysis. Psychiatry Res. 2022, 311, 114511. [Google Scholar] [CrossRef] [PubMed]
- Shorey, S.; Ng, E.D.; Wong, C.H.J. Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta-analysis. Br. J. Clin. Psychol. 2022, 61, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Bailey, E.; Robinson, J.; McGorry, P. Depression and suicide among medical practitioners in Australia. Intern. Med. J. 2018, 48, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Outhoff, K. Depression in doctors: A bitter pill to swallow. S. Afr. Fam. Pract. 2019, 61 (Suppl. 1), S11–S14. [Google Scholar] [CrossRef]
- Glassman, A.H. Depression and cardiovascular comorbidity. Dialogues Clin. Neurosci. 2007, 9, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.G.; de Groot, M.; Golden, S.H. Diabetes and Depression. Curr. Diabetes Rep. 2014, 14, 491. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mu, F.; Liu, D.; Zhu, J.; Yue, S.; Liu, M.; Liu, Y.; Wang, J. Predictors of suicidal ideation, suicide attempt and suicide death among people with major depressive disorder: A systematic review and meta-analysis of cohort studies. J. Affect. Disord. 2022, 302, 332–351. [Google Scholar] [CrossRef] [PubMed]
- Achterbergh, L.; Pitman, A.; Birken, M.; Pearce, E.; Sno, H.; Johnson, S. The experience of loneliness among young people with depression: A qualitative meta-synthesis of the literature. BMC Psychiatry 2020, 20, 415. [Google Scholar] [CrossRef] [PubMed]
- Street, H. Exploring Relationships Between Goal Setting, Goal Pursuit and Depression: A Review. Aust. Psychol. 2002, 37, 95–103. [Google Scholar] [CrossRef]
- Bosc, M. Assessment of social functioning in depression. Compr. Psychiatry 2000, 41, 63–69. [Google Scholar] [CrossRef]
- Eisenberg, D.; Golberstein, E.; Whitlock, J.L.; Downs, M.F. Social contagion of mental health: Evidence from college roommates. Health Econ. 2013, 22, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Neumann, R.; Strack, F. “Mood contagion”: The automatic transfer of mood between persons. J. Personal. Soc. Psychol. 2000, 79, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, K.M.; Hoogendoorn, A.; Slottje, P.; van Balkom, A.J.L.M.; Batelaan, N.M. Long-Term and Short-Term Antidepressant Use in General Practice: Data from a Large Cohort in the Netherlands. Psychother. Psychosom. 2017, 86, 362–369. [Google Scholar] [CrossRef]
- Moore, M.; Yuen, H.M.; Dunn, N.; Mullee, M.A.; Maskell, J.; Kendrick, T. Explaining the rise in antidepressant prescribing: A descriptive study using the general practice research database. BMJ 2009, 339, b3999. [Google Scholar] [CrossRef]
- Olfson, M.; Marcus, S.C. National patterns in antidepressant medication treatment. Arch. Gen. Psychiatry 2009, 66, 848–856. [Google Scholar] [CrossRef]
- Mojtabai, R.; Olfson, M. National trends in long-term use of antidepressant medications: Results from the U. S. National Health and Nutrition Examination Survey. J. Clin. Psychiatry 2014, 75, 169–177. [Google Scholar] [PubMed]
- Noble, R.E. Depression in women. Metabolism 2005, 54 (Suppl. 5), 49–52. [Google Scholar] [CrossRef]
- de la Torre, J.A.; Vilagut, G.; Ronaldson, A.; Dregan, A.; Ricci-Cabello, I.; Hatch, S.L.; Serrano-Blanco, A.; Valderas, J.M.; Hotopf, M.; Alonso, J. Prevalence and age patterns of depression in the United Kingdom. A population-based study. J. Affect. Disord. 2021, 279, 164–172. [Google Scholar] [CrossRef]
- Romans, S.; Cohen, M.; Forte, T. Rates of depression and anxiety in urban and rural Canada. Soc. Psychiatry Psychiatr. Epidemiol. 2011, 46, 567–575. [Google Scholar] [CrossRef]
- Portnoff, L.; McClintock, C.; Lau, E.; Choi, S.; Miller, L. Spirituality cuts in half the relative risk for depression: Findings from the United States, China, and India. Spiritual. Clin. Pract. 2017, 4, 22–31. [Google Scholar] [CrossRef]
- Weissman, M.M.; Wickramaratne, P.; Nomura, Y.; Warner, V.; Verdeli, H.; Pilowsky, D.J.; Grillon, C.; Bruder, G. Families at High and Low Risk for Depression: A 3-Generation Study. Arch. Gen. Psychiatry 2005, 62, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Sneed, J.R.; Kasen, S.; Cohen, P. Early-life risk factors for late-onset depression. Int. J. Geriatr. Psychiatry 2007, 22, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Comijs, H.C.; van Exel, E.; van der Mast, R.C.; Paauw, A.; Oude Voshaar, R.; Stek, M.L. Childhood abuse in late-life depression. J. Affect. Disord. 2013, 147, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Parker, G. Parental ‘Affectionless Control’ as an Antecedent to Adult Depression: A Risk Factor Delineated. Arch. Gen. Psychiatry 1983, 40, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Zhang, Y.; Zhang, D. Sedentary behaviour and the risk of depression: A meta-analysis. Br. J. Sports Med. 2015, 49, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Mekary, R.A.; Lucas, M.; Pan, A.; Okereke, O.I.; Willett, W.C.; Hu, F.B.; Ding, E.L. Isotemporal Substitution Analysis for Physical Activity, Television Watching, and Risk of Depression. Am. J. Epidemiol. 2013, 178, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Schaakxs, R.; Comijs, H.C.; van der Mast, R.C.; Schoevers, R.A.; Beekman, A.T.F.; Penninx, B.W.J.H. Risk Factors for Depression: Differential Across Age? Am. J. Geriatr. Psychiatry 2017, 25, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Jang, H.M.; Lee, Y.; Lee, D.; Kim, D.-J. Effects of Internet and Smartphone Addictions on Depression and Anxiety Based on Propensity Score Matching Analysis. Int. J. Environ. Res. Public Health 2018, 15, 859. [Google Scholar] [CrossRef]
- Ladwig, K.H.; Ladwig, K.H.; Roll, G.; Breithard, G.; Budde, T.; Borggrefe, M. Post-infarction depression and incomplete recovery 6 months after acute myocardial infarction. Lancet 1994, 343, 20–23. [Google Scholar] [CrossRef]
- Miller, L.J. Postpartum Depression. JAMA 2002, 287, 762–765. [Google Scholar] [CrossRef]
- Bonde, J.P.E. Psychosocial factors at work and risk of depression: A systematic review of the epidemiological evidence. Occup. Environ. Med. 2008, 65, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Netterstrøm, B.; Conrad, N.; Bech, P.; Fink, P.; Olsen, O.; Rugulies, R.; Stansfeld, S. The Relation between Work-related Psychosocial Factors and the Development of Depression. Epidemiol. Rev. 2008, 30, 118–132. [Google Scholar] [CrossRef]
- Lucas, M.; Mirzaei, F.; Pan, A.; Okereke, O.I.; Willett, W.C.; O’reilly, J.; Koenen, K.; Ascherio, A. Coffee, Caffeine, and Risk of Depression Among Women. Arch. Intern. Med. 2023, 171, 1571–1578. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Y.; Li, F.; Zhang, D. Fruit and vegetable consumption and the risk of depression: A meta-analysis. Nutrition 2016, 32, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lv, J.; Wang, W.; Zhang, D. Dietary magnesium and calcium intake and risk of depression in the general population: A meta-analysis. Aust. N. Z. J. Psychiatry 2016, 51, 219–229. [Google Scholar] [CrossRef]
- Xu, Y.; Zeng, L.; Zou, K.; Shan, S.; Wang, X.; Xiong, J.; Zhao, L.; Zhang, L.; Cheng, G. Role of dietary factors in the prevention and treatment for depression: An umbrella review of meta-analyses of prospective studies. Transl. Psychiatry 2021, 11, 478. [Google Scholar] [CrossRef]
- Duffey, K.J.; Davy, B.M. The Healthy Beverage Index Is Associated with Reduced Cardiometabolic Risk in US Adults: A Preliminary Analysis. J. Acad. Nutr. Diet. 2015, 115, 1682–1689.e2. [Google Scholar] [CrossRef] [PubMed]
- Rasaei, N.; Ghaffarian-Ensaf, R.; Shiraseb, F.; Abaj, F.; Gholami, F.; Clark, C.C.T.; Mirzaei, K. The association between Healthy Beverage Index and psychological disorders among overweight and obese women: A cross-sectional study. BMC Women’s Health 2022, 22, 295. [Google Scholar] [CrossRef]
- Fusar-Poli, L.; Gabbiadini, A.; Ciancio, A.; Vozza, L.; Signorelli, M.S.; Aguglia, E. The effect of cocoa-rich products on depression, anxiety, and mood: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 7905–7916. [Google Scholar] [CrossRef]
- Nucci, D.; Fatigoni, C.; Amerio, A.; Odone, A.; Gianfredi, V. Red and Processed Meat Consumption and Risk of Depression: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6686. [Google Scholar] [CrossRef]
- Lázaro Tomé, A.; Reig Cebriá, M.J.; González-Teruel, A.; Carbonell-Asíns, J.A.; Cañete Nicolás, C.; Hernández-Viadel, M. Efficacy of vitamin D in the treatment of depression: A systematic review and meta-analysis. Actas Esp. Psiquiatr. 2021, 49, 12–23. [Google Scholar] [PubMed]
- Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive Nutraceuticals for Depression: A Systematic Review and Meta-Analyses. Am. J. Psychiatry 2016, 173, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Young, L.M.; Pipingas, A.; White, D.J.; Gauci, S.; Scholey, A. A Systematic Review and Meta-Analysis of B Vitamin Supplementation on Depressive Symptoms, Anxiety, and Stress: Effects on Healthy and ‘At-Risk’ Individuals. Nutrients 2019, 11, 2232. [Google Scholar] [CrossRef] [PubMed]
- Levey, D.F.; Stein, M.B.; Wendt, F.R.; Pathak, G.A.; Zhou, H.; Aslan, M.; Quaden, R.; Harrington, K.M.; Nuñez, Y.Z.; Overstreet, C.; et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 2021, 24, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Mullins, N.; Bigdeli, T.B.; Børglum, A.D.; Coleman, J.R.; Demontis, D.; Mehta, D.; Power, R.A.; Ripke, S.; Stahl, E.A.; Starnawska, A.; et al. GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. Am. J. Psychiatry 2019, 176, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Xu, M.; Zhan, G.-L.; Fan, Y.; Zhou, H.; Jiang, H.-Y.; Lu, W.-H.; Tan, L.; Zhang, D.-F.; Yao, Y.-G.; et al. The GWAS Risk Genes for Depression May Be Actively Involved in Alzheimer’s Disease. J. Alzheimers Dis. 2018, 64, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Stathopoulou, M.G.; de Andrés, F.; Siest, G.; Murray, H.; Martin, M.; Cobaleda, J.; Delgado, A.; Lamont, J.; Peñas-Liedó, E.; et al. VEGF-related polymorphisms identified by GWAS and risk for major depression. Transl. Psychiatry 2017, 7, e1055. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic Epidemiology of Major Depression: Review and Meta-Analysis. Am. J. Psychiatry 2000, 157, 1552–1562. [Google Scholar] [CrossRef] [PubMed]
- Beute, F.; de Kort, Y.A.W. The natural context of wellbeing: Ecological momentary assessment of the influence of nature and daylight on affect and stress for individuals with depression levels varying from none to clinical. Health Place. 2018, 49, 7–18. [Google Scholar] [CrossRef]
- Jakstis, K.; Fischer, L.K. Urban Nature and Public Health: How Nature Exposure and Sociocultural Background Relate to Depression Risk. Int. J. Environ. Res. Public Health 2021, 18, 9689. [Google Scholar] [CrossRef]
- Bezold, C.P.; Banay, R.F.; Coull, B.A.; Hart, J.E.; James, P.; Kubzansky, L.D.; Missmer, S.A.; Laden, F. The Association between Natural Environments and Depressive Symptoms in Adolescents Living in the United States. J. Adolesc. Health 2018, 62, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, S.; Devine, M.T.; Gillespie, T.; Lyons, S.; Nolan, A. Coastal blue space and depression in older adults. Health Place. 2018, 54, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Galea, S.; Ahern, J.; Rudenstine, S.; Wallace, Z.; Vlahov, D. Urban built environment and depression: A multilevel analysis. J. Epidemiol. Community Health 2005, 59, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cui, X.; Dijst, M.; Tian, S.; Chen, J.; Huang, J. Association Between Natural/Built Campus Environment and Depression Among Chinese Undergraduates: Multiscale Evidence for the Moderating Role of Socioeconomic Factors After Controlling for Residential Self-Selection. Front. Public Health 2022, 10, 844541. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.; Brown, G.W.; Robinson, R. Befriending as an intervention for chronic depression among women in an inner city: 1: Randomised controlled trial. Br. J. Psychiatry 1999, 174, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Wing, J.K.; Birley, J.; Graham, P.; Isaacs, A. Present state examination. Br. J. Psychiatry 1974. [Google Scholar] [CrossRef]
- Fancourt, D.; Opher, S.; de Oliveira, C. Fixed-Effects Analyses of Time-Varying Associations between Hobbies and Depression in a Longitudinal Cohort Study: Support for Social Prescribing? Psychother. Psychosom. 2019, 89, 111–113. [Google Scholar] [CrossRef]
- Li, Z.; Dai, J.; Wu, N.; Jia, Y.; Gao, J.; Fu, H. Effect of Long Working Hours on Depression and Mental Well-Being among Employees in Shanghai: The Role of Having Leisure Hobbies. Int. J. Environ. Res. Public Health 2019, 16, 4980. [Google Scholar] [CrossRef] [PubMed]
- Hammen, C. Stress and Depression. Annu. Rev. Clin. Psychol. 2005, 1, 293–319. [Google Scholar] [CrossRef]
- Santa Maria, A.; Wörfel, F.; Wolter, C.; Gusy, B.; Rotter, M.; Stark, S.; Kleiber, D.; Renneberg, B. The Role of Job Demands and Job Resources in the Development of Emotional Exhaustion, Depression, and Anxiety Among Police Officers. Police Q. 2018, 21, 109–134. [Google Scholar] [CrossRef]
- Hall, G.B.; Dollard, M.F.; Winefield, A.H.; Dormann, C.; Bakker, A.B. Psychosocial safety climate buffers effects of job demands on depression and positive organizational behaviors. Anxiety Stress Coping 2013, 26, 355–377. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Borawski, J. Vegetarian diet and depression scores: A meta-analysis. J. Affect. Disord. 2021, 294, 813–815. [Google Scholar] [CrossRef] [PubMed]
- Psaltopoulou, T.; Sergentanis, T.N.; Panagiotakos, D.B.; Sergentanis, I.N.; Kosti, R.; Scarmeas, N. Mediterranean diet, stroke, cognitive impairment, and depression: A meta-analysis. Ann. Neurol. 2013, 74, 580–591. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Covas, M.I.; Arós, F.; Romaguera, D.; Gómez-Gracia, E.; Lapetra, J.; et al. Mediterranean dietary pattern and depression: The PREDIMED randomized trial. BMC Med. 2013, 11, 208. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Daglia, M.; Braidy, N.; Nabavi, S.F. Natural products, micronutrients, and nutraceuticals for the treatment of depression: A short review. Nutr. Neurosci. 2017, 20, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Mon, M.A.; Ortega, M.A.; García-Montero, C.; Fraile-Martinez, O.; Monserrat, J.; Lahera, G.; Mora, F.; Rodriguez-Quiroga, A.; Fernandez-Rojo, S.; Quintero, J.; et al. Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects. Pharmaceuticals 2021, 14, 821. [Google Scholar] [CrossRef]
- Bonokwane, M.B.; Lekhooa, M.; Struwig, M.; Aremu, A.O. Antidepressant Effects of South African Plants: An Appraisal of Ethnobotanical Surveys, Ethnopharmacological and Phytochemical Studies. Front. Pharmacol. 2022, 13, 895286. [Google Scholar] [CrossRef]
- Mischoulon, D.; Iovieno, N. Supplements and Natural Remedies for Depression. In The Massachusetts General Hospital Guide to Depression: New Treatment Insights and Options; Shapero, B.G., Mischoulon, D., Cusin, C., Eds.; Springer International Publishing: Cham, Switerland, 2019; pp. 195–209. [Google Scholar]
- Wang, H.; Jin, M.; Xie, M.; Yang, Y.; Xue, F.; Li, W.; Zhang, M.; Li, Z.; Li, X.; Jia, N.; et al. Protective role of antioxidant supplementation for depression and anxiety: A meta-analysis of randomized clinical trials. J. Affect. Disord. 2023, 323, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.; Emons, B.; Brunnhuber, S.; Karaca, S.; Juckel, G. The Role of Dietary Supplements in Depression and Anxiety—A Narrative Review. Pharmacopsychiatry 2019, 52, 261–279. [Google Scholar] [CrossRef]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F.; et al. The effects of dietary improvement on symptoms of depression and anxiety: A meta-analysis of randomized controlled trials. Psychosom. Med. 2019, 81, 265–280. [Google Scholar] [CrossRef]
- Subermaniam, K.; Teoh, S.L.; Yow, Y.-Y.; Tang, Y.-Q.; Lim, L.W.; Wong, K.-H. Marine algae as emerging therapeutic alternatives for depression: A review. Iran. J. Basic Med. Sci. 2021, 24, 997–1013. [Google Scholar] [PubMed]
- Varteresian, T.C.; Merrill, D.A.; Lavretsky, H. The Use of Natural Products and Supplements in Late-Life Mood and Cognitive Disorders. Focus 2013, 11, 15–21. [Google Scholar] [CrossRef]
- Petridou, E.T.; Kousoulis, A.A.; Michelakos, T.; Papathoma, P.; Dessypris, N.; Papadopoulos, F.C.; Stefanadis, C. Folate and B12 serum levels in association with depression in the aged: A systematic review and meta-analysis. Aging Ment. Health 2016, 20, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Mischoulon, D. Popular herbal and natural remedies used in psychiatry. Focus. Am. Psychiatr. Publ. 2018, 16, 2–11. [Google Scholar] [CrossRef]
- Varteresian, T.; Lavretsky, H. Natural products and supplements for geriatric depression and cognitive disorders: An evaluation of the research. Curr. Psychiatry Rep. 2014, 16, 456. [Google Scholar] [CrossRef]
- Schefft, C.; Kilarski, L.L.; Bschor, T.; Koehler, S. Efficacy of adding nutritional supplements in unipolar depression: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2017, 27, 1090–1109. [Google Scholar] [CrossRef]
- Dwyer, A.V.; Whitten, D.L.; Hawrelak, J.A. Herbal medicines, other than St. John’s Wort, in the treatment of depression: A systematic review. Altern. Med. Rev. 2011, 16, 40–49. [Google Scholar] [PubMed]
- Szafrański, T. Herbal remedies in depression–state of the art. Psychiatr. Pol. 2014, 48, 59–73. [Google Scholar] [CrossRef]
- Ernst, E. Herbal remedies for depression and anxiety. Adv. Psychiatr. Treat. 2007, 13, 312–316. [Google Scholar] [CrossRef]
- Sarris, J.; Panossian, A.; Schweitzer, I.; Stough, C.; Scholey, A. Herbal medicine for depression, anxiety and insomnia: A review of psychopharmacology and clinical evidence. Eur. Neuropsychopharmacol. 2011, 21, 841–860. [Google Scholar] [CrossRef]
- Sarris, J. Herbal medicines in the treatment of psychiatric disorders: A systematic review. Phytother. Res. 2007, 21, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Yosaee, S.; Clark, C.C.T.; Keshtkaran, Z.; Ashourpour, M.; Keshani, P.; Soltani, S. Zinc in depression: From development to treatment: A comparative/ dose response meta-analysis of observational studies and randomized controlled trials. Gen. Hosp. Psychiatry 2022, 74, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Tarleton, E.K.; Littenberg, B.; MacLean, C.D.; Kennedy, A.G.; Daley, C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PLoS ONE 2017, 12, e0180067. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, X.; Wu, Y.; Zhang, D. Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Aust. N. Z. J. Psychiatry 2016, 50, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kim, Y.; Je, Y. Fish consumption and risk of depression: Epidemiological evidence from prospective studies. Asia-Pac. Psychiatry 2018, 10, e12335. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, X.; Zhang, D. Fish consumption and risk of depression: A meta-analysis. J. Epidemiol. Community Health 2016, 70, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Hoffmire, C.A.; Block, R.C.; Thevenet-Morrison, K.; van Wijngaarden, E. Associations between omega-3 poly-unsaturated fatty acids from fish consumption and severity of depressive symptoms: An analysis of the 2005–2008 National Health and Nutrition Examination Survey. Prostaglandins Leukot. Essent. Fat. Acids 2012, 86, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, S.S.; Foshati, S.; Haddadian-Khouzani, S.; Rouhani, M.H. The role of selenium in depression: A systematic review and meta-analysis of human observational and interventional studies. Sci. Rep. 2022, 12, 1045. [Google Scholar] [CrossRef] [PubMed]
- Bleys, J.; Navas-Acien, A.; Guallar, E. Serum Selenium Levels and All-Cause, Cancer, and Cardiovascular Mortality Among US Adults. Arch. Intern. Med. 2008, 168, 404–410. [Google Scholar] [CrossRef]
- Finley, J.W. Bioavailability of Selenium from Foods. Nutr. Rev. 2006, 64, 146–151. [Google Scholar] [CrossRef]
- Mahdavifar, B.; Hosseinzadeh, M.; Salehi-Abargouei, A.; Mirzaei, M.; Vafa, M. Dietary intake of B vitamins and their association with depression, anxiety, and stress symptoms: A cross-sectional, population-based survey. J. Affect. Disord. 2021, 288, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Trüeb, R. Serum Biotin Levels in Women Complaining of Hair Loss. Int. J. Trichology 2016, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine Staff, & Food and Nutrition Board Staff. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin and Choline; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Said, H.M. Biotin: Biochemical, Physiological and Clinical Aspects. In Water Soluble Vitamins: Clinical Research and Future Application; Stanger, O., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 1–19. [Google Scholar]
- de Benoist, B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 2008, 29 (Suppl. 2), S238–S244. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.; Tomar, S.K. Folate: A Functional Food Constituent. J. Food Sci. 2009, 74, R114–R122. [Google Scholar] [CrossRef] [PubMed]
- Markun, S.; Gravestock, I.; Jäger, L.; Rosemann, T.; Pichierri, G.; Burgstaller, J.M. Effects of Vitamin B12 Supplementation on Cognitive Function, Depressive Symptoms, and Fatigue: A Systematic Review, Meta-Analysis, and Meta-Regression. Nutrients 2021, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.B.; Brotchie, H.; Graham, R.K. Vitamin D and depression. J. Affect. Disord. 2017, 208, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Kar, S.K.; Suthar, N.; Nebhinani, N. Vitamin D and depression: A critical appraisal of the evidence and future directions. Indian. J. Psychol. Med. 2020, 42, 11–21. [Google Scholar] [CrossRef]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- Baggerly, C.A.; Cuomo, R.E.; French, C.B.; Garland, C.F.; Gorham, E.D.; Grant, W.B.; Heaney, R.P.; Holick, M.F.; Hollis, B.W.; McDonnell, S.L.; et al. Sunlight and Vitamin D: Necessary for Public Health. J. Am. Coll. Nutr. 2015, 34, 359–365. [Google Scholar] [CrossRef]
- Moore, C.; Murphy, M.M.; Keast, D.R.; Holick, M.F. Vitamin D intake in the United States. J. Am. Diet. Assoc. 2004, 104, 980–983. [Google Scholar] [CrossRef]
- Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 2019, 102, 13–23. [Google Scholar] [CrossRef]
- Chao, L.; Liu, C.; Sutthawongwadee, S.; Li, Y.; Lv, W.; Chen, W.; Yu, L.; Zhou, J.; Guo, A.; Li, Z.; et al. Effects of Probiotics on Depressive or Anxiety Variables in Healthy Participants Under Stress Conditions or With a Depressive or Anxiety Diagnosis: A Meta-Analysis of Randomized Controlled Trials. Front. Neurol. 2020, 11, 421. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Peters, C.; Ho, C.Y.X.; Lim, D.Y.; Yeo, W.-S. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord. 2018, 228, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Metwaly, A.; Reitmeier, S.; Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.-P.; Cominetti, O.; Welsh, C.; Rieder, A.; et al. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology 2017, 153, 448–459.e8. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Branco, G.F.; Nazzaro, F.; Cruz, A.G.; Faria, J.A.F. Functional Foods and Nondairy Probiotic Food Development: Trends, Concepts, and Products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019, 30, 66–70. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef] [PubMed]
- Cuamatzin-García, L.; Rodríguez-Rugarcía, P.; El-Kassis, E.G.; Galicia, G.; Meza-Jiménez, M.d.L.; Baños-Lara, M.d.R.; Zaragoza-Maldonado, D.S.; Pérez-Armendáriz, B. Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms 2022, 10, 1151. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Stubbs, B.; Solmi, M.; Ajnakina, O.; Carvalho, A.F.; Maggi, S. Acetyl-l-Carnitine Supplementation and the Treatment of Depressive Symptoms: A Systematic Review and Meta-Analysis. Psychosom. Med. 2018, 80, 154–159. [Google Scholar] [CrossRef]
- Nasca, C.; Bigio, B.; Lee, F.S.; Young, S.P.; Kautz, M.M.; Albright, A.; Beasley, J.; Millington, D.S.; Mathé, A.A.; Kocsis, J.H.; et al. Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc. Natl. Acad. Sci. USA 2018, 115, 8627–8632. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Bella, R.; Vacante, M.; Giordano, M.; Malaguarnera, G.; Gargante, M.P.; Motta, M.; Mistretta, A.; Rampello, L.; Pennisi, G. Acetyl-l-carnitine reduces depression and improves quality of life in patients with minimal hepatic encephalopathy. Scand. J. Gastroenterol. 2011, 46, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Roseiro, L.C.; Santos, C. Chapter 2.5—Carnitines (Including l-Carnitine, Acetyl-Carnitine, and Proprionyl-Carnitine). In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–52. [Google Scholar]
- Bakian, A.V.; Huber, R.S.; Scholl, L.; Renshaw, P.F.; Kondo, D. Dietary creatine intake and depression risk among U.S. Adults. Transl. Psychiatry 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Kondo, D.G.; Forrest, L.N.; Shi, X.; Sung, Y.-H.; Hellem, T.L.; Huber, R.S.; Renshaw, P.F. Creatine target engagement with brain bioenergetics: A dose-ranging phosphorus-31 magnetic resonance spectroscopy study of adolescent females with SSRI-resistant depression. Amino Acids 2016, 48, 1941–1954. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids 2016, 48, 1785–1791. [Google Scholar] [CrossRef]
- Ille, R.; Spona, J.; Zickl, M.; Hofmann, P.; Lahousen, T.; Dittrich, N.; Bertha, G.; Hasiba, K.; Mahnert, F.A.; Kapfhammer, H.-P. “Add-On”-therapy with an individualized preparation consisting of free amino acids for patients with a major depression. Eur. Arch. Psychiatry Clin. Neurosci. 2007, 257, 222–229. [Google Scholar] [CrossRef]
- Pangborn, J. Nutritionally Correct Amino Acid Ranges: Urine and Plasma. Technical Memorandum 1, Biostatistics. 1986.
- Bralley, J.A.; Lord, R.S. Treatment of chronic fatigue syndrome with specific amino acid supplementation. J. Appl. Nutr. 1994, 46, 74–78. [Google Scholar]
- Maruf, A.A.; Poweleit, E.A.; Brown, L.C.; Strawn, J.R.; Bousman, C.A. Systematic Review and Meta-Analysis of L-Methylfolate Augmentation in Depressive Disorders. Pharmacopsychiatry 2021, 55, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Altaf, R.; Gonzalez, I.; Rubino, K.; Nemec, E.C. Folate as adjunct therapy to SSRI/SNRI for major depressive disorder: Systematic review & meta-analysis. Complement. Ther. Med. 2021, 61, 102770. [Google Scholar]
- Liu, M.; Zhang, Z.; Zhou, C.; Li, Q.; He, P.; Zhang, Y.; Li, H.; Liu, C.; Liang, M.; Wang, X.; et al. Relationship of several serum folate forms with the risk of mortality: A prospective cohort study. Clin. Nutr. 2021, 40, 4255–4262. [Google Scholar] [CrossRef]
- Javelle, F.; Lampit, A.; Bloch, W.; Häussermann, P.; Johnson, S.L.; Zimmer, P. Effects of 5-hydroxytryptophan on distinct types of depression: A systematic review and meta-analysis. Nutr. Rev. 2019, 78, 77–88. [Google Scholar] [CrossRef]
- Asher, G.N.; Gartlehner, G.; Gaynes, B.N.; Amick, H.R.; Forneris, C.; Morgan, L.C.; Coker-Schwimmer, E.; Boland, E.; Lux, L.J.; Gaylord, S.; et al. Comparative Benefits and Harms of Complementary and Alternative Medicine Therapies for Initial Treatment of Major Depressive Disorder: Systematic Review and Meta-Analysis. J. Altern. Complement. Med. 2017, 23, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Brattström, A. Long-term effects of St. John’s wort (Hypericum perforatum) treatment: A 1-year safety study in mild to moderate depression. Phytomedicine 2009, 16, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Shemshian, M.; Mousavi, S.H.; Norouzy, A.; Kermani, T.; Moghiman, T.; Sadeghi, A.; Mokhber, N.; Ghayour-Mobarhan, M.; Ferns, G.A.A. A double-blind, randomized and placebo-controlled trial of Saffron (Crocus sativus L.) in the treatment of anxiety and depression. J. Complement. Integr. Med. 2016, 13, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Koh, S.S.H.; Chan, H.W.; Ho, C.Y.X. Clinical Use of Curcumin in Depression: A Meta-Analysis. J. Am. Med. Dir. Assoc. 2017, 18, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, L.; Vozza, L.; Gabbiadini, A.; Vanella, A.; Concas, I.; Tinacci, S.; Petralia, A.; Signorelli, M.S.; Aguglia, E. Curcumin for depression: A meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Naylor, G.J.; Martin, B.; Hopwood, S.E.; Watson, Y. A two-year double-blind crossover trial of the prophylactic effect of methylene blue in manic-depressive psychosis. Biol. Psychiatry 1986, 21, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Naylor, G.J.; Smith, A.H.; Connelly, P. A controlled trial of Methylene Blue in severe depressive illness. Biol. Psychiatry 1987, 22, 657–659. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.-H.; Xu, Z.; Fu, H.; Zeng, H.; Zheng, G.-Q. Efficacy and safety of Chinese herbal medicine for depression: A systematic review and meta-analysis of randomized controlled trials. J. Psychiatr. Res. 2019, 117, 74–91. [Google Scholar] [CrossRef]
- Yeung, W.-F.; Chung, K.-F.; Ng, K.-Y.; Yu, Y.-M.; Ziea, E.T.-C.; Ng, B.F.-L. A systematic review on the efficacy, safety and types of Chinese herbal medicine for depression. J. Psychiatr. Res. 2014, 57, 165–175. [Google Scholar] [CrossRef]
- Zadeh, A.R.; Eghbal, A.F.; Mirghazanfari, S.M.; Ghasemzadeh, M.R.; Nassireslami, E.; Donyavi, V. Nigella sativa extract in the treatment of depression and serum Brain-Derived Neurotrophic Factor (BDNF) levels. J. Res. Med. Sci. 2022, 27, 28. [Google Scholar]
- Galizia, I.; Oldani, L.; Macritchie, K.; Amari, E.; Dougall, D.; Jones, T.N.; Lam, R.W.; Massei, G.J.; Yatham, L.N.; Young, A.H. S-adenosyl methionine (SAMe) for depression in adults. Cochrane Database Syst. Rev. 2016, 2016, CD011286. [Google Scholar] [CrossRef]
- Delle Chiaie, R.; Pancheri, P.; Scapicchio, P. Efficacy and tolerability of oral and intramuscular S-adenosyl-L-methionine 1, 4-butanedisulfonate (SAMe) in the treatment of major depression: Comparison with imipramine in 2 multicenter studies. Am. J. Clin. Nutr. 2002, 76, 1172S–1176S. [Google Scholar] [CrossRef]
- Calabrese, C.; Gregory, W.L.; Leo, M.; Kraemer, D.; Bone, K.; Oken, B. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: A randomized, double-blind, placebo-controlled trial. J. Altern. Complement. Med. 2008, 14, 707–713. [Google Scholar] [CrossRef]
- Darbinyan, V.; Aslanyan, G.; Amroyan, E.; Gabrielyan, E.; Malmström, C.; Panossian, A. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord. J. Psychiatry 2007, 61, 343–348. [Google Scholar] [CrossRef]
- Sarris, J.; Kavanagh, D.J.; Byrne, G.; Bone, K.M.; Adams, J.; Deed, G. The Kava Anxiety Depression Spectrum Study (KADSS): A randomized, placebo-controlled crossover trial using an aqueous extract of Piper methysticum. Psychopharmacology 2009, 205, 399–407. [Google Scholar] [CrossRef]
- Lewin, L.M.; Melmed, S.; Bank, H. Rapid screening test for detection of elevated MYO-Inositol levels in human blood serum. Clin. Chim. Acta 1974, 54, 377–379. [Google Scholar] [CrossRef]
- Iovieno, N.; Dalton, E.D.; Fava, M.; Mischoulon, D. Second-tier natural antidepressants: Review and critique. J. Affect. Disord. 2011, 130, 343–357. [Google Scholar] [CrossRef]
- Clements, R.S.; Jr Darnell, B. Myo-inositol content of common foods: Development of a high-myo-inositol diet. Am. J. Clin. Nutr. 1980, 33, 1954–1967. [Google Scholar] [CrossRef]
- Davidson, J.R.; Abraham, K.; Connor, K.M.; McLeod, M.N. Effectiveness of chromium in atypical depression: A placebo-controlled trial. Biol. Psychiatry 2003, 53, 261–264. [Google Scholar] [CrossRef]
- Molin Christensen, J.; Holst, E.; Peter Bonde, J.; Knudsen, L. Determination of chromium in blood and serum: Evaluation of quality control procedures and estimation of reference values in Danish subjects. Sci. Total Environ. 1993, 132, 11–25. [Google Scholar] [CrossRef]
- Swaroop, A.; Bagchi, M.; Preuss, H.; Zafra-Stone, S.; Ahmad, T.; Bagchi, D. Benefits of chromium(III) complexes in animal and human health. In The Nutritional Biochemistry of Chromium (III); Elsevier: Amsterdam, The Netherlands, 2019; pp. 251–278. [Google Scholar]
- Niklowitz, P.; Onur, S.; Fischer, A.; Laudes, M.; Palussen, M.; Menke, T.; Döring, F. Coenzyme Q10 serum concentration and redox status in European adults: Influence of age, sex, and lipoprotein concentration. J. Clin. Biochem. Nutr. 2016, 58, 240–245. [Google Scholar] [CrossRef]
- Pravst, I.; Žmitek, K.; Žmitek, J. Coenzyme Q10 Contents in Foods and Fortification Strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef]
- Foshati, S.; Ghanizadeh, A.; Akhlaghi, M. Extra-Virgin Olive Oil Improves Depression Symptoms Without Affecting Salivary Cortisol and Brain-Derived Neurotrophic Factor in Patients with Major Depression: A Double-Blind Randomized Controlled Trial. J. Acad. Nutr. Diet. 2022, 122, 284–297.e1. [Google Scholar] [CrossRef]
- Akhondzadeh, S.; Kashani, L.; Fotouhi, A.; Jarvandi, S.; Mobaseri, M.; Moin, M.; Khani, M.; Jamshidi, A.H.; Baghalian, K.; Taghizadeh, M. Comparison of Lavandula angustifolia Mill. tincture and imipramine in the treatment of mild to moderate depression: A double-blind, randomized trial. Prog. Neuropsychopharmacol. Biol. Psychiatry 2003, 27, 123–127. [Google Scholar] [CrossRef]
- Wang, X.-L.; Feng, S.-T.; Wang, Y.-T.; Zhang, N.-N.; Wang, Z.-Z.; Zhang, Y. Canonical Chinese medicine formula Danzhi-Xiaoyao-San for treating depression: A systematic review and meta-analysis. J. Ethnopharmacol. 2022, 287, 114960. [Google Scholar] [CrossRef]
- Brennan, B.P.; Jensen, J.E.; Hudson, J.I.; Coit, C.E.; Beaulieu, A.; Pope, H.G., Jr.; Renshaw, P.F.; Cohen, B.M. A Placebo-Controlled Trial of Acetyl-L-Carnitine and α-Lipoic Acid in the Treatment of Bipolar Depression. J. Clin. Psychopharmacol. 2013, 33, 627–635. [Google Scholar] [CrossRef]
- Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 1149–1160. [Google Scholar] [CrossRef]
- Berk, M.; Copolov, D.L.; Dean, O.; Lu, K.; Jeavons, S.; Schapkaitz, I.; Anderson-Hunt, M.; Bush, A.I. N-acetyl cysteine for depressive symptoms in bipolar disorder--a double-blind randomized placebo-controlled trial. Biol. Psychiatry 2008, 64, 468–475. [Google Scholar] [CrossRef]
- Berk, M.; Dean, O.; Cotton, S.M.; Gama, C.S.; Kapczinski, F.; Fernandes, B.S.; Kohlmann, K.; Jeavons, S.; Hewitt, K.; Allwang, C.; et al. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: An open label trial. J. Affect. Disord. 2011, 135, 389–394. [Google Scholar] [CrossRef]
- Caso Marasco, A.; Vargas Ruiz, R.; Salas Villagomez, A.; Begoña Infante, C. Double-blind study of a multivitamin complex supplemented with ginseng extract. Drugs Exp. Clin. Res. 1996, 22, 323–329. [Google Scholar]
- Ahmadpoor, J.; Chahardahcheric, S.V.; Setorki, M. The Protective effect of hydroalcoholic extract of the southern maidenhair fern (adiantum capillus-veneris) on the depression and anxiety caused by chronic stress in adult male mice: An experimental randomized study. Iran. Red. Crescent Med. J. 2019, 21, e86750. [Google Scholar] [CrossRef]
- Rabiei, Z.; Setorki, M. Effect of ethanol Adiantum capillus-veneris extract in experimental models of anxiety and depression. Braz. J. Pharm. Sci. 2019, 55, e18099. [Google Scholar] [CrossRef]
- Pedersen, M.E.; Szewczyk, B.; Stachowicz, K.; Wieronska, J.; Andersen, J.; Stafford, G.I.; van Staden, J.; Pilc, A.; Jäger, A.K. Effects of South African traditional medicine in animal models for depression. J. Ethnopharmacol. 2008, 119, 542–548. [Google Scholar] [CrossRef]
- Aderibigbe, A. Antidepressant activity of ethanol extract of Albizia adianthifolia (Schumach) WF Wight leaf in mice. Afr. J. Med. Med. Sci. 2018, 47, 133–140. [Google Scholar]
- Beppe, G.J.; Dongmo, A.B.; Foyet, H.S.; Dimo, T.; Mihasan, M.; Hritcu, L. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala. BMC Complement. Altern. Med. 2015, 15, 374. [Google Scholar] [CrossRef]
- Jahani, R.; Khaledyan, D.; Jahani, A.; Jamshidi, E.; Kamalinejad, M.; Khoramjouy, M.; Faizi, M. Evaluation and comparison of the antidepressant-like activity of Artemisia dracunculus and Stachys lavandulifolia ethanolic extracts: An in vivo study. Res. Pharm. Sci. 2019, 14, 544. [Google Scholar]
- Ilkhanizadeh, A.; Asghari, A.; Hassanpour, S.; Safi, S. Anti-depressant effect of Artemisia dracunculus extract is mediated via GABAergic and serotoninergic systems in ovariectomized mice. J. Basic Clin. Pathophysiol. 2021, 9, 32–41. [Google Scholar]
- Zanelati, T.; Biojone, C.; Moreira, F.; Guimarães, F.S.; Joca, S.R.L. Antidepressant-like effects of cannabidiol in mice: Possible involvement of 5-HT1A receptors. Br. J. Pharmacol. 2010, 159, 122–128. [Google Scholar] [CrossRef]
- Sales, A.J.; Crestani, C.C.; Guimarães, F.S.; Joca, S.R. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 86, 255–261. [Google Scholar] [CrossRef]
- El-Alfy, A.T.; Ivey, K.; Robinson, K.; Ahmed, S.; Radwan, M.; Slade, D.; Khan, I.; ElSohly, M.; Ross, S. Antidepressant-like effect of Δ9-tetrahydrocannabinol other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav. 2010, 95, 434–442. [Google Scholar] [CrossRef]
- Selvi, P.T.; Kumar, M.S.; Rajesh, R.; Kathiravan, T. Antidepressant activity of ethanolic extract of leaves of Centella asiatica. Linn by in vivo methods. Asian J. Res. Pharm. Sci. 2012, 2, 76–79. [Google Scholar]
- Rabadia, J.; Satish, S.; Ramanjaneyulu, J.; Narayanaswamy, V. An investigation of anti-depressant activity of Cinnamomum camphora oil in experimental mice. Asian J. Biomed. Pharm. Sci. 2013, 3, 44. [Google Scholar]
- Citó, M.; Silva, M.; Santos, L.; Fernandes, M.; Melo, F.; Aguiar, J.; Lopes, I.; Sousa, P.; Vasconcelos, S.; Macêdo, D.; et al. Antidepressant-like effect of Hoodia gordonii in a forced swimming test in mice: Evidence for involvement of the monoaminergic system. Braz. J. Med. Biol. Res. 2014, 48, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhang, F.; Cheng, J.; Guo, S.; Liu, P.; Wang, H. Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L. Sci. Rep. 2014, 4, 5632. [Google Scholar] [CrossRef] [PubMed]
- Fiebich, B.L.; Knörle, R.; Appel, K.; Kammler, T.; Weiss, G. Pharmacological studies in an herbal drug combination of St. John’s Wort (Hypericum perforatum) and passion flower (Passiflora incarnata): In vitro and in vivo evidence of synergy between Hypericum and Passiflora in antidepressant pharmacological models. Fitoterapia 2011, 82, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Ejigu, A.; Engidawork, E. Screening of the antidepressant-like activity of two hypericum species found in Ethiopia. Ethiop Pharm. J. 2014, 30, 21–32. [Google Scholar] [CrossRef]
- Benneh, C.K.; Biney, R.P.; Adongo, D.W.; Mante, P.K.; Ampadu, F.A.; Tandoh, A.; Jato, J.; Woode, E. Anxiolytic antidepressant effects of Maerua angolensis DC. Stem bark extract in mice. Depress. Res. Treat. 2018, 2018, 1537371. [Google Scholar] [PubMed]
- Ishaq, H. Anxiolytic and antidepressant activity of different methanolic extracts of Melia azedarach Linn. Pak. J. Pharm. Sci. 2016, 29, 1649–1655. [Google Scholar]
- Jedi-Behnia, B.; Abbasi Maleki, S.; Mousavi, E. The antidepressant-like effect of Mentha spicata essential oil in animal models of depression in male mice. J. Adv. Biomed. Sci. 2017, 7, 141–149. [Google Scholar]
- Badr, A.M.; Attia, H.A.; Al-Rasheed, N. Oleuropein reverses repeated corticosterone-induced depressive-like behavior in mice: Evidence of modulating effect on biogenic amines. Sci. Rep. 2020, 10, 3336. [Google Scholar] [CrossRef]
- Perveen, T.; Hashmi, B.M.; Haider, S.; Tabassum, S.; Saleem, S.; Siddiqui, M.A. Role of monoaminergic system in the etiology of olive oil induced antidepressant and anxiolytic effects in rats. Int. Sch. Res. Not. 2013, 2013, 615685. [Google Scholar] [CrossRef]
- Tariq, U.; Butt, M.S.; Pasha, I.; Faisal, M.N. Neuroprotective effects of Olea europaea L. fruit extract against cigarette smoke-induced depressive-like behaviors in Sprague–Dawley rats. J. Food Biochem. 2021, 45, e14014. [Google Scholar] [CrossRef]
- Machado, D.G.; Bettio, L.E.; Cunha, M.P.; Capra, J.C.; Dalmarco, J.B.; Pizzolatti, M.G.; Rodrigues, A.L.S. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: Involvement of the monoaminergic system. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 642–650. [Google Scholar] [CrossRef]
- Sasaki, K.; El Omri, A.; Kondo, S.; Han, J.; Isoda, H. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav. Brain Res. 2013, 238, 86–94. [Google Scholar] [CrossRef]
- Sasaki, K.; Ferdousi, F.; Fukumitsu, S.; Kuwata, H.; Isoda, H. Antidepressant-and anxiolytic-like activities of Rosmarinus officinalis extract in rodent models: Involvement of oxytocinergic system. Biomed. Pharmacother. 2021, 144, 112291. [Google Scholar] [CrossRef]
- Abdelhalim, A.; Karim, N.; Chebib, M.; Aburjai, T.; Khan, I.; Johnston, G.A.; Hanrahan, J. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus officinalis. J. Pharm. Pharm. Sci. 2015, 18, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, R.; Elsa, A.; Agaie, B.; Etuk, E. Antinociceptive and antidepressant like effects of Securidaca longepedunculata root extract in mice. J. Ethnopharmacol. 2006, 107, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Loria, M.J.; Ali, Z.; Abe, N.; Sufka, K.J.; Khan, I.A. Effects of Sceletium tortuosum in rats. J. Ethnopharmacol. 2014, 155, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.; Kaster, M.P.; Binfaré, R.W.; Dias, M.; Santos, A.R.; Pizzolatti, M.G.; Brighente, I.M.; Rodrigues, A.L.S. Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: Evidence for the involvement of the monoaminergic system. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2007, 31, 421–428. [Google Scholar] [CrossRef]
- Wado, E.K.; Kubicki, M.; Ngatanko, A.H.H.; Blondelle, K.D.L.; Linda, D.J.; Roland, R.N.; Balbine, K.; Lamshoeft, M.; Assongalem, A.E.; Foyet, H.S. Anxiolytic and antidepressant effects of Ziziphus mucronata hydromethanolic extract in male rats exposed to unpredictable chronic mild stress: Possible mechanisms of actions. J. Ethnopharmacol. 2020, 260, 112987. [Google Scholar] [CrossRef]
- Li, H.; Xiao, Y.; Han, L.; Jia, Y.; Luo, S.; Zhang, D.; Zhang, L.; Wu, P.; Xiao, C.; Kan, W.; et al. Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of Dectin-1 and the innate immune system. Brain Res. Bull. 2021, 171, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Zeng, G.-R.; Liu, J.-Q.; Luo, Z.-S.; Zhang, L.; Dai, X.-M.; Fang, W.-T.; Zhang, J.; Chen, X.-C. Ganoderma lucidum triterpenoids improve maternal separation-induced anxiety-and depression-like behaviors in mice by mitigating inflammation in the periphery and brain. Nutrients 2022, 14, 2268. [Google Scholar] [CrossRef]
- Nagano, M.; Shimizu, K.; Kondo, R.; Hayashi, C.; Sato, D.; Kitagawa, K.; Ohnuki, K. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed. Res. 2010, 31, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ma, C.; Li, B.-M.; Sun, C. Polygala japonica Houtt. reverses depression-like behavior and restores reduced hippocampal neurogenesis in chronic stress mice. Biomed. Pharmacother. 2018, 99, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.-H.; Jeong, H.-J.; Lee, J.-Y.; Go, H.; Ko, S.-G.; Hong, S.-H.; Kim, H.-M.; Um, J.-Y. The effect of hydrolyzed Spirulina by malted barley on forced swimming test in ICR mice. Int. J. Neurosci. 2008, 118, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Suresh, D.; Madhu, M.; Saritha, C.; Shankaraiah, P. Antidepressant activity of spirulina platensis in experimentally induced dipression in mice. Int. J. Res. Dev. Pharm. Life Sci. 2014, 3, 1026–1035. [Google Scholar]
- Soetantyo, G.I.; Sarto, M. The antidepressant effect of Chlorella vulgaris on female Wistar rats (Rattus norvegicus Berkenhout, 1769) with chronic unpredictable mild stress treatment. J. Trop. Biodivers. Biotechnol. 2019, 4, 72–81. [Google Scholar] [CrossRef]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Arakawa, M. Seaweed consumption and prevalence of depressive symptoms during pregnancy in Japan: Baseline data from the Kyushu Okinawa Maternal and Child Health Study. BMC Pregnancy Childbirth 2014, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Allaert, F.-A.; Demais, H.; Collén, P.N. A randomized controlled double-blind clinical trial comparing versus placebo the effect of an edible algal extract (Ulva Lactuca) on the component of depression in healthy volunteers with anhedonia. BMC Psychiatry 2018, 18, 215. [Google Scholar] [CrossRef]
- Guo, F.; Huang, C.; Cui, Y.; Momma, H.; Niu, K.; Nagatomi, R. Dietary seaweed intake and depressive symptoms in Japanese adults: A prospective cohort study. Nutr. J. 2019, 18, 58. [Google Scholar] [CrossRef]
- Sasaki, K.; Othman, M.B.; Demura, M.; Watanabe, M.; Isoda, H. Modulation of neurogenesis through the promotion of energy production activity is behind the antidepressant-like effect of colonial green alga, Botryococcus braunii. Front. Physiol. 2017, 8, 900. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Badeli, R.; Karami, G.-R.; Badeli, Z.; Sahebkar, A. A randomized controlled trial of 6-week Chlorella vulgaris supplementation in patients with major depressive disorder. Complement. Ther. Med. 2015, 23, 598–602. [Google Scholar] [CrossRef]
- Talbott, S.; Hantla, D.; Capelli, B.; Ding, L.; Li, Y.; Artaria, C. Astaxanthin supplementation reduces depression and fatigue in healthy subjects. EC Nutr. 2019, 14, 239–246. [Google Scholar]
- Siddiqui, P.J.A.; Khan, A.; Uddin, N.; Khaliq, S.; Rasheed, M.; Nawaz, S.; Hanif, M.; Dar, A. Antidepressant-like deliverables from the sea: Evidence on the efficacy of three different brown seaweeds via involvement of monoaminergic system. Biosci. Biotechnol. Biochem. 2017, 81, 1369–1378. [Google Scholar] [CrossRef]
- Abreu, T.M.; Monteiro, V.S.; Martins, A.B.S.; Teles, F.B.; Rivanor, R.L.d.C.; Mota, F.; Macedo, D.S.; de Vasconcelos, S.M.M.; Júnior, J.E.R.H.; Benevides, N.M.B. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int. J. Biol. Macromol. 2018, 111, 534–541. [Google Scholar] [CrossRef]
- Violle, N.; Rozan, P.; Demais, H.; Nyvall Collen, P.; Bisson, J.-F. Evaluation of the antidepressant-and anxiolytic-like effects of a hydrophilic extract from the green seaweed Ulva sp. in rats. Nutr. Neurosci. 2018, 21, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiu, Z.; Du, Y.; Li, Y.; Yang, J.; Gao, Y.; Li, F.; Yin, X.; Shi, H. Brazilin treatment produces antidepressant-and anxiolytic-like effects in mice. Biol. Pharm. Bull. 2019, 42, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Z.; You, W.; Zhang, X.; Li, S.; Barish, P.A.; Vernon, M.M.; Du, X.; Li, G.; Pan, J. Antidepressant-like effect of trans-resveratrol: Involvement of serotonin and noradrenaline system. Eur. Neuropsychopharmacol. 2010, 20, 405–413. [Google Scholar] [CrossRef]
- Shewale, P.B.; Patil, R.A.; Hiray, Y.A. Antidepressant-like activity of anthocyanidins from Hibiscus rosa-sinensis flowers in tail suspension test and forced swim test. Indian. J. Pharmacol. 2012, 44, 454. [Google Scholar] [CrossRef]
- Ghazizadeh, J.; Sadigh-Eteghad, S.; Marx, W.; Fakhari, A.; Hamedeyazdan, S.; Torbati, M.; Taheri-Tarighi, S.; Araj-khodaei, M.; Mirghafourvand, M. The effects of lemon balm (Melissa officinalis L.) on depression and anxiety in clinical trials: A systematic review and meta-analysis. Phytother. Res. 2021, 35, 6690–6705. [Google Scholar] [CrossRef]
- Guzmán-Gutiérrez, S.; Gómez-Cansino, R.; García-Zebadúa, J.; Jiménez-Pérez, N.; Reyes-Chilpa, R. Antidepressant activity of Litsea glaucescens essential oil: Identification of β-pinene and linalool as active principles. J. Ethnopharmacol. 2012, 143, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Nam, E.S.; Lee, Y.; Kang, H.-J. Effects of lavender on anxiety, depression, and physiological parameters: Systematic review and meta-analysis. Asian Nurs. Res. 2021, 15, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Fajemiroye, J.O.; Martins, J.L.R.; Ghedini, P.C.; Galdino, P.M.; Paula, J.A.M.d.; Realino de Paula, J.; Da Rocha, F.F.; Costa, E.A. Antidepressive-like property of dichloromethane fraction of Pimenta pseudocaryophyllus and relevance of monoamine metabolic enzymes. Evid.-Based Complement. Altern. Med. 2013, 2013, 659391. [Google Scholar] [CrossRef]
- Molina, M.; Contreras, C.; Tellez-Alcantara, P. Mimosa pudica may possess antidepressant actions in the rat. Phytomedicine 1999, 6, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vázquez, M.; Estrada-Reyes, R.; Escalona, A.A.; Velázquez, I.L.; Martínez-Mota, L.; Moreno, J.; Heinze, G. Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. J. Ethnopharmacol. 2012, 139, 164–170. [Google Scholar] [CrossRef]
- Gabriela, G.-C.; Javier, A.-A.F.; Elisa, V.-A.; Gonzalo, V.-P.; Herlinda, B.-J. Antidepressant-like effect of Tagetes lucida Cav. extract in rats: Involvement of the serotonergic system. Am. J. Chin. Med. 2012, 40, 753–768. [Google Scholar] [CrossRef]
- Ali, S.M.; Shamim, S.; Younus, I.; Anwer, L.; Khaliq, S.A. Anxiolytic, antidepressant and inhibitory effect on MAO isoenzymes by Bougainvillea glabra flower extract in rats. Pak. J. Pharm. Sci. 2021, 34, 1963–1968. [Google Scholar] [PubMed]
- Kazemian, A.; Parvin, N.; Raisi Dehkordi, Z.; Rafieian-Kopaei, M. The effect of valerian on the anxiety and depression symptoms of the menopause in women referred to shahrekord medical centers. J. Med. Plants 2017, 16, 94–101. [Google Scholar]
- Tammadon, M.R.; Nobahar, M.; Hydarinia-Naieni, Z.; Ebrahimian, A.; Ghorbani, R.; Vafaei, A.A. The effects of valerian on sleep quality, depression, and state anxiety in hemodialysis patients: A randomized, double-blind, crossover clinical trial. Oman Med. J. 2021, 36, e255. [Google Scholar] [CrossRef]
- Doron, R.; Lotan, D.; Einat, N.; Yaffe, R.; Winer, A.; Marom, I.; Meron, G.; Kately, N.; Rehavi, M. A novel herbal treatment reduces depressive-like behaviors and increases BDNF levels in the brain of stressed mice. Life Sci. 2014, 94, 151–157. [Google Scholar] [CrossRef]
- Li, J.-M.; Yang, C.; Zhang, W.-Y.; Kong, L.-D. The effects of banxia houpu decoction on a chronic mild stress model of depression. Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China J. Chin. Mater. Medica 2003, 28, 55–59. [Google Scholar]
- Mayer, E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci. 2014, 34, 15490–15496. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Neufeld, K.-A.M. Gut–brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial genes, brain & behaviour—Epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014, 13, 69–86. [Google Scholar] [PubMed]
- Kelly, J.R.; Borre, Y.; O’Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 203–209. [Google Scholar]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 2017, 7, 987. [Google Scholar] [CrossRef]
- Van de Wouw, M.; Boehme, M.; Lyte, J.M.; Wiley, N.; Strain, C.; O’Sullivan, O.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain–gut axis alterations. J. Physiol. 2018, 596, 4923–4944. [Google Scholar] [CrossRef] [PubMed]
- Slyepchenko, A.; Maes, M.; Jacka, F.N.; Köhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; et al. Gut microbiota, bacterial translocation, and interactions with diet: Pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother. Psychosom. 2016, 86, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B. Short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lai, J.; Zhang, P.; Ding, J.; Jiang, J.; Liu, C.; Huang, H.; Zhen, H.; Xi, C.; Sun, Y.; et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol. Psychiatry 2022, 27, 4123–4135. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef]
- Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell. Neurosci. 2015, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Kubera, M.; Leunis, J.-C.; Berk, M. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. J. Affect. Disord. 2012, 141, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Strandwitz, P.; Kim, K.H.; Terekhova, D.; Liu, J.K.; Sharma, A.; Levering, J.; McDonald, D.; Dietrich, D.; Ramadhar, T.R.; Lekbua, A.; et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 2019, 4, 396–403. [Google Scholar] [CrossRef]
- Bear, T.L.; Dalziel, J.E.; Coad, J.; Roy, N.C.; Butts, C.A.; Gopal, P.K. The role of the gut microbiota in dietary interventions for depression and anxiety. Adv. Nutr. 2020, 11, 890–907. [Google Scholar] [CrossRef] [PubMed]
- Slyepchenko, A.; FCarvalho, A.; SCha, D.; Kasper, S.; SMcIntyre, R. Gut emotions-mechanisms of action of probiotics as novel therapeutic targets for depression and anxiety disorders. CNS Neurol. Disord.-Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.) 2014, 13, 1770–1786. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; O’Riordan, K.J.; Lee, Y.-K.; Wang, G.; Zhao, J.; Zhang, H.; Cryan, J.F.; Chen, W. Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol. Stress. 2020, 12, 100216. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Chen, Y.; Zhu, H.; Wang, L.; Qian, X.; Zou, R.; Zhao, J.; Zhang, H.; Qian, L.; Wang, Q.; et al. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav. Immun. 2022, 100, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Chen, Y.; Qian, X.; Zou, R.; Zhu, H.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. Pediococcus acidilactici CCFM6432 mitigates chronic stress-induced anxiety and gut microbial abnormalities. Food Funct. 2021, 12, 11241–11249. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.K.; Michaelsen, T.Y.; Bundgaard-Nielsen, C.; Nielsen, R.E.; Hjerrild, S.; Leutscher, P.; Wegener, G.; Sørensen, S. Faecal microbiota transplantation from patients with depression or healthy individuals into rats modulates mood-related behaviour. Sci. Rep. 2021, 11, 21869. [Google Scholar] [CrossRef] [PubMed]
- Doll, J.P.K.; Vázquez-Castellanos, J.F.; Schaub, A.-C.; Schweinfurth, N.; Kettelhack, C.; Schneider, E.; Yamanbaeva, G.; Mählmann, L.; Brand, S.; Beglinger, C.; et al. Fecal Microbiota Transplantation (FMT) as an Adjunctive Therapy for Depression-Case Report. Front. Psychiatry 2022, 13, 815422. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Ting, E.Y.-C.; Yang, A.C.; Tsai, S.-J. Role of interleukin-6 in depressive disorder. Int. J. Mol. Sci. 2020, 21, 2194. [Google Scholar] [CrossRef]
- Hodes, G.E.; Ménard, C.; Russo, S.J. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol. Stress 2016, 4, 15–22. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef]
- Dantzer, R.; O’connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Lawson, M.A.; Kelley, K.W. Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology 2011, 36, 426–436. [Google Scholar] [CrossRef]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Kéri, S.; Szabó, C.; Kelemen, O. Expression of Toll-Like Receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav. Immun. 2014, 40, 235–243. [Google Scholar] [CrossRef]
- Isaković, J.; Gorup, D.; Mitrečić, D. Molecular mechanisms of microglia-and astrocyte-driven neurorestoration triggered by application of electromagnetic fields. Croat. Med. J. 2019, 60, 127–140. [Google Scholar] [CrossRef]
- He, G.-L.; Liu, Y.; Li, M.; Chen, C.-H.; Gao, P.; Yu, Z.-P.; Yang, X.-S. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses. J. Neuroinflamm. 2014, 11, 49. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Maes, M.; Maker, G.L.; Hood, S.D.; Drummond, P.D. Curcumin for the treatment of major depression: A randomised, double-blind, placebo controlled study. J. Affect. Disord. 2014, 167, 368–375. [Google Scholar] [CrossRef]
- Yu, J.-J.; Pei, L.-B.; Zhang, Y.; Wen, Z.-Y.; Yang, J.-L. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder: A randomized, double-blind, placebo-controlled pilot study. J. Clin. Psychopharmacol. 2015, 35, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Sanmukhani, J.; Satodiya, V.; Trivedi, J.; Patel, T.; Tiwari, D.; Panchal, B.; Goel, A.; Tripathi, C.B. Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial. Phytother. Res. 2014, 28, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Ramaholimihaso, T.; Bouazzaoui, F.; Kaladjian, A. Curcumin in depression: Potential mechanisms of action and current evidence—A narrative review. Front. Psychiatry 2020, 11, 572533. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, Z.; Gao, Z.; Xie, K.; Zhang, Q.; Jiang, H.; Pang, Q. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav. Brain Res. 2014, 271, 116–121. [Google Scholar] [CrossRef]
- Lass, P.; Slawek, J.; Derejko, M.; Rubello, D. Neurological and psychiatric disorders in thyroid dysfunctions. Role Nucl. Med. SPECT PET Imaging. Minerva Endocrinol. 2008, 33, 75–84. [Google Scholar]
- Kirkegaard, C.; Faber, J. The role of thyroid hormones in depression. Eur. J. Endocrinol. 1998, 138, 1–9. [Google Scholar] [CrossRef]
- Ittermann, T.; Völzke, H.; Baumeister, S.E.; Appel, K.; Grabe, H.J. Diagnosed thyroid disorders are associated with depression and anxiety. Soc. Psychiatry Psychiatr. Epidemiol. 2015, 50, 1417–1425. [Google Scholar] [CrossRef]
- Bauer, M.; Goetz, T.; Glenn, T.; Whybrow, P. The thyroid-brain interaction in thyroid disorders and mood disorders. J. Neuroendocrinol. 2008, 20, 1101–1114. [Google Scholar] [CrossRef]
- Nuguru, S.P.; Rachakonda, S.; Sripathi, S.; Khan, M.I.; Patel, N.; Meda, R.T. Hypothyroidism and depression: A narrative review. Cureus 2022, 14, e28201. [Google Scholar] [CrossRef]
- Loh, H.H.; Lim, L.L.; Yee, A.; Loh, H.S. Association between subclinical hypothyroidism and depression: An updated systematic review and meta-analysis. BMC Psychiatry 2019, 19, 12. [Google Scholar] [CrossRef]
- Cleare, A.; McGregor, A.; O’keane, V. Neuroendocrine evidence for an association between hypothyroidism, reduced central 5-HT activity and depression. Clin. Endocrinol. 1995, 43, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Duval, F.; Mokrani, M.-C.; Erb, A.; Danila, V.; Lopera, F.G.; Foucher, J.R.; Jeanjean, L.C. Thyroid axis activity and dopamine function in depression. Psychoneuroendocrinology 2021, 128, 105219. [Google Scholar] [CrossRef]
- Swann, A. Thyroid hormone and norepinephrine: Effects on alpha-2, beta, and reuptake sites in cerebral cortex and heart. J. Neural Transm. 1988, 71, 195–205. [Google Scholar] [CrossRef]
- Haggerty Jr, J.J.; Prange Jr, A.J. Borderline hypothyroidism and depression. Annu. Rev. Med. 1995, 46, 37–46. [Google Scholar] [CrossRef]
- Sullivan, P.; Wilson, D.; Mulder, R.; Joyce, P. The hypothalamic-pituitary-thyroid axis in major depression. Acta Psychiatr. Scand. 1997, 95, 370–378. [Google Scholar] [CrossRef]
- Hage, M.P.; Azar, S.T. The link between thyroid function and depression. J. Thyroid. Res. 2011, 2012, 590648. [Google Scholar] [CrossRef]
- Hein, M.D.; Jackson, I.M. Thyroid function in psychiatric illness. Gen. Hosp. Psychiatry 1990, 12, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Kotkowska, Z.; Strzelecki, D. Depression and Autoimmune Hypothyroidism—Their Relationship and the Effects of Treating Psychiatric and Thyroid Disorders on Changes in Clinical and Biochemical Parameters Including BDNF and Other Cytokines—A Systematic Review. Pharmaceuticals 2022, 15, 391. [Google Scholar] [CrossRef]
- Betsy, A.; Binitha, M.; Sarita, S. Zinc deficiency associated with hypothyroidism: An overlooked cause of severe alopecia. Int. J. Trichology 2013, 5, 40–42. [Google Scholar]
- Rayman, M.P. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc. Nutr. Soc. 2019, 78, 34–44. [Google Scholar] [CrossRef]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar] [CrossRef]
- Trifu, S.; Popescu, A.; Dragoi, A.; Trifu, A. Thyroid hormones as a third line of augmentation medication in treatment-resistant depression. Acta Endocrinológica 2020, 16, 256. [Google Scholar] [CrossRef]
- Bauer, M.; Heinz, A.; Whybrow, P. Thyroid hormones, serotonin and mood: Of synergy and significance in the adult brain. Mol. Psychiatry 2002, 7, 140–156. [Google Scholar] [CrossRef]
- Sarris, J.; O’Neil, A.; Coulson, C.E.; Schweitzer, I.; Berk, M. Lifestyle medicine for depression. BMC Psychiatry 2014, 14, 107. [Google Scholar] [CrossRef]
- Wong, V.W.-H.; Ho, F.Y.-Y.; Shi, N.-K.; Sarris, J.; Chung, K.-F.; Yeung, W.-F. Lifestyle medicine for depression: A meta-analysis of randomized controlled trials. J. Affect. Disord. 2021, 284, 203–216. [Google Scholar] [CrossRef]
- Gómez-Gómez, I.; Bellón, J.; Resurrección, D.M.; Cuijpers, P.; Moreno-Peral, P.; Rigabert, A.; Maderuelo-Fernández, J.; Motrico, E. Effectiveness of universal multiple-risk lifestyle interventions in reducing depressive symptoms: Systematic review and meta-analysis. Prev. Med. 2020, 134, 106067. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Hood, S.D.; Drummond, P.D. A review of lifestyle factors that contribute to important pathways associated with major depression: Diet, sleep and exercise. J. Affect. Disord. 2013, 148, 12–27. [Google Scholar] [CrossRef]
- Berk, M.; Sarris, J.; Coulson, C.E.; Jacka, F.N. Lifestyle management of unipolar depression. Acta Psychiatr. Scand. 2013, 127, 38–54. [Google Scholar] [CrossRef]
- Binnewies, J.; Nawijn, L.; van Tol, M.-J.; van der Wee, N.J.; Veltman, D.J.; Penninx, B.W. Associations between depression, lifestyle and brain structure: A longitudinal MRI study. NeuroImage 2021, 231, 117834. [Google Scholar] [CrossRef]
- Wang, X.; Arafa, A.; Liu, K.; Eshak, E.S.; Hu, Y.; Dong, J.-Y. Combined healthy lifestyle and depressive symptoms: A meta-analysis of observational studies. J. Affect. Disord. 2021, 289, 144–150. [Google Scholar] [CrossRef]
- Van Dammen, L.; Wekker, V.; De Rooij, S.; Groen, H.; Hoek, A.; Roseboom, T. A systematic review and meta-analysis of lifestyle interventions in women of reproductive age with overweight or obesity: The effects on symptoms of depression and anxiety. Obes. Rev. 2018, 19, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Bruins, J.; Jörg, F.; Bruggeman, R.; Slooff, C.; Corpeleijn, E.; Pijnenborg, M. The Effects of Lifestyle Interventions on (Long-Term) Weight Management, Cardiometabolic Risk and Depressive Symptoms in People with Psychotic Disorders: A Meta-Analysis. PLoS ONE 2014, 9, e112276. [Google Scholar] [CrossRef] [PubMed]
- Pinniger, R.; Brown, R.F.; Thorsteinsson, E.B.; McKinley, P. Argentine tango dance compared to mindfulness meditation and a waiting-list control: A randomised trial for treating depression. Complement. Ther. Med. 2012, 20, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Pots, W.T.; Meulenbeek, P.A.; Veehof, M.M.; Klungers, J.; Bohlmeijer, E.T. The efficacy of mindfulness-based cognitive therapy as a public mental health intervention for adults with mild to moderate depressive symptomatology: A randomized controlled trial. PLoS ONE 2014, 9, e109789. [Google Scholar] [CrossRef] [PubMed]
- McCarney, R.W.; Schulz, J.; Grey, A.R. Effectiveness of mindfulness-based therapies in reducing symptoms of depression: A meta-analysis. Eur. J. Psychother. Couns. 2012, 14, 279–299. [Google Scholar] [CrossRef]
- Gee, B.; Orchard, F.; Clarke, E.; Joy, A.; Clarke, T.; Reynolds, S. The effect of non-pharmacological sleep interventions on depression symptoms: A meta-analysis of randomised controlled trials. Sleep Med. Rev. 2019, 43, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Siah, C.J.R.; Goh, Y.S.; Lee, J.; Poon, S.N.; Ow Yong, J.Q.Y.; Tam, W.-S.W. The effects of forest bathing on psychological well-being: A systematic review and meta-analysis. Int. J. Ment. Health Nurs. 2023, 32, 1038–1054. [Google Scholar] [CrossRef]
- Souter, M.A.; Miller, M.D. Do Animal-Assisted Activities Effectively Treat Depression? A Meta-Analysis. Anthrozoös 2007, 20, 167–180. [Google Scholar] [CrossRef]
- Siette, J.; Cassidy, M.; Priebe, S. Effectiveness of befriending interventions: A systematic review and meta-analysis. BMJ Open 2017, 7, e014304. [Google Scholar] [CrossRef]
- Stice, E.; Burton, E.; Kate Bearman, S.; Rohde, P. Randomized trial of a brief depression prevention program: An elusive search for a psychosocial placebo control condition. Behav. Res. Ther. 2007, 45, 863–876. [Google Scholar] [CrossRef]
- Cregg, D.R.; Cheavens, J.S. Gratitude Interventions: Effective Self-help? A Meta-analysis of the Impact on Symptoms of Depression and Anxiety. J. Happiness Stud. 2021, 22, 413–445. [Google Scholar] [CrossRef]
- Kisely, S.; Li, A.; Warren, N.; Siskind, D. A systematic review and meta-analysis of deep brain stimulation for depression. Depress. Anxiety 2018, 35, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.; Obayashi, K.; Yamagami, Y.; Kurumatani, N.; Saeki, K. Association Between Passive Body Heating by Hot Water Bathing Before Bedtime and Depressive Symptoms Among Community-Dwelling Older Adults. Am. J. Geriatr. Psychiatry 2022, 30, 161–170. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.D.; Oancea, S.C.; Nucci, L.B.; Vogeltanz-Holm, N. The association between physical activity and depression among individuals residing in Brazil. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Stubbs, B.; Koyanagi, A.; Schuch, F.B.; Firth, J.; Rosenbaum, S.; Veronese, N.; Solmi, M.; Mugisha, J.; Vancampfort, D. Physical activity and depression: A large cross-sectional, population-based study across 36 low- and middle-income countries. Acta Psychiatr. Scand. 2016, 134, 546–556. [Google Scholar] [CrossRef]
- Pearce, M.; Garcia, L.; Abbas, A.; Strain, T.; Schuch, F.B.; Golubic, R.; Kelly, P.; Khan, S.; Utukuri, M.; Laird, Y.; et al. Association between Physical Activity and Risk of Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022, 79, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Laird, E.; Rasmussen, C.L.; Kenny, R.A.; Herring, M.P. Physical Activity Dose and Depression in a Cohort of Older Adults in The Irish Longitudinal Study on Ageing. JAMA Netw. Open 2023, 6, e2322489. [Google Scholar] [CrossRef] [PubMed]
- Schuch, F.B.; Vancampfort, D.; Richards, J.; Rosenbaum, S.; Ward, P.B.; Stubbs, B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J. Psychiatr. Res. 2016, 77, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Krogh, J.; Hjorthøj, C.; Speyer, H.; Gluud, C.; Nordentoft, M. Exercise for patients with major depression: A systematic review with meta-analysis and trial sequential analysis. BMJ Open 2017, 7, e014820. [Google Scholar] [CrossRef]
- Dunn, A.L.; Trivedi, M.H.; Kampert, J.B.; Clark, C.G.; Chambliss, H.O. Exercise treatment for depression: Efficacy and dose response. Am. J. Prev. Med. 2005, 28, 1–8. [Google Scholar] [CrossRef]
- Meyer, J.D.; Koltyn, K.F.; Stegner, A.J.; Kim, J.S.; Cook, D.B. Influence of Exercise Intensity for Improving Depressed Mood in Depression: A Dose-Response Study. Behav. Ther. 2016, 47, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Lavebratt, C.; Herring, M.P.; Liu, J.J.; Wei, Y.B.; Bossoli, D.; Hallgren, M.; Forsell, Y. Interleukin-6 and depressive symptom severity in response to physical exercise. Psychiatry Res. 2017, 252, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Furuyashiki, A.; Tabuchi, K.; Norikoshi, K.; Kobayashi, T.; Oriyama, S. A comparative study of the physiological and psychological effects of forest bathing (Shinrin-yoku) on working age people with and without depressive tendencies. Environ. Health Prev. Med. 2019, 24, 46. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ochiai, H.; Ochiai, T.; Takayama, N.; Kumeda, S.; Miura, T.; Aoyagi, Y.; Imai, M. Effects of forest bathing (shinrin-yoku) on serotonin in serum, depressive symptoms and subjective sleep quality in middle-aged males. Environ. Health Prev. Med. 2022, 27, 44. [Google Scholar] [CrossRef] [PubMed]
- Phillips, W.M. Purpose in life, depression, and locus of control. J. Clin. Psychol. 1980, 36, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Robak, R.W.; Griffin, P.W. Purpose in life: What is its relationship to happiness, depression, and grieving? N. Am. J. Psychol. 2000, 2, 113–119. [Google Scholar]
- Jones, E. COVID-19 and the Blitz compared: Mental health outcomes in the UK. Lancet Psychiatry 2021, 8, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Coverdale, B.J. Evaluating the Effectiveness of Upward Bound Programs. Master’s Thesis, The Ohio State University, Columbus, OH, USA, 2009. [Google Scholar]
- Rodiek, S. Influence of an outdoor garden on mood and stress in older persons. J. Ther. Hortic. 2002, 13, 13–21. [Google Scholar]
- Dinas, P.; Koutedakis, Y.; Flouris, A. Effects of exercise and physical activity on depression. Ir. J. Med. Sci. 2011, 180, 319–325. [Google Scholar] [CrossRef]
- Ewert, A. The Effects of Outdoor Adventure Activities Upon Self-Concept. Master’s Thesis, Eastern Washington University, Cheney, WA, USA, 1977. [Google Scholar]
- Emmons, R.A.; Crumpler, C.A. Gratitude as a Human Strength: Appraising the Evidence. J. Soc. Clin. Psychol. 2000, 19, 56–69. [Google Scholar] [CrossRef]
- Chen, Y.; Ishak, Z. Gratitude Diary: The Impact on Depression Symptoms. Psychology 2022, 13, 443–453. [Google Scholar] [CrossRef]
- Feng, L.; Yin, R. Social Support and Hope Mediate the Relationship Between Gratitude and Depression Among Front-Line Medical Staff During the Pandemic of COVID-19. Front. Psychol. 2021, 12, 623873. [Google Scholar] [CrossRef] [PubMed]
- Bryan, J.L.; Young, C.M.; Lucas, S.; Quist, M.C. Should I say thank you? Gratitude encourages cognitive reappraisal and buffers the negative impact of ambivalence over emotional expression on depression. Personal. Individ. Differ. 2018, 120, 253–258. [Google Scholar] [CrossRef]
- Kaniuka, A.R.; Kelliher Rabon, J.; Brooks, B.D.; Sirois, F.; Kleiman, E.; Hirsch, J.K. Gratitude and suicide risk among college students: Substantiating the protective benefits of being thankful. J. Am. Coll. Health 2021, 69, 660–667. [Google Scholar] [CrossRef]
- Gogo, A.; Osta, A.; McClafferty, H.; Rana, D.T. Cultivating a way of being and doing: Individual strategies for physician well-being and resilience. Curr. Probl. Pediatr. Adolesc. Health Care 2019, 49, 100663. [Google Scholar] [CrossRef]
- Davis, D.E.; Choe, E.; Meyers, J.; Wade, N.; Varjas, K.; Gifford, A.; Quinn, A.; Hook, J.N.; Van Tongeren, D.R.; Griffin, B.J.; et al. Thankful for the little things: A meta-analysis of gratitude interventions. J. Couns. Psychol. 2016, 63, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Sheng, J.; Li, B.; Zhang, X. Recent advances in non-invasive brain stimulation for major depressive disorder. Front. Hum. Neurosci. 2017, 11, 526. [Google Scholar] [CrossRef]
- Brononi, A.R.; Sampaio-Junior, B.; Moffa, A.H.; Aparicio, L.; Gordon, P.; Klein, I.; Rios, R.M. Noninvasive brain stimulation in psychiatric disorders: A primer. Braz. J. Psychiatry 2019, 4, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, K.; Hanlon, C.A.; Downar, J. Noninvasive brain stimulation treatments for addiction and major depression. Ann. N. Y. Acad. Sci. 2017, 1394, 31–54. [Google Scholar] [CrossRef]
- Mutz, J.; Edgcumbe, D.R.; Brunoni, A.R.; Fu, C.H. Efficacy and acceptability of non-invasive brain stimulation for the treatment of adult unipolar and bipolar depression: A systematic review and meta-analysis of randomised sham-controlled trials. Neurosci. Biohevioral Rev. 2018, 92, 291–303. [Google Scholar] [CrossRef]
- McClure, D.; Greenman, S.C.; Koppulu, S.S.; Varvara, M.; Yaseen, Z.S.; Galynker, I.I. A pilot study of safety and efficacy of cranial electrotherapy stimulation in treatment of bipolar II depression. J. Nerv. Ment. Dis. 2015, 203, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Hanusch, K.U.; Janssen, C.W. The impact of whole-body hyperthermia interventions on mood and depression—Are we ready for recommendations for clinical application? Int. J. Hyperth. 2019, 36, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Hussain, J.; Cohen, M. Clinical effects of regular dry sauna bathing: A systematic review. Evid.-Based Complement. Altern. Med. 2018, 2018, 1857413. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, J.A.; Laukkanen, T.; Kunustor, S.K. Cardiovascular and other health benefits of sauna bathing: A review of the evidence. Mayo Clin. Proc. 2018, 93, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, T.; Khan, H.; Zaccardi, F.; Laukkanen, J.A. Association between sauna bathing and fatal cardiovascular and all-cuase mortality. JAMA Intern. Med. 2015, 175, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, T.; Kunutsor, S.; Kauhanen, J.; Laukkanen, J.A. Sauna bathing is inversely associated with dementia and Alzheimer’s disease in middle-aged Finnish men. Age Ageing 2017, 46, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Khan, H.; Laukkanen, T.; Laukkanen, J.A. Joint associations of sauna bathing and cardiorespiratory fitness on cardiovascular and all-cause mortality risk: A long-term prospective cohort study. Ann. Med. 2018, 50, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Scoon, G.S.; Hopkins, W.G.; Mayhew, S.; Cotter, J.D. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J. Sci. Med. Sport. 2007, 10, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Flux, M.C.; Smith, D.G.; Allen, J.J.B.; Mehl, M.R.; Medrano, A.; Begay, T.K.; Middlemist, B.H.; Marquart, B.M.; Cole, S.P.; Sauder, C.J.; et al. Association of plasma cytokines and antidepressant response following mild-intensity whole-body hyperthermia in major depressive disorder. Transl. Psychiatry 2023, 13, 132. [Google Scholar] [CrossRef]
- Amano, K.; Yanagihori, R.; Tei, C. Waon therapyis effective as the treatment of myalgic encephalomyelitis/Chronic fatigue syndrome. J. Jpn. Soc. Balneol. Clim. Phys. Med. 2015, 78, 285–302. [Google Scholar]
- Soejima, Y.; Munemoto, T.; Masuda, A.; Uwatoko, Y.; Miyata, M.; Tei, C. Effects of Waon therapy on chronic fatigue syndrome: A pilot study. Intern. Med. 2015, 54, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Lowry, C.A.; Hale, M.W.; Evans, A.K.; Heerkens, J.; Staub, D.R.; Gasser, P.J.; Shekhar, A. Serotonergic systems, anxiety, and affective disorder: Focus on the dorsomedial part of the dorsal raphe nucleus. Ann. N. Y Acad. Sci. 2008, 1148, 86–94. [Google Scholar] [CrossRef]
- Hanusch, K.U.; Janssen, C.H.; Billheimer, D.; Jenkins, I.; Spurgeon, E.; Lowry, C.A.; Raison, C.L. Whole-body hyperthermia for the treatment of major depression: Associations with thermoregulatory cooling. Am. J. Psychiatry 2013, 170, 802–804. [Google Scholar] [CrossRef] [PubMed]
- Janssen, C.W.; Lowry, C.A.; Mehl, M.R.; Allen, J.J.; Kelly, K.L. Whole-body hyperthermia for the treatment of major depressive disorder.A randomized Clinical Trial. JAMA Psychiatry 2016, 73, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Drevets, W.C.; Bogers, W.; Raichle, M.E. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur. Neuropsychopharmacol. 2002, 12, 527–544. [Google Scholar] [CrossRef] [PubMed]
- Bansal, Y.; Kuhad, A. Mitochondrial Dysfunction in Depression. Curr. Neuropharmacol. 2016, 14, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Johansson, A.; Wibom, R.; Nennesmo, I.; von Döbeln, U.; Hagenfeldt, L.; Hällström, T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J. Affect. Disord. 2003, 76, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Rezin, G.T.; Cardoso, M.R.; Gonçalves, C.L.; Scaini, G.; Fraga, D.B.; Riegel, R.E.; Comim, C.M.; Quevedo, J.; Streck, E.L. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int. 2008, 53, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Karabatsiakis, A.; Böck, C.; Salinas-Manrique, J.; Kolassa, S.; Calzia, E.; Dietrich, D.E.; Kolassa, I.T. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl. Psychiatry 2014, 4, e397. [Google Scholar] [CrossRef]
- Hroudová, J.; Fišar, Z.; Kitzlerová, E.; Zvěřová, M.; Raboch, J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 2013, 13, 795–800. [Google Scholar] [CrossRef]
- Askalsky, P.; Losifescu, D.V. Transcranial photobiomodulation for the management of depression: Current perspectives. Neuropsychiatr. Dis. Treat. 2019, 15, 3255–3272. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016, 6, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, F.; Ahmadian, N.; Rasta, S.H.; Farhoudi, M.; Karimi, P.; Sadigh-Eteghad, S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol. Aging 2017, 58, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, F.; Reddy, D.D.; Nalawade, S.S.; Barrett, D.W.; Gonzalez-Lima, F.; Liu, H. Up-regulation of cerebral cytochrome-c-oxidase and hemodynamics by transcranial infrared laser stimulation: A broadband near-infrared spectroscopy study. J. Cereb. Blood Flow. Metab. 2017, 37, 3789–3802. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, T.H.; Wider, J.M.; Lee, I.; Reynolds, C.A.; Liu, J.; Lepore, B.; Tousignant, R.; Bukowski, M.J.; Johnston, H.; Fite, A.; et al. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Sci. Rep. 2018, 8, 3481. [Google Scholar] [CrossRef]
- Oron, U.; Ilic, S.; De Taboada, L.; Streeter, J. Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed. Laser Surg. 2007, 25, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xuan, W.; Ando, T.; Xu, T.; Huang, L.; Huang, Y.; Dai, T.; Dhital, S.; Sharma, S.K.; Whalen, M.J.; et al. Low-level laser therapy for closed-head traumatic brain injury in mice: Effect of different wavelengths. Lasers Surg. Med. 2012, 44, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Gabel, C.P.; Petrie, S.R.; Mischoulon, D.; Hamblin, M.R.; Yeung, A.; Sangermano, L.; Cassano, P. A case control series for the effect of photobiomodulation in patients with low back pain and concurrent depression. Laser Ther. 2018, 27, 167–173. [Google Scholar] [CrossRef]
- Oron, A.; Oron, U. Low-Level Laser Therapy to the Bone Marrow Ameliorates Neurodegenerative Disease Progression in a Mouse Model of Alzheimer’s Disease: A Minireview. Photomed. Laser Surg. 2016, 34, 627–630. [Google Scholar] [CrossRef]
- Real, T. I Don’t Want to Talk about It: Overcoming the Secret Legacy of Male Depression; Simon and Schuster: New York, NY, USA, 1998. [Google Scholar]
Intervention | Effect |
---|---|
Dance | Antidepressant impact (SMD = 0.50, p = 0.01) [290] |
Mindfulness | Decreases in depressive symptoms (SMD = 0.31–0.56) [291,292] |
Sleep | Improved sleep quality decreases depressive symptoms (SMD = −0.45 [−0.55, −0.36]) [293] |
Natural environments | Increases positive mood and lowers feelings of depression SMD = −0.67 [−0.99, −0.35] [294] |
Time with animals | Reduction in depressive symptoms (SMD = 0.61 [0.03, 1.19]) [295]. |
Socialization | Significant improvement in depressive scores SMD = 0.18 [−0.00 to 0.36] [296] |
Journaling | Positive impact (SMD = 0.61 [0.19, 1.02]) [297] |
Gratitude | Associated with positive mental health, including alleviating depression (SMD = Reduction in depressive symptoms 0.29 [−0.37, −0.23]) [298] |
Deep brain stimulation | Reduction in mean depression score SMD = –0.42 [–0.72, −0.12] [299] |
Sauna/whole body hyperthermia | Reduced odds of depressive symptoms for people using sauna OR = 0.60 [0.39, 0.90] [300] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halma, M.; Plothe, C.; Marik, P.E. Integrative Interventions for Improving Outcomes in Depression: A Narrative Review. Psychol. Int. 2024, 6, 550-577. https://doi.org/10.3390/psycholint6020033
Halma M, Plothe C, Marik PE. Integrative Interventions for Improving Outcomes in Depression: A Narrative Review. Psychology International. 2024; 6(2):550-577. https://doi.org/10.3390/psycholint6020033
Chicago/Turabian StyleHalma, Matthew, Christof Plothe, and Paul E. Marik. 2024. "Integrative Interventions for Improving Outcomes in Depression: A Narrative Review" Psychology International 6, no. 2: 550-577. https://doi.org/10.3390/psycholint6020033
APA StyleHalma, M., Plothe, C., & Marik, P. E. (2024). Integrative Interventions for Improving Outcomes in Depression: A Narrative Review. Psychology International, 6(2), 550-577. https://doi.org/10.3390/psycholint6020033