Cyanophage Engineering for Algal Blooms Control
Abstract
:1. Introduction
2. Mining Broad-Spectrum and Efficient Cyanophages
3. Engineering Artificial Cyanophage and Gene Function Modules Mining
4. Application Status
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, P.; Engel, B.A.; Reuhs, M.; Simsek, H. Cyanophage technology in removal of cyanobacteria mediated harmful algal blooms: A novel and eco-friendly method. Chemosphere 2023, 315, 137769. [Google Scholar] [CrossRef]
- Aranda, Y.N.; Bhatt, P.; Ates, N.; Engel, B.A.; Simsek, H. Cyanophage-cyanobacterial interactions for sustainable aquatic environment. Environ. Res. 2023, 229, 115728. [Google Scholar] [CrossRef] [PubMed]
- Grasso, C.R.; Pokrzywinski, K.L.; Waechter, C.; Rycroft, T.; Zhang, Y.; Aligata, A.; Kramer, M.; Lamsal, A. A Review of Cyanophage-Host Relationships: Highlighting Cyanophages as a Potential Cyanobacteria Control Strategy. Toxins 2022, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, Z.; Tong, Y.; Chen, L.; Sun, T.; Zhang, W. From natural to artificial cyanophages: Current progress and application prospects. Environ. Res. 2023, 223, 115428. [Google Scholar] [CrossRef]
- Volk, A.; Lee, J. Cyanobacterial blooms: A player in the freshwater environmental resistome with public health relevance? Environ. Res. 2023, 216, 114612. [Google Scholar] [CrossRef] [PubMed]
- Diez-Quijada, L.; Casas-Rodriguez, A.; Guzmán-Guillén, R.; Molina-Hernández, V.; Albaladejo, R.G.; Cameán, A.M.; Jos, A. Immunomodulatory Effects of Pure Cylindrospermopsin in Rats Orally Exposed for 28 Days. Toxins 2022, 14, 144. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.M.; Bereman, M.S.; Marsden, K.C. The Cyanotoxin 2,4-DAB Reduces Viability and Causes Behavioral and Molecular Dysfunctions Associated with Neurodegeneration in Larval Zebrafish. Neurotox. Res. 2022, 40, 347–364. [Google Scholar] [CrossRef]
- Diez-Quijada, L.; Benítez-González, M.D.M.; Puerto, M.; Jos, A.; Cameán, A.M. Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins 2021, 13, 711. [Google Scholar] [CrossRef] [PubMed]
- Drobac, D.; Svirev, Z.; Tokodi, N.; Vidovi, M.; Pavlica, T.J.G.P. Microcystins: Potential risk factors in carcinogenesis of primary liver cancer in Serbia. Geogr. Pannonica 2011, 15, 70–80. [Google Scholar] [CrossRef]
- Stroom, J.M.; Kardinaal, W.E.A. How to combat cyanobacterial blooms: Strategy toward preventive lake restoration and reactive control measures. Aquat. Ecol. 2016, 50, 541–576. [Google Scholar] [CrossRef]
- Matthijs, H.C.P.; Jančula, D.; Visser, P.M.; Maršálek, B. Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquat. Ecol. 2016, 50, 443–460. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, M.; Zhang, H.; Zheng, L.; Acosta, Y.; Hsu, T.-T.D. Addressing harmful algal blooms (HABs) impacts with ferrate(VI): Simultaneous removal of algal cells and toxins for drinking water treatment. Chemosphere 2017, 186, 757–761. [Google Scholar] [CrossRef]
- Visser, P.M.; Ibelings, B.W.; Bormans, M.; Huisman, J. Artificial mixing to control cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 423–441. [Google Scholar] [CrossRef]
- Park, J.; Church, J.; Son, Y.; Kim, K.-T.; Lee, W.H. Recent advances in ultrasonic treatment: Challenges and field applications for controlling harmful algal blooms (HABs). Ultrason. Sonochem. 2017, 38, 326–334. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Gobler, C.J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 2011, 10, 480–488. [Google Scholar] [CrossRef]
- Vafa, E.; Tayebi, L.; Abbasi, M.; Azizli, M.J.; Bazargan-Lari, R.; Talaiekhozani, A.; Zareshahrabadi, Z.; Vaez, A.; Amani, A.M.; Kamyab, H.; et al. A better roadmap for designing novel bioactive glasses: Effective approaches for the development of innovative revolutionary bioglasses for future biomedical applications. Environ. Sci. Pollut. Res. 2023, 30, 116960–116983. [Google Scholar] [CrossRef]
- Shaalan, H.; Cattan-Tsaushu, E.; Li, K.; Avrani, S. Sequencing the genomes of LPP-1, the first isolated cyanophage, and its relative LPP-2 reveal different integration mechanisms in closely related phages. Harmful Algae 2023, 124, 102409. [Google Scholar] [CrossRef]
- Watkins, S.C.; Smith, J.R.; Hayes, P.K.; Watts, J.E. Characterisation of host growth after infection with a broad-range freshwater cyanopodophage. PLoS ONE 2014, 9, e87339. [Google Scholar] [CrossRef] [PubMed]
- Harke, M.J.; Steffen, M.M.; Gobler, C.J.; Otten, T.G.; Wilhelm, S.W.; Wood, S.A.; Paerl, H.W. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 2016, 54, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, D.; Cai, R.; Pan, L.; Zhou, Q.; Liu, W.; Qian, M.; Tong, Y. A Novel Freshwater Cyanophage Mae-Yong1326-1 Infecting Bloom-Forming Cyanobacterium Microcystis aeruginosa. Viruses 2022, 14, 2051. [Google Scholar] [CrossRef]
- Lee, T.A.; Rollwagen-Bollens, G.; Bollens, S.M.; Faber-Hammond, J.J. Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicol. Environ. Saf. 2015, 114, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, F.; Du, K.; Wei, Z.L.; Wu, Q.F.; Chen, Y.; Li, W.F.; Li, Q.; Zhou, C.Z. Phylogenomics of five Pseudanabaena cyanophages and evolutionary traces of horizontal gene transfer. Environ. Microbiome 2023, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.; Li, S.; Liao, X.; Zhang, Q. Cultivation and characterization of the MaMV-DC cyanophage that infects bloom-forming cyanobacterium Microcystis aeruginosa. Virol. Sin. 2013, 28, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Nagasaki, K.; Takashima, Y.; Shirai, Y.; Tomaru, Y.; Takao, Y.; Sakamoto, S.; Hiroishi, S.; Ogata, H. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J. Bacteriol. 2008, 190, 1762–1772. [Google Scholar] [CrossRef]
- Yang, F.; Jin, H.; Wang, X.Q.; Li, Q.; Zhang, J.T.; Cui, N.; Jiang, Y.L.; Chen, Y.; Wu, Q.F.; Zhou, C.Z.; et al. Genomic Analysis of Mic1 Reveals a Novel Freshwater Long-Tailed Cyanophage. Front. Microbiol. 2020, 11, 484. [Google Scholar] [CrossRef]
- Tucker, S.; Pollard, P. Identification of Cyanophage Ma-LBP and Infection of the Cyanobacterium Microcystis aeruginosa from an Australian Subtropical Lake by the Virus. Appl. Environ. Microbiol. 2005, 71, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Naknaen, A.; Suttinun, O.; Surachat, K.; Khan, E.; Pomwised, R. A Novel Jumbo Phage PhiMa05 Inhibits Harmful Microcystis sp. Front. Microbiol. 2021, 12, 660351. [Google Scholar] [CrossRef]
- Lin, W.; Li, D.; Sun, Z.; Tong, Y.; Yan, X.; Wang, C.; Zhang, X.; Pei, G. A novel freshwater cyanophage vB_MelS-Me-ZS1 infecting bloom-forming cyanobacterium Microcystis elabens. Mol. Biol. Rep. 2020, 47, 7979–7989. [Google Scholar] [CrossRef]
- Zhang, S.; He, X.; Cao, L.; Tong, Y.; Zhao, B.; An, W. A Novel Wide-Range Freshwater Cyanophage MinS1 Infecting the Harmful Cyanobacterium Microcystis aeruginosa. Viruses 2022, 14, 433. [Google Scholar] [CrossRef]
- Qian, M.; Li, D.; Lin, W.; Pan, L.; Liu, W.; Zhou, Q.; Cai, R.; Wang, F.; Zhu, J.; Tong, Y. A Novel Freshwater Cyanophage, Mae-Yong924-1, Reveals a New Family. Viruses 2022, 14, 283. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, B.; Li, J.; Song, X.; Tong, Y.; An, W. Host Cyanobacteria Killing by Novel Lytic Cyanophage YongM: A Protein Profiling Analysis. Microorganisms 2022, 10, 257. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Li, D.; Lin, W.; Qin, W.; Pan, L.; Wang, F.; Qian, M.; Liu, W.; Zhou, Q.; Zhou, C.; et al. Genome sequence of the novel freshwater Microcystis cyanophage Mwe-Yong1112-1. Arch. Virol. 2022, 167, 2371–2376. [Google Scholar] [CrossRef]
- Wang, J.; Bai, P.; Li, Q.; Lin, Y.; Huo, D.; Ke, F.; Zhang, Q.; Li, T.; Zhao, J. Interaction between cyanophage MaMV-DC and eight Microcystis strains, revealed by genetic defense systems. Harmful Algae 2019, 85, 101699. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Takashima, Y.; Tomaru, Y.; Shirai, Y.; Takao, Y.; Hiroishi, S.; Nagasaki, K. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 2006, 72, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, D.; Lin, W.; Pan, L.; Qian, M.; Wang, F.; Cai, R.; Qu, C.; Tong, Y. Genomic Analysis of a New Freshwater Cyanophage Lbo240-yong1 Suggests a New Taxonomic Family of Bacteriophages. Viruses 2023, 15, 831. [Google Scholar] [CrossRef]
- Liu, S.; Feng, J.; Sun, T.; Xu, B.; Zhang, J.; Li, G.; Zhou, J.; Jiang, J. The Synthesis and Assembly of a Truncated Cyanophage Genome and Its Expression in a Heterogenous Host. Life 2022, 12, 1234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, B.; Feng, J.; Ge, P.; Li, G.; Zhang, J.; Zhou, J.; Jiang, J. Synthesis and assembly of full-length cyanophage A-4L genome. Synth. Syst. Biotechnol. 2023, 8, 121–128. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, P.; Sun, T.; Feng, J.; Li, G.; Zhang, J.; Zhou, J.; Jiang, J. Coexpression of Tail Fiber and Tail Protein Genes of the Cyanophage PP Using a Synthetic Genomics Approach Enhances the Salt Tolerance of Synechocystis PCC 6803. Microbiol. Spectr. 2023, 11, e05009-22. [Google Scholar] [CrossRef]
- Yuan, S.; Li, Y.; Kou, C.; Sun, Y.; Ma, Y. CRISPR/Cas-based genome editing for cyanophage of Anabeana sp. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Li, G.; Feng, J.; Zhu, X.; Chai, Y.; Sun, T.; Jiang, J. Expression and characterization of the complete cyanophage genome PP in the heterologous host Synechococcus elongatus PCC 7942. bioRxiv 2024, preprint. [Google Scholar] [CrossRef]
- Hutchison, C.A., III; Chuang, R.Y.; Noskov, V.N.; Assad-Garcia, N.; Deerinck, T.J.; Ellisman, M.H.; Gill, J.; Kannan, K.; Karas, B.J.; Ma, L.; et al. Design and synthesis of a minimal bacterial genome. Science 2016, 351, aad6253. [Google Scholar] [CrossRef] [PubMed]
- Klumpp, J.; Dunne, M.; Loessner, M.J. A perfect fit: Bacteriophage receptor-binding proteins for diagnostic and therapeutic applications. Curr. Opin. Microbiol. 2023, 71, 102240. [Google Scholar] [CrossRef] [PubMed]
- Esvelt, K.M.; Carlson, J.C.; Liu, D.R. A system for the continuous directed evolution of biomolecules. Nature 2011, 472, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Lai, W.; Chen, Q.; Zhang, Y.; Sun, C.; He, X.; Zhao, G.; Fu, X.; Liu, C. Exploiting spatial dimensions to enable parallelized continuous directed evolution. Mol. Syst. Biol. 2022, 18, e10934. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Shi, J.; Jiang, J.; Ma, Y. Genome-scale top-down strategy to generate viable genome-reduced phages. Nucleic Acids Res. 2022, 50, 13183–13197. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jiang, Y.L.; Zhang, J.T.; Zhu, J.; Du, K.; Yu, R.C.; Wei, Z.L.; Kong, W.W.; Cui, N.; Li, W.F.; et al. Fine structure and assembly pattern of a minimal myophage Pam3. Proc. Natl. Acad. Sci. USA 2023, 120, e2213727120. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.L.; Yang, F.; Li, B.; Hou, P.; Kong, W.W.; Wang, J.; Chen, Y.; Jiang, Y.L.; Zhou, C.Z. Structural Insights into the Chaperone-Assisted Assembly of a Simplified Tail Fiber of the Myocyanophage Pam3. Viruses 2022, 14, 2260. [Google Scholar] [CrossRef]
- Guo, Y.; Dong, X.; Li, H.; Lin, W.; Cao, L.; Li, D.; Zhang, Y.; Jin, J.; Tong, Y.; Liu, Z. Efficient Broad-Spectrum Cyanophage Function Module Mining. Microorganisms 2024, 12, 1578. [Google Scholar] [CrossRef]
- Meng, L.H.; Ke, F.; Zhang, Q.Y.; Zhao, Z. Functional Analysis of the Endopeptidase and Holin from Planktothrix agardhii Cyanophage PaV-LD. Front. Microbiol. 2022, 13, 849492. [Google Scholar] [CrossRef]
- Xiong, Z.; Wang, Y.; Dong, Y.; Zhang, Q.; Xu, X. Cyanophage A-1(L) Adsorbs to Lipopolysaccharides of Anabaena sp. Strain PCC 7120 via the Tail Protein Lipopolysaccharide-Interacting Protein (ORF36). J. Bacteriol. 2019, 201, e00516-18. [Google Scholar] [CrossRef]
- Nadel, O.; Rozenberg, A.; Flores-Uribe, J.; Larom, S.; Schwarz, R.; Béjà, O. An uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein NblA. Environ. Microbiol. Rep. 2019, 11, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Meza-Padilla, I.; McConkey, B.J.; Nissimov, J.I. Structural models predict a significantly higher binding affinity between the NblA protein of cyanophage Ma-LMM01 and the phycocyanin of Microcystis aeruginosa NIES-298 compared to the host homolog. Virus Evol. 2024, 10, veae082. [Google Scholar] [CrossRef] [PubMed]
- Ain, Q.u.; Wu, K.; Wu, X.; Bai, Q.; Li, Q.; Zhou, C.-Z.; Wu, Q. Cyanophage-encoded auxiliary metabolic genes in modulating cyanobacterial metabolism and algal bloom dynamics. Front. Virol. 2024, 4, 1461375. [Google Scholar] [CrossRef]
- Sullivan, M.B.; Coleman, M.L.; Weigele, P.; Rohwer, F.; Chisholm, S.W. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. PLoS Biol. 2005, 3, e144. [Google Scholar] [CrossRef] [PubMed]
- Fuchsman, C.A.; Carlson, M.C.G.; Garcia Prieto, D.; Hays, M.D.; Rocap, G. Cyanophage host-derived genes reflect contrasting selective pressures with depth in the oxic and anoxic water column of the Eastern Tropical North Pacific. Environ. Microbiol. 2021, 23, 2782–2800. [Google Scholar] [CrossRef] [PubMed]
- Ślesak, I.; Ślesak, H. From cyanobacteria and cyanophages to chloroplasts: The fate of the genomes of oxyphototrophs and the genes encoding photosystem II proteins. New Phytol. 2024, 242, 1055–1067. [Google Scholar] [CrossRef]
- Puxty, R.J.; Millard, A.D.; Evans, D.J.; Scanlan, D.J. Shedding new light on viral photosynthesis. Photosynth. Res. 2015, 126, 71–97. [Google Scholar] [CrossRef]
- Busch, A.W.; Reijerse, E.J.; Lubitz, W.; Hofmann, E.; Frankenberg-Dinkel, N. Radical mechanism of cyanophage phycoerythrobilin synthase (PebS). Biochem. J. 2011, 433, 469–476. [Google Scholar] [CrossRef]
- Dammeyer, T.; Bagby, S.C.; Sullivan, M.B.; Chisholm, S.W.; Frankenberg-Dinkel, N. Efficient Phage-Mediated Pigment Biosynthesis in Oceanic Cyanobacteria. Curr. Biol. 2008, 18, 442–448. [Google Scholar] [CrossRef]
- Lin, W.; Li, D.; Pan, L.; Li, M.; Tong, Y. Cyanobacteria-cyanophage interactions between freshwater and marine ecosystems based on large-scale cyanophage genomic analysis. Sci. Total Environ. 2024, 950, 175201. [Google Scholar] [CrossRef]
- Shitrit, D.; Hackl, T.; Laurenceau, R.; Raho, N.; Carlson, M.C.G.; Sabehi, G.; Schwartz, D.A.; Chisholm, S.W.; Lindell, D. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages. ISME J. 2022, 16, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Sun, T.; Pei, G.; Chen, L.; Zhang, W. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl. Microbiol. Biotechnol. 2016, 100, 3401–3413. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, S.; Song, X.; Diao, J.; Chen, L.; Zhang, W. Toolboxes for cyanobacteria: Recent advances and future direction. Biotechnol. Adv. 2018, 36, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, S.R.; Yoo, S.Y.; Lee, S.-W.; Dean, D. Engineered phage-based therapeutic materials inhibit Chlamydia trachomatis intracellular infection. Biomaterials 2012, 33, 5166–5174. [Google Scholar] [CrossRef] [PubMed]
- Krom, R.J.; Bhargava, P.; Lobritz, M.A.; Collins, J.J. Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies. Nano Lett. 2015, 15, 4808–4813. [Google Scholar] [CrossRef] [PubMed]
- McKindles, K.M.; Manes, M.A.; DeMarco, J.R.; McClure, A.; McKay, R.M.; Davis, T.W.; Bullerjahn, G.S. Dissolved Microcystin Release Coincident with Lysis of a Bloom Dominated by Microcystis spp. in Western Lake Erie Attributed to a Novel Cyanophage. Appl. Environ. Microbiol. 2020, 86, e01397-20. [Google Scholar] [CrossRef]
- Kuznecova, J.; Šulčius, S.; Vogts, A.; Voss, M.; Jürgens, K.; Šimoliūnas, E. Nitrogen Flow in Diazotrophic Cyanobacterium Aphanizomenon flos-aquae Is Altered by Cyanophage Infection. Front. Microbiol. 2020, 11, 2010. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, X.; Wei, Y.; Cheng, Y.; Guo, Y.; Khudyakov, I.; Liu, F.; He, P.; Song, Z.; Li, Z.; et al. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science 2021, 372, 512–516. [Google Scholar] [CrossRef]
Name | Morphology | Genome Length (kb) | Infection Period (h) | Burst Size (PFU/Cell) | Accession Number | Characteristic | Spectrum | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|
ΦMHI42 | Podoviridae | - | - | - | - | Broad spectrum | Microcystis and Planktothrix | The concentration of M. aeruginosa began to decline 400 h after infection; P. agardhii stopped growing completely 5 days after infestation | Fishing lake in Hayling Island, Hampshire, UK | [18] |
MaMV-DC | Myoviridae | 169.223 | 24–48 | 80 | NC_029002 | Broad spectrum | M. aeruginosa FACHB-524, M. flos-aquae TF09, M. aeruginosa TA09 and M. wesenbergii DW09 | Lake Dianchi, Kunming, China | [23] | |
Ma-LMM01 | Myoviridae | 162.109 | 6–12 | 50–120 | NC_008562 | - | Lake Mikata, Fukui Prefecture, Japan | [24] | ||
Mic1 | Siphoviridae | 92.627 | - | - | MN013189 | - | Lake Chaohu, HeFei, China | [25] | ||
Ma-LBP | Podoviridae | - | 11.2 | 28 | - | - | Lake Baroon, Queensland, Australia | [26] | ||
PhiMa05 | Myoviridae | 27.3876 | 24 | 127 | MW495066 | - | Songklanagarind Hospital wastewater, Songkhla Province, Thailand | [27] | ||
vB_MweS-yong2 | Unassigned | 44.530 | - | - | OM681334 | - | Yuehu Park, Ningbo, China | [20] | ||
Me-ZS1 | Siphoviridae | 49.665 | 108 | - | MK069556 | Broad spectrum | Twelve strains across taxonomic orders: Chroococcales, Nostocales, and Oscillatoriales | A pond at Ningbo University, Ningbo, China | [28] | |
MinS1 | Siphoviridae | 49.966 | 36–42 | 34 | MZ923504 | Broad spectrum | Nineteen out of thirty cyanobacteria strains tested, containing five orders: Chroococcales, Nostocales, Oscillatoriales, Hormogonales, and Synechococcales | Mayang Stream, Fujian, China | [29] | |
Mae-Yong924-1 | Unassigned | 40.325 | - | - | MZ447863 | Broad spectrum | Six diverse cyanobacteria strains across three orders: Chroococcales, Nostocales, and Oscillatoriales | the host is lysed after 7–10 days | Yangming Lake in the Meishan campus of Ningbo University, Ningbo, China | [30] |
Mae-Yong1326-1 | Unassigned | 48.822 | 3 | 329 | OP028995 | Broad spectrum, efficient | Seven cyanobacteria strains across three orders: Chroococcales, Nostocales, and Oscillatoriales | Lake Taihu, Suzhou, China | [20] | |
YongM | - | 65.4 | - | - | MT426122 | Broad spectrum, efficient | Eighteen cyanobacteria strains across four orders: Chroococcales, Nostocales, Oscillatoriales, and Synechococcales | The cyanobacteria solution turned yellow after 8 h | Lake Dianchi, Kunming, China | [31] |
Mwe-Yong1112-1 | Unassigned | 39.679 | - | - | MZ436628 | Broad spectrum, efficient | Twenty-three cyanobacterial strains across four different orders: Chroococcales, Nostocales, Oscillatoriales, and Synechococcales | Seven cyanobacterial strains were lysed completely within 3 days | A stream in the community, Ningbo, China | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Dong, X.; Li, H.; Tong, Y.; Liu, Z.; Jin, J. Cyanophage Engineering for Algal Blooms Control. Viruses 2024, 16, 1745. https://doi.org/10.3390/v16111745
Guo Y, Dong X, Li H, Tong Y, Liu Z, Jin J. Cyanophage Engineering for Algal Blooms Control. Viruses. 2024; 16(11):1745. https://doi.org/10.3390/v16111745
Chicago/Turabian StyleGuo, Yujing, Xiaoxiao Dong, Huiying Li, Yigang Tong, Zihe Liu, and Jin Jin. 2024. "Cyanophage Engineering for Algal Blooms Control" Viruses 16, no. 11: 1745. https://doi.org/10.3390/v16111745
APA StyleGuo, Y., Dong, X., Li, H., Tong, Y., Liu, Z., & Jin, J. (2024). Cyanophage Engineering for Algal Blooms Control. Viruses, 16(11), 1745. https://doi.org/10.3390/v16111745