Previous Article in Journal
Hagge Configurations and a Projective Generalization of Inversion
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Trigonometric Polynomial Points in the Plane of a Triangle

by
Clark Kimberling
1,* and
Peter J. C. Moses
2
1
Department of Mathematics, University of Evansville, 1800 Lincoln Avenue, Evansville, IN 47722, USA
2
Engineering Division, Moparmatic Co., Astwood Bank, Nr. Redditch, Worcestershire B96 6DT, UK
*
Author to whom correspondence should be addressed.
Geometry 2024, 1(1), 27-42; https://doi.org/10.3390/geometry1010005
Submission received: 13 November 2024 / Revised: 16 December 2024 / Accepted: 19 December 2024 / Published: 23 December 2024
(This article belongs to the Special Issue Feature Papers in Geometry)

Abstract

:
It is well known that the four ancient Greek triangle centers and others have homogeneous barycentric coordinates that are polynomials in the sidelengths a , b , and c of a triangle A B C . For example, the circumcenter is represented by the polynomial a ( b 2 + c 2 a 2 ) . It is not so well known that triangle centers have barycentric coordinates, such as tan A   :   tan   B   :   tan   C , that are also representable by polynomials, in this case, by p ( a ,   b ,   c )   :   p ( b ,   c ,   a )   :   p ( c ,   a ,   b ) , where p ( a ,   b ,   c ) = a ( a 2 + b 2 c 2 ) ( a 2 + c 2 b 2 ) . This paper presents and discusses the polynomial representations of triangle centers that have barycentric coordinates of the form f ( a ,   b ,   c )   :   f ( b ,   c ,   a )   :   f ( c ,   a ,   b ) , where f depends on one or more of the functions in the set { cos ,   sin ,   tan ,   sec ,   csc ,   cot } . The topics discussed include infinite trigonometric orthopoints, the n-Euler line, and symbolic substitution.

1. Introduction

One of the most productive systems of representation for points and lines in the plane of a triangle A B C is a system widely known as homogeneous barycentric coordinates (henceforth simply barycentrics). Serving as the “origin” in this system are the three vertices of A B C , shown here with their barycentrics:
A   =   1   :   0   :   0   B   =   0   :   1   :   0     C   =   0   :   0   :   1 .
The lengths of the sides opposite the vertex angles (which, like the vertex points, are denoted by A ,   B , and C) are given the symbols a ,   b , and c, respectively, and may be regarded as variables or algebraic indeterminates. For an excellent introduction to the subject of barycentrics, see Yiu [1].
Many triangle centers (as defined in [2]) have barycentrics that are polynomials. Following [3], we refer to a triangle center X that has barycentrics
p ( a , b , c ) : p ( b , c , a ) : p ( c , a , b ) ,
where p ( a , b , c ) is a polynomial, as a polycenter. If X also has barycentrics
f ( a , b , c ) : f ( b , c , a ) : f ( c , a , b ) ,
where f ( a , b , c ) involves trigonometric functions of the angles A , B , and C, we call it a trigonometric polycenter. Analogously, we have polylines and trigonometric polylines. Note that if the first barycentric of X is written as h ( a , b , c ) , then the second and third barycentrics are determined (viz., h ( b , c , a ) and h ( c , a , b ) ) such that the shorter notation h ( a , b , c ) : : is sufficient.
Important examples of trigonometric polycenters include the following:
G = centroid = 1 : 1 : 1 = 1 : : O = circumcenter = a 2 ( b 2 + c 2 a 2 ) : : = sin 2 A : : H = orthocenter = ( c 2 + a 2 b 2 ) ( a 2 + b 2 c 2 ) : : = tan A : : N = nine - point center = a 2 ( b 2 + c 2 ) ( b 2 c 2 ) 2 : : = sin A cos ( B C ) : :
As an example of a trigonometric polyline, the Euler line, which passes through the points G , O , H , and N, is given in terms of a variable point x : y : z by both of the following equations:
  • ( b 2 c 2 ) ( b 2 + c 2 a 2 ) x + ( c 2 a 2 ) ( c 2 + a 2 b 2 ) y + ( a 2 b 2 ) ( a 2 + b 2 c 2 ) z = 0 .
  • ( tan B tan C ) x + ( tan C tan A ) y + ( tan A tan B ) z = 0 .
Of great importance in triangle geometry are the following objects:
  • The isotomic conjugate of X, with barycentrics
    1 / x : 1 / y : 1 / z = y z : z x : x y .
  • The isogonal conjugate of X, with barycentrics
    a 2 / x : b 2 / y : c 2 / z = a 2 y z : b 2 z x : c 2 x y .
  • The line at infinity L , with barycentric equation x + y + z = 0 .
  • The Steiner circumellipse, with equation 1 / x + 1 / y + 1 / z = 0 .
  • The circumcircle, with equation a 2 / x + b 2 / y + c 2 / z = 0 .

2. Trigonometric Polycenters

In this section, we shall see that for all integers n, the triangle centers f ( n A ) : : for f = cos, sin, tan, and others are polycenters. We begin with the usual recurrences of Chebyshev polynomials of the first kind T n and the second kind U n :
T n ( x ) = 2 x T n 1 ( x ) T n 2 ( x ) for n 2 , T 0 ( x ) = 1 , T 1 ( x ) = x ;
U n ( x ) = 2 x U n 1 ( x ) U n 2 ( x ) for n 2 , U 0 ( x ) = 1 , U 1 ( x ) = 2 x ,
Another well-known type of recurrence relation for these families of polynomials ([4,5]) depends on complex numbers:
T n ( x ) = ( 1 / 2 ) ( x x 2 1 ) n + ( x + x 2 1 ) n
U n ( x ) = ( 1 / ( 2 x 2 1 ) ( x + x 2 1 ) n + 1 ( x x 2 1 ) n + 1 .
Theorem 1. 
Let  Λ = b 2 + c 2 a 2 . Then,
cos n A : : = a n ( ( Λ 2 i S ) n + ( Λ + 2 i S ) n ) : :
sin n A : : = a n ( ( Λ 2 i S ) n ( Λ + 2 i S ) n ) : : .
Proof. 
We have cos A = Λ / ( 2 b c ) , and (3) gives
T n ( cos A ) = ( 1 / 2 ) ( ( cos A i sin A ) n + ( cos A + i sin A ) n ) = ( 1 / 2 ) ( Λ 2 b c i S b c ) n + ( Λ 2 b c + i S b c ) n ,
where
S = 2 ( area of A B C ) = ( 1 / 2 ) ( a + b + c ) ( b + c 1 ) ( c + a b ) ( a + b c ) ,
such that
S 2 = ( 1 / 4 ) ( a 4 b 4 c 4 + 2 b 2 c 2 + 2 c 2 a 2 + 2 a 2 b 2 ) .
Now, since cos n A = T n ( cos A ) , we have
cos n A = ( 1 / 2 ) 1 ( 2 b c ) n ( ( Λ 2 i S ) n + ( Λ + 2 i S ) n ) ,
such that (5) holds. Similarly, Equation (6) follows from (4) and the well-known fact that sin n A = U n 1 ( cos A ) sin A .    □
Our main goal in this section is to represent cos n A : : and sin n A : : as polycenters. To this end, let
u = Λ 2 i S and v = Λ + 2 i S ,
so that the expressions in (3) and (4) can be recast in order to define sequences ( c n ) and ( s n ) as follows:
c n = c n ( a , b , c ) = a n ( u n + v n )
s n = s n ( a , b , c ) = a n ( u n v n ) .
Next, we have a lemma about u and v.
Lemma 1. 
u 2 2 ( b 2 + c 2 a 2 ) u + 4 b 2 c 2 = v 2 2 ( b 2 + c 2 a 2 ) v + 4 b 2 c 2 = 0 .
Proof. 
The imaginary terms cancel, and the real term is
( b 2 + c 2 a 2 ) 2 4 S 2 + 4 b 2 c 2 = 0 .
   □
Theorem 2. 
Let ( c n ) be the sequence given by (8). Then, c n is a polynomial in a , b , and c given by the following three initial terms and a second-order recurrence:
c 0 = 1 c 1 = a ( b 2 + c 2 a 2 ) c 2 = a 2 ( a 4 + b 4 + c 4 2 a 2 b 2 2 a 2 c 2 ) c n = a ( b 2 + c 2 a 2 ) c n 1 a 2 b 2 c 2 c n 2 for n 3 ,
and
c n ( a , b , c ) : c n ( b , c , a ) : c n ( c , a , b ) = cos n A : cos n B : cos n C .
Proof. 
It is easy to verify that c 0 , c 1 , and c 2 are polycenters, as claimed. Suppose now that n 3 . Using u and v as in (7) and Lemma 1, we have
u n 2 ( u 2 2 ( b 2 + c 2 a 2 ) u + 4 b 2 c 2 ) = v n 2 ( v 2 2 ( b 2 + c 2 a 2 ) v + 4 b 2 c 2 ) ,
such that
u n + v n = 2 ( b 2 + c 2 a 2 ) ( u n 1 + v n 1 ) a 2 b 2 c 2 ( a / 2 ) n 2 ( u n 2 + v n 2 ) ( a / 2 ) n ( u n + v n ) = a ( b 2 + c 2 a 2 ) ( a / 2 ) n 1 ( u n 1 + v n 1 ) 4 b 2 c 2 ( u n 2 + v n 2 ) .
This shows that if d k = ( a / 2 ) k ( u k + v k ) for k 3 , then
d n = a ( b 2 + c 2 a 2 ) d n 1 a 2 b 2 c 2 d n 2 for n 3 .
By Theorem 1, cos n A : : = a n ( u n + v n ) : : , and since d n : : = c n : : , we have c n : : = cos n A : : .    □
Theorem 3. 
Let ( s n ) be the sequence given by (9). Then, s n is a polynomial in a , b , and c given by these two initial terms and a second-order recurrence:
s 1 = a s 2 = a 2 ( b 2 + c 2 a 2 ) s n = a ( b 2 + c 2 a 2 ) s n 1 a 2 b 2 c 2 s n 2 for n 2 ,
and
s n ( a , b , c ) : s n ( b , c , a ) : s n ( c , a , b ) = sin n A : sin n B : sin n C .
Proof. 
A proof similar to that of Theorem 2 springs from (4), leading, by way of the identity sin n A = U n 1 ( cos A ) sin A , to 
sin n A = 1 2 1 ( 2 b c ) n ( ( Λ 2 i S ) n ( Λ + 2 i S ) n ) ) ,
The rest of the proof, using Lemma 1, follows in a manner similar to the proof of Theorem 2.    □
Example 1. 
Polycenter representations for cos 3 A : : and cos 4 A : : are given by
c 3 = a 3 ( a 2 b 2 c 2 ) ( a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) b 2 c 2 ) ; c 4 = a 4 ( a 8 + b 8 + c 8 4 a 6 ( b 2 + c 2 ) + 2 a 4 ( 3 b 4 + 3 c 4 + 4 b 2 c 2 ) 4 a 2 ( b 4 + c 4 ) ( b 2 + c 2 ) ) .
Example 2. 
Polycenter representations for sin n A : : for n = 3 , 4 , 5 , 6 are given by
s 3 = a 3 ( a 2 b 2 c 2 b c ) ( a 2 b 2 c 2 + b c ) ; s 4 = a 4 ( a 2 b 2 c 2 ) ( a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) ) ; s 5 = a 5 f 1 f 2 , where f 1 = a 4 + b 4 + c 4 + a 2 ( b c 2 b 2 2 c 2 ) + b c ( b c b 2 c 2 ) f 2 = a 4 + b 4 + c 4 + a 2 ( b c 2 b 2 2 c 2 ) + b c ( b c + b 2 + c 2 ) ;
s 6 = a 5 g 1 g 2 g 3 g 4 , where g 1 g 2 g 3 = ( a 2 b 2 c 2 ) ( a 2 b 2 c 2 b c ) ( a 2 b 2 c 2 + b c ) g 4 = a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) b 2 c 2 .
Inductively, c n and s n both have degree 3 n for n 0 and both are polynomial multiples of a n . By Theorems 2 and 3, the sequences ( c n ) and ( s n ) have the same second-order recurrence signature:
a ( b 2 + c 2 a 2 ) , a 2 b 2 c 2 .
Next, let t n = s n / c n so that t n : : = tan n A : : . For the sake of brevity, we shall sometimes write a polycenter of the form f ( a , b , c ) g ( b , c , a ) g ( c , a , b ) as a quotient: f ( a , b , c ) / g ( a , b , c ) . Shown here are representations for polycenters tan n A : : for n = 1 , 2 , 3 :
t 1 = 1 / ( a 2 b 2 c 2 ) ; t 2 = ( a 2 b 2 c 2 ) / a 4 + b 4 + c 4 2 a 2 ( b 2 + c 2 ) ; t 3 = 1 / a 4 + b 4 + c 4 2 a 2 ) ( b 2 + c 2 ) b 2 c 2 ;
The sequence ( t n ) , as well as its equivalent sequence of polynomials, appears—expectedly—to be not linearly recurrent. However, the sequence given by u n ( a , b , c ) = sin ( n A ) cos ( n B ) cos ( n C ) is linearly recurrent since the three sequences ( sin ( n A ) ) , ( cos ( n B ) ) , and ( cos ( n C ) ) are linearly recurrent, and, of course,
u n ( a , b , c ) : u n ( b , c , a ) : u n ( c , a , b ) = tan n A : tan n B : tan n C .
A sequence of associated polycenters derived from u n ( a , b , c ) is considered in Section 7. Likewise the triangle centers sec n A : : , csc n A : : , and cot n A : : are polycenters for all nonzero integers n. Geometrically, these are isotomic conjugates given by 1 / t n , 1 / s n , and c n / s n , respectively. As indicated in Example 3, many geometric and algebraic properties of the specific polycenters mentioned above can be found in the Encyclopedia of Triangle Centers (ETC) [6].
Example 3. 
A few trigonometric polycenters in the ETC [6]:
sin A : : = X 1 csc A : : = X 75 cos A : : = X 63 sec A : : = X 92 tan A : : = X 4 cot A : : = X 69 sin 2 A : : = X 3 csc 2 A : : = X 264 cos 2 A : : = X 1993 sec 2 A : : = X 5392 tan 2 A : : = X 68 cot 2 A : : = X 317 sin 3 A : : = X 6149 csc 3 A : : = X 63759 cos 3 A : : = X 63760 sec 3 A : : = X 63764 tan 3 A : : = X 562 cot 3 A : : = X 63761 sin 4 A : : = X 1147 csc 4 A : : = X 55553 cos 4 A : : = X 63762 sec 4 A : : = X 63765 tan 4 A : : = X 43973 cot 4 A : : = X 55552
Barycentric products and quotients ([1], 99–102), denoted by * and /, of the polycenters listed in Example 3 are also trigonometric polycenters, e.g.,  X 1 * X 63 = X 3 and X 1 / X 63 = X 4 .
In particular, if f is a trigonometic polycenter, then f n , where n is any positive integer, is also a trigonometric polycenter, as represented by these squares.
Example 4. 
Trigonometric square polycenters in the ETC [6] (see also Section 7):
sin 2 A : : = a 2 : : = X 6 csc 2 A : : = b 2 c 2 : : = X 76 cos 2 A : : = a 2 ( b 2 + c 2 a 2 ) 2 : : = X 394 sec 2 A : : = b 2 c 2 ( b 2 + c 2 a 2 ) 2 : : = X 2052 cos 2 ( B C ) : : = b 2 c 2 ( b 4 + c 4 2 b 2 c 2 a 2 b 2 a 2 c 2 ) 2 : : = X 45793 sin 2 ( B C ) : : = b 2 c 2 ( b 2 c 2 ) 2 : : = X 338 csc 2 ( B C ) : : = a 2 ( b 2 c 2 ) 2 : : = X 249

3. More Trigonometric Polycenters

In this section, we first present polycenters for triangle centers of the forms cos ( n B n C ) : : and sin ( n B n C ) , and follow with a proof-by-computer-code for a recurrence equation for the points cos ( n B n C ) : : as polycenters. Let M = a 2 ( b 2 + c 2 ) ( b 2 c 2 ) 2 . Then,
cos ( B C ) : : = p 1 ( a , b , c ) : : , where p 1 ( a , b , c ) = b c M cos ( 2 ( B C ) ) : : = p 2 ( a , b , c ) : : , where p 2 ( a , b , c ) = b 2 c 2 ( ( b 2 c 2 ) 4 + a 4 ( b 4 + c 4 ) + 2 a 2 ( b 6 + b 4 c 2 + b 2 c 4 c 6 ) ) : : cos ( n ( B C ) ) : : = p n ( a , b , c ) : : , where p n ( a , b , c ) = b c M p n 1 ( a , b , c ) a 4 b 4 c 4 p n 2 ( a , b , c ) for n 3 . sin ( B C ) : : = q 1 ( a , b , c ) : : , where q 1 ( a , b , c ) = b c ( b 2 c 2 ) sin ( 2 ( B C ) ) : : = q 2 ( a , b , c ) : : , where q 2 ( a , b , c ) = b 2 c 2 ( b 2 c 2 ) M sin ( n ( B C ) ) : : = q n ( a , b , c ) : : , where q n = b c M q n 1 a 4 b 4 c 4 q n 2 for n 2 .
Instead of a formal proof of the above recurrence equation for p n ( a , b , c ) , we quote the Mathematica code, which is essentially a proof with the added advantage of usefulness for further explorations.
(* Step 1: trig functions in terms of a, b, c & S*)
  trigRules={Cos[A]->(-a^2+b^2+c^2)/(2 b c),
  Cos[B]->(a^2-b^2+c^2)/(2 a c),
  Cos[C]->(a^2+b^2-c^2)/(2 a b),
  Sin[A]->S/(b c),Sin[B]->S/(a c),Sin[C]->S/(a b)};
(* Step 2: double area powers in terms of a, b, c & S*)
  SRules={S->S,S^x_?EvenQ->2^-x ((a+b-c) (a-b+c)
  (-a+b+c) (a+b+c))^(x/2),
  S^x_?OddQ->2^(1-x)((a+b-c)(a-b+c)(-a+b+c)(a+b+c))^(1/2 (-1+x)) S};
(* Step 3: cyclic permutations of a,b,c *)
  cyclic[coord_]:=Apply[coord/. {a->#1,b->#2,c->#3,A->#4,B->#5,C->#6}&,
  Flatten/@NestList[RotateLeft/@#1&,{{a,b,c},{A,B,C}},2],{1}];
(* Step 4: removal of symmetric factors *)
  removeSym:=(Factor[#1/PolynomialGCD@@#1]&)[Factor[#]]&;
(* Step 5: application of Steps 1-4 *)
  polys = Map[(TrigExpand[cyclic[Cos[#(B-C)]]]//.trigRules
  //.SRules//removeSym//removeSym)[[1]]&,Range[7]]
(* Step 6: find signature of 2nd order recurrence *)
  Factor[FindLinearRecurrence[polys]]
The output of the code is the following signature for the recurrence:
b c ( a 2 b 2 b 4 + a 2 c 2 + 2 b 2 c 2 c 4 ) , a 4 b 4 c 4 .
A proof of the recurrence equation, or more precisely, the signature of the recurrence, for  sin ( n ( B C ) ) : : as a polycenter is found in much the same way.
As an alternative to representing the family cos ( n B n C ) : : by polynomials, there are relatively simpler representations using the quotients of polynomials. We begin with
u = cos ( B C ) = cos B cos C + sin B sin C
= ( b 2 c 2 ) 2 a 2 b 2 a 2 c 2 2 a 2 b c
v = sin ( B C ) = sin B cos C + sin C cos B
= S ( b 2 c 2 ) 2 a 2 b c , where
S = ( 1 / 2 ) ( a + b + c ) ( a + b + c ) ( a b + c ) ( a + b c ) .
Let
f n = f n ( u , v ) = ( 1 / 2 ) ( ( u i v ) n + ( u + i v ) n ) = cos ( n B n C ) .
Then, by the binomial theorem,
f n = k = 0 n / 2 ( 1 ) k n 2 k u n 2 k v 2 k ,
which satisfies the recurrence
f n = 2 u f n 1 ( u 2 + v 2 ) f n 2 ,
with f 0 = 1 and f 1 = u . Since f n depends only on u and v 2 , it is a rational function, i.e., a radical-free quotient of polynomials. Similary, letting g n = g n ( u , v ) = sin ( n B n C ) / sin ( B C ) , we find that
g n = 2 u g n 1 ( u 2 + v 2 ) g n 2 ,
with g 0 = 0 and g 1 = 1 .
Example 5. 
A few more trigonometric polycenters in the ETC [6]:
sin ( B C ) : : = X 1577 csc ( B C ) : : = X 662 cos ( B C ) : : = X 14213 sec ( B C ) : : = X 2167 tan ( B C ) : : = X 15412 cot ( B C ) : : = X 14570 sin ( 2 B 2 C ) : : = X 18314 csc ( 2 B 2 C ) : : = X 18315 cos ( 2 B 2 C ) : : = X 63763 sec ( 2 B 2 C ) : : = X 63766

4. Half-Angle Trigonometric Polycenters

The next list shows half-angle functions that involve polynomials (viz., they are “radical multiples of polycenters”). Let
P = ( b + c ) 2 a 2 / ( b c ) and Q = a 2 ( b c ) 2 / ( b c ) .
cos ( A / 2 ) : : = p 1 ( a , b , c ) : : , where p 1 ( a , b , c ) = P cos ( 3 A / 2 ) : : = p 3 ( a , b , c ) : : , where p 3 ( a , b , c ) = P ( a 2 b 2 c 2 + b c ) cos ( n A / 2 ) : : = p n ( a , b , c ) : : , where p n ( a , b , c ) = ( a 2 + b 2 + c 2 ) / ( b c ) p n 2 a 4 b 4 c 4 p n 4 : : , for odd n 5 ; sin ( A / 2 ) : : = q 1 ( a , b , c ) : : , where q 1 ( a , b , c ) = Q : : sin ( 3 A / 2 ) : : = q 3 ( a , b , c ) : : , where q 3 ( a , b , c ) = Q ( a 2 b 2 c 2 b c ) : : sin ( n A / 2 ) : : = q n ( a , b , c ) : : , where q n ( a , b , c ) = ( a 2 + b 2 + c 2 ) / ( b c ) q n 2 a 4 b 4 c 4 q n 4 , : : , for odd n 5 .
Next, we show the Mathematica code for obtaining trigonometric rational functions (quotients of polynomials) for cos ( ( n B n C ) / 2 ) : : .
lr = FindLinearRecurrence[
  Map[TrigExpand[Cos[# (B - C)/2]] &, Range[1, 11, 2]]];
cyclic[coord_] :=
 Apply[coord /. {a -> #1, b -> #2, c -> #3, A -> #4, B -> #5,
   C -> #6} &, Flatten /@
  NestList[RotateLeft /@ #1 &, {{a, b, c}, {A, B, C}}, 2], {1}];
trigRules =
 Flatten[{Map[
   cyclic, {Cos[A] -> (-a^2 + b^2 + c^2)/(2  b  c),
   Sin[A] -> S/(b  c),
   Cos[A/2] -> 1/2  Sqrt[((-a + b + c)  (a + b + c))/(b  c)],
   Sin[A/2] -> 1/2  Sqrt[((a + b - c)  (a - b + c))/(b  c)],
   Cos[B/2]*Cos[C/2]*Sin[B/2]*
    Sin[C/2] -> ((-a + b + c)  (a + b - c)  (a - b + c)
    (a + b + c))/(16  a^2  b  c)}]}];
Factor[lr /. trigRules]
This code confirms that cos ( ( n B n C ) / 2 ) : : is a rational function with the signature
( a 2 b 2 b 4 + a 2 c 2 + 2 b 2 c 2 c 4 ) / ( a 2 b c ) , 1 .
(These rational functions can be transformed into polynomials using a technique developed in Section 6).
Example 6. 
A few half-angle trigonometric polycenters in the ETC [6]:
cos ( A / 2 ) : : = X 188 sec ( A / 2 ) : : = X 4146 sin ( A / 2 ) : : = X 174 csc ( A / 2 ) : : = X 556 cos ( 3 A / 2 ) : : = X 63779 sin ( 3 A / 2 ) : : = X 63780

5. Sums Involving mB + nC and nB + mC

Proofs of the next two theorems can be obtained by adapting the codes in moretrp,halfanglepoly.
Theorem 4. 
Let f ( m , n ) = f ( m , n , a , b , c ) = sin ( m B + n C ) + sin ( n B + m C ) and let p ( m , n ) = p ( m , n , a , b , c ) be the polycenters given by these recurrences:
p ( m , n ) = a ( a 2 b 2 c 2 ) p ( m 1 , n ) a 2 b 2 c 2 p ( m 2 , n ) ; p ( m , n ) = a ( a 2 b 2 c 2 ) p ( m , n 1 ) a 2 b 2 c 2 p ( m , n 2 ) ,
where p ( 0 , 0 ) = 0 , and  p ( 0 , 1 ) = p ( 1 , 0 ) = b + c . Then,
p ( m , n , a , b , c ) : : = sin ( m B + n C ) + sin ( n B + m C ) : : .
Example 7. 
The appearance of ( m , n , X k ) in the following list signifies that sin ( m B + n C ) + sin ( n B + m C ) : : = X k :
( 0 , 1 , X 10 ) , ( 0 , 2 , X 5 ) , ( 0 , 3 , X 63803 ) , ( 0 , 4 , X 5449 ) ( 1 , 1 , X 1 ) , ( 1 , 2 , X 63802 ) , ( 1 , 3 , X 44707 ) ( 2 , 2 , X 3 ) , ( 2 , 3 , X 63801 ) , ( 2 , 4 , X 1154 ) ( 3 , 3 , X 6149 ) , ( 3 , 5 , X 63801 )
Theorem 5. 
Let g ( m , n ) = g ( m , n , a , b , c ) = cos ( m B + n C ) + cos ( n B + m C ) , and let q ( m , n ) = q ( m , n , a , b , c ) be the polycenters given by the same recurrences as for p ( m , n ) , where
q ( 0 , 1 ) = q ( 1 , 0 ) = ( b + c ) ( c + a b ) ( a + b c ) q ( 0 , 2 ) = ( b 2 + c 2 a 2 ) ( a 2 ( b 2 + c 2 ) ( b 2 c 2 ) 2 ) .
Then,
q ( m , n , a , b , c ) : : = cos ( m B + n C ) + cos ( n B + m C ) : : .
Example 8. 
The appearance of ( m , n , X k ) here means that cos ( m B + n C ) + cos ( n B + m C ) : : = X k :
( 0 , 1 , X 226 ) , ( 0 , 2 , X 343 ) , ( 0 , 4 , X 63806 ) ( 1 , 1 , X 63 ) , ( 1 , 2 , X 16577 ) , ( 1 , 3 , X 63808 ) ( 2 , 2 , X 1993 ) , ( 2 , 3 , X 73802 ) ( 3 , 3 , X 63760 ) , ( 3 , 5 , X 63762 )

6. Polycenters j + k cos(nA) ::

Here, we find a sequence p n = p n ( a , b , c ) of polycenters satisfying
p n ( a , b , c ) : p n ( b , c , a ) : p n ( c , a , b ) = j + k cos ( n A ) : j + k cos ( n B ) : j + k cos ( n C ) ,
where j and k are nonzero real numbers. The strategy is to determine rational functions u n = u n ( a , b , c ) that can be transformed into the polynomials p n . We begin with the following Mathematica code:
f[a_, b_, c_] := f[a, b, c] = ArcCos[(b^2 + c^2 - a^2)/(2 b c)];
{a1, b1, c1} = {f[a, b, c], f[b, c, a], f[c, a, b]};
a2[n_] := Collect[Factor[TrigExpand[j + k*Cos[n  a1]]], {j, k}];
b2[n_] := Collect[Factor[TrigExpand[j + k*Cos[n  b1]]], {j, k}];
c2[n_] := Collect[Factor[TrigExpand[j + k*Cos[n  c1]]], {j, k}];
t = Table[a2[n], {n, 0, 10}]; Take[t, 4]
FindLinearRecurrence[t]
t = Table[b2[n], {n, 0, 10}]; Take[t, 4]
FindLinearRecurrence[t]
t = Table[c2[n], {n, 0, 10}]; Take[t, 4]
FindLinearRecurrence[t]
The code gives
u 0 = j + k
u 1 = j + a 2 + b 2 + c 2 2 b c k
u 2 = j + a 4 + b 4 + c 4 2 a 2 b 2 2 a 2 c 2 2 b 2 c 2 k
and the recurrence signature ( τ , τ , 1 ) , where
τ = a 2 + b 2 + c 2 + b c b c .
The transformation is simply to multiply, where appropriate, by 2 a n b n c n , obtaining
p 0 = 2 j + 2 k
p 1 = 2 a b c j + a ( b 2 + c 2 a 2 ) k
p 2 = 2 a 2 b 2 c 2 j + ( a 6 a 4 ( b 2 + c 2 ) + a 2 ( b 4 + c 4 ) ) k ,
with the third-order recurrence signature
( a Q a , a 2 b c Q a , a 3 b 3 c 3 ) ,
where Q a = Q a ( a , b , c ) = a 2 b 2 c 2 b c .
Finally, we apply the substitutions ( a , b , c ) ( b , c , a ) and ( a , b , c ) ( c , a , b ) to (18)–(25), and thereby obtain (17).

7. Applications of the Technique in Section 6

The procedure in Section 6 applies to other families of trigonometric polycenters. Among them are the families cos 2 ( n B n C ) : : and sin 2 ( n B n C ) : : . Both cos 2 ( n B n C ) and sin 2 ( n B n C ) have third-order recurrences with the signature ( k ( a , b , c ) , k ( a , b , c ) , 1 ) , where
k = ( b 2 c 2 ) 4 + a 4 ( b 4 + c 4 + b 2 c 2 ) + 2 a 2 ( b 4 c 2 + b 2 c 4 b 6 c 6 ) a 4 b 2 c 2 .
The resulting polycenters are too long for display here. We do observe, however, that for every integer p 2 , the polycenters cos p ( n B n C ) : : and sin p ( n B n C ) : : have the recurrence order p + 1 .
Other families to which the procedure applies are represented by
tan n A : : , sec n A : : , csc n A : : , cot n A : : .
Here, we consider only the rational-function recurrence for tan n A . The most direct approach appears to be to use the identity
tan n A : : = sin n A cos n B cos n C : : .
The resulting sixth-degree recurrence signature for sin n A cos n B cos n C is more efficiently expressed with Conway notation [7] than with a , b , and c:
( k 1 , k 2 , k 3 , k 2 , k 1 , 1 ) ,
where
k 1 = 2 ( 3 S A S B S C + S 2 S ω ) D k 2 = 16 S 6 + 15 S A 2 S B 2 S C 2 + 2 S 2 S A S B S C S ω S 4 S ω 2 D k 3 = 4 ( 8 S 6 + 5 S A 2 S B 2 S C 2 + 2 S 2 S a S B S C S ω + S 4 S ω 2 ) D ,
where D = ( S A S B S C S 2 S ω ) 2 .

8. Infinite Trigonometric Orthopoints

The line at infinity consists of all points X = x : y : z satisfying the linear equation
x + y + z = 0 .
Most of the named points on L are polycenters. Among the simplest are
X 513 = a ( b c ) : : X 514 = b c : : X 30 = cos A - 2 cos B cos C : : = 2 a 4 ( b 2 c 2 ) 2 a 2 ( b 2 + c 2 ) : : ,
with these being the points at which the lines X 1 X 75 , X 1 X 2 , and X 2 X 3 meet L , respectively. Of special importance is X 30 , as this is the infinite point on the Euler line X 2 X 3 .
If X = x : y : z is on L , then X can be regarded as a direction in the plane of A B C since for every point P not on L , every line parallel to the line P X intersects L at X. The line through P orthogonal to P X meets L at a point called the orthopoint (or, in [8], the orthogonal conjugate) of X. We denote the orthopoint of X by X . Barycentrics for X are given by
X = y cos B z cos C : : .
Thus, if X is a polycenter represented by a polynomial x ( a , b , c ) as the first barycentric, then X is the polycenter
X = x ( b , c , a ) b ( b 2 a 2 c 2 ) x ( c , a , b ) c ( c 2 b 2 a 2 ) : : .
Now, for any point X = x : y : z , not necessarily a polycenter and not necessarily on L , the points
y z : z x : x y and 2 x y z : 2 y z x : 2 z x y
are clearly on L , as are their orthopoints
b ( z x ) ( b 2 a 2 c 2 ) c ( x y ) ( c 2 b 2 a 2 ) : :
and
b ( 2 y z x ) ( b 2 a 2 c 2 ) c ( 2 z x y ) ( c 2 b 2 a 2 ) : : ,
respectively. Moreover, if X is a polycenter, then the orthopoints (29) and (30) are polycenters on L .
Example 9. 
Let
X = x : y : z = cos 2 A : : = a 2 ( a 2 b 2 c 2 ) 2 : : = X 394 .
Then,
y z : : = cos 2 B cos 2 C : : = X 523 2 x y z : : = 2 cos 2 A cos 2 B cos 2 C : : = X 527 ,
and the two corresponding orthopoints (29) and (30) are, respectively,
X 30 = 2 a 4 ( b 2 c 2 ) 2 a 2 ( b 2 + c 2 ) : : X 28292 = b c / ( h ( a , b , c ) h ( a , c , b ) ) : : , where h ( a , b , c ) = a 3 + 3 b 3 + c 3 + a 2 ( b c ) 5 b 2 ( a + c ) + c 2 ( b a ) + 2 a b c .
Example 9 typifies infinite polycenters of the forms f ( B ) f ( C ) : : and f ( 2 A ) f ( B ) f ( C ) : : . Such polycenters, for which many algebraic and geometric properties are presented in the ETC [6], occupy the lists in the next two examples.
Example 10. 
Pairs of trigonometric orthopoints:
cos B cos C : : = X 522 , X 522 = X 515 sin B sin C : : = X 514 , X 514 = X 516 tan B tan C : : = X 525 , X 525 = X 1503 sec B sec C : : = X 521 , X 521 = X 6001 csc B csc C : : = X 513 , X 513 = X 517 cot B cot C : : = X 523 , X 523 = X 30 cos 2 B cos 2 C : : = X 523 , X 523 = X 30 sin 2 B sin 2 C : : = X 523 , X 523 = X 30
Example 10 continued:
tan 2 B tan 2 C : : = X 520 , X 520 = X 6000 sec 2 B sec 2 C : : = X 520 , X 520 = X 6000 csc 2 B csc 2 C : : = X 512 , X 512 = X 511 cot 2 B cot 2 C : : = X 512 , X 512 = X 511 cos 2 B cos 2 C : : = X 523 , X 523 = X 30 sin 2 B sin 2 C : : = X 525 , X 525 = X 1503 sec 2 B sec 2 C : : = X 924 , X 924 = X 13754 cot 2 B cot 2 C : : = X 6368 , X 6368 = X 18400
Example 11. 
More pairs of trigonometric orthopoints:
2 cos A cos B cos C : : = X 527 , X 527 = X 28292 2 sin A sin B sin C : : = X 519 , X 527 = X 3667 2 tan A tan B tan C : : = X 30 , X 30 = X 523 2 csc A csc B csc C : : = X 536 , X 536 = X 28475 2 cot A cot B cot C : : = X 524 , X 524 = X 1499 2 cos 2 A cos 2 B cos 2 C : : = X 524 , X 524 = X 1499 2 sin 2 A sin 2 B sin 2 C : : = X 524 , X 524 = X 1499 2 csc 2 A csc 2 B csc 2 C : : = X 538 , X 538 = X 32472 2 cot 2 A cot 2 B cot 2 C : : = X 538 , X 538 = X 32472 2 cos 2 A cos 2 B cos 2 C : : = X 524 , X 524 = X 1499 2 sin 2 A sin 2 B sin 2 C : : = X 30 , X 30 = X 523 2 tan 2 A tan 2 B tan 2 C : : = X 539 , X 539 = X 20184

9. Trigonometric Infinity Bisectors

Let O denote the circumcenter, ( O ) the circumcircle, and L the line at infinity. Suppose that P = p : q : r and U = u : v : w are points on ( O ) and that P , O , and U are noncollinear. Let L 1 be the tangent to ( O ) at P and L 2 the tangent to ( O ) at U. Let D = L 1 L 2 and M = O D L . As the line O M bisects the angle between L 1 and L 2 , the point M is called the ( P , U ) -infinity bisector. We denote this point by M ( P , U ) . Its barycentrics are given by
M ( P , U ) = ( a 2 b 2 + c 2 ) ( q u p v ) ( a 2 + b 2 c 2 ) ( r u p w ) 2 a 2 ( r v q w ) : :
If P and U are trigonometric polycenters, then (31) is also a trigonometric polycenter since
b 2 + c 2 a 2 : c 2 + a 2 b 2 : a 2 + b 2 c 2 = cot A : cot B : cot C .
Note that M ( P , U ) is the orthopoint of the P U L . A few examples follow:
M ( X 74 , X 477 ) = X 30 = X 523 M ( X 110 , X 476 ) = X 30 = X 523 M ( X 74 , X 476 ) = X 523 = X 30 M ( X 110 , X 477 ) = X 523 = X 30 M ( X 74 , X 98 ) = X 542 = X 690 M ( X 99 , X 110 ) = X 542 = X 690 M ( X 74 , X 99 ) = X 690 = X 542 M ( X 98 , X 110 ) = X 690 = X 542 M ( X 74 , X 110 ) = X 526 = X 5663 M ( X 98 , X 99 ) = X 804 = X 2782

10. Trigonometric Polylines

Among the many central lines [9] of interest in triangle geometry are the trigonometic polylines n-Euler line and n-Nagel line. The Euler line itself is given by the following barycentric equations:
0 = ( tan B tan C ) x + ( tan C tan A ) y + ( tan A tan B ) z
= ( sin 2 B sin 2 C ) x + ( sin 2 C sin 2 A ) y + ( sin 2 A sin 2 B ) z
= cos A sin ( B C ) x + cos B sin ( C A ) y + cos C sin ( A B ) z = ( b 2 c 2 ) ( b 2 + c 2 a 2 ) x + ( c 2 a 2 ) ( c 2 + a 2 b 2 ) y + ( a 2 b 2 ) ( a 2 + b 2 c 2 ) z
The n-Euler line is defined by substituting n A , n B , and n C for A , B , and C, respectively, in (32), () or (). The n-Euler line passes through the following n-polycenters, which, for n = 1 , are indexed in the ETC [6] as X 2 , X 3 , X 4 , and X 5 , respectively:
n - centroid = c 0 = 1 : 1 : 1 n - circumcenter = cos n A : : n - orthocenter = tan n A : : n - nine - point center = sin n A cos ( n B n C ) : : .
These points appear in a little-known paper [10] in a discussion of “layers” in triangle geometry, without mention of the fact that the n-points and n-lines have polynomial representations.
The Nagel line is given by the equations
0 = ( sin B sin C ) x + ( sin C sin A ) y + ( sin A sin B ) z . = ( b c ) x + ( c a ) y + ( a b ) z ,
and the n-Nagel line by
0 = ( sin n B sin n C ) x + ( sin n C sin n A ) y + ( sin n A sin n B ) z .
The Nagel line passes through the incenter X 1 = sin A : sin B : sin C and the centroid X 2 = 1 : 1 : 1 such that the n-Nagel line passes through the centroid and the point sin n A : sin n B : sin n C . Thus, for every n, the n-Euler line and n-Nagel line meet at the centroid. Moreover, by (33) and (36), the 2 n -Nagel line and n-Euler line are identical for every positive integer n. Among the notable trigonometric polycenters on the 2-Euler line, and thus, the 4-Nagel line, are the following:
X 2 = 1 : 1 : 1 X 54 = Kosnita point = sin A sec ( B C ) : : = isogonal conjugate of the nine - point center , X 5 X 68 = Prasolov point = tan 2 A : : X 1147 = sin 4 A : : X 5449 = 2 nd Hatzipolakis - Moses point = sin 4 B + sin 4 C : : = midpoint of X 68 and X 1147 X 6193 = tan B + tan C tan A : : X 16032 = csc A sec ( B C ) : :
Each of these points, and others on the 2-Euler line, has a list of properties in the ETC [6] involving many other trigonometric polycenters and their interrelationships.

11. Concluding Remarks

The notion of a trigonometric polycenter extends to various subjects other than those mentioned above. Several examples follow:
  • Triangle centers whose barycentrics depend on angles of the form
    n A + r π , n B + r π , n C + r π
    for some nonzero number r, such as the Fermat point
    X 13 = sin A csc ( A + π / 3 ) : sin B csc ( B + π / 3 ) : sin C csc ( C + π / 3 ) = a 4 2 ( b 2 c 2 ) 2 + a 2 ( b 2 + c 2 + Ψ ) : : ,
    where Ψ = 4 3 × (area of triangle A B C ), and related points X i for i = 14 , , 18 in the ETC [6].
  • Bicentric pairs [11] of points, such as the Brocard points:
    1 / b 2 : 1 / c 2 : 1 / a 2 = sin 2 C sin 2 A : sin 2 A sin 2 B : sin 2 B sin 2 C 1 / c 2 : 1 / a 2 : 1 / b 2 = sin 2 B sin 2 A : sin 2 C sin 2 B : sin 2 A sin 2 C ,
    leading to Brocard n-points by substituting n A , n B , and n C for A , B , and C, respectively.
  • Cubic curves, such as those indexed and elegantly described by Bernard Gibert [12]. Here, we sample just one of more than one thousand: K007, the Lucas cubic, consisting of all points x : y : z that satisfy
    ( b 2 + c 2 a 2 ) x ( y 2 z 2 ) + ( c 2 + a 2 b 2 ) y ( z 2 x 2 ) + ( a 2 + b 2 c 2 ) z ( x 2 y 2 ) = 0 .
    For every n, the symbolic substitution
    ( a cos n A , b cos n B , c cos n C )
    transforms this “polynomial cubic” into a “trigonometric cubic”, and likewise for the substitution
    ( a sin n A , b sin n B , c sin n C ) ,
    etc. For details regarding symbolic substitutions, see [13].
  • Triangle centers that result from unary operations on trigonometric polycenters, such as
    ( y z ) / x : ( z x ) / y : ( x y ) / z ,
    where x : y : z is a trigonometric polycenter. See [14].
  • For specific numbers a , b , and c, such as ( a , b , c ) = ( 2 , 3 , 4 ) , representing the smallest integer-sided isosceles triangle, we have integer sequences, such as that given by
    a n = 2 2 n + 1 cos n A ,
    where A, as usual, is the angle opposite side B C in a triangle A B C having sidelengths | B C | = a , | C A | = b , and | A B | = c . Such sequences have interesting divisibility properties, such as the fact that if p is a prime that divides a term, then the indices n such that p divides n comprise an arithmetic sequence. For this sequence and access to related sequences, see https://oeis.org/A375880 (accessed on 1 December 202) [15].
  • A final comment may be loosely summarized by the observation that throughout this paper, the role of homogeneous coordinates can be taken by trilinear coordinates [16], but with different results. For example, in trilinear coordinates, we have
    X 2 = a : b : c = sin A : sin B : sin C X 3 = a ( b 2 + c 2 a 2 ) : : = cos A : cos B : cos C ,
    which lead to trigonometric polycenters by substituting n A , n B , and n C for A , B , and C. The resulting trilinear representations are equivalent to the barycentric representations sin A sin n A : : and sin A cos n A : : , with these being trigonometric polycenters not previously mentioned in this article.

Author Contributions

Conceptualization, C.K. and P.J.C.M.; software (Mathematica), P.J.C.M.; investigation, C.K. and P.J.C.M.; writing, C.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data used for this research consists of Mathematica coding and its output. Such data are available from the authors.

Conflicts of Interest

Peter J. C. Moses is the owner of the company Moparmatic Co., Astwood Bank. Clark Kimberling is a Professor of Mathematics. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Yiu, P. Introduction to the Geometry of the Triangle; Department of Mathematics Florida Atlantic University: Boca Raton, FL, USA, 2001; Version of 2013; Available online: https://web.archive.org/web/20180422091419id_/http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry130411.pdf (accessed on 1 November 2024).
  2. Weisstein, E.W. Triangle Center, MathWorld. Available online: https://mathworld.wolfram.com/TriangleCenter.html (accessed on 1 November 2024).
  3. Kimberling, C. Polynomial Points in the Plane of a Triangle. In Polynomials—Exploring Fundamental Mathematical Expressions; Intech Open: London, UK, 2024; forthcoming. [Google Scholar]
  4. Rayes, R.O.; Trevisan, V.; Wang, P.S. Factorization properties of Chebyshev Polynomials. Comput. Math. Appl. 2005, 50, 1231–1240. Available online: https://www.sciencedirect.com/science/article/pii/S0898122105003767 (accessed on 1 November 2024). [CrossRef]
  5. Rivlin, T.J. The Chebyshev Polynomials; Wiley: New York, NY, USA, 1974. [Google Scholar]
  6. Encyclopedia of Triangle Centers. Available online: https://faculty.evansville.edu/ck6/encyclopedia/etc.html (accessed on 1 November 2024).
  7. Weisstein, E.W. Conway Triangle Notation, MathWorld. Available online: https://mathworld.wolfram.com/ConwayTriangleNotation.html (accessed on 1 November 2024).
  8. Kimberling, C.; Moses, P.J.C. Line conjugates in the plane of a triangle. Aequationes Math. 2023, 97, 161–184. [Google Scholar] [CrossRef]
  9. Moses, P.J.C. Central Lines. Available online: https://faculty.evansville.edu/ck6/encyclopedia/CentralLines.html (accessed on 1 November 2024).
  10. Kimberling, C.; Parry, C. Products, square roots, and layers in triangle geometry. Math. Inform. Q. 2000, 10, 9–22. [Google Scholar]
  11. Bicentric Pairs of Points. Available online: https://faculty.evansville.edu/ck6/encyclopedia/BicentricPairs.html (accessed on 1 November 2024).
  12. Bernard Gibert. Cubics in the Triangle Plane. Available online: http://bernard-gibert.fr/ (accessed on 1 November 2024).
  13. Kimberling, C. Symbolic substitutions in the transfigured plane of a triangle. Aequationes Math. 2007, 73, 156–171. [Google Scholar] [CrossRef]
  14. Moses, P.J.C.; Kimberling, C. Unary Operations on Homogeneous Coordinates in the Plane of a Triangle. Geometry 2024, 1, 3–15. Available online: https://www.mdpi.com/3042-402X/1/1/2 (accessed on 1 November 2024). [CrossRef]
  15. Online Encyclopedia of Integer Sequences. Available online: https://oeis.org (accessed on 1 November 2024).
  16. Kimberling, C. Triangle Centers and Central Triangles. Congr. Numer. 1998, 129, 1–295. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Kimberling, C.; Moses, P.J.C. Trigonometric Polynomial Points in the Plane of a Triangle. Geometry 2024, 1, 27-42. https://doi.org/10.3390/geometry1010005

AMA Style

Kimberling C, Moses PJC. Trigonometric Polynomial Points in the Plane of a Triangle. Geometry. 2024; 1(1):27-42. https://doi.org/10.3390/geometry1010005

Chicago/Turabian Style

Kimberling, Clark, and Peter J. C. Moses. 2024. "Trigonometric Polynomial Points in the Plane of a Triangle" Geometry 1, no. 1: 27-42. https://doi.org/10.3390/geometry1010005

APA Style

Kimberling, C., & Moses, P. J. C. (2024). Trigonometric Polynomial Points in the Plane of a Triangle. Geometry, 1(1), 27-42. https://doi.org/10.3390/geometry1010005

Article Metrics

Back to TopTop