Nano ZrO2 Synthesis by Extraction of Zr(IV) from ZrO(NO3)2 by PC88A, and Determination of Extraction Impurities by ICP-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Materials, and Instruments
2.2. Analytic Methods for Separation of Zr(IV) and Determination of Impurities
3. Results and Discussion
3.1. IR, UV Spectral Studies of ZrO(NO3)2 Salt, PC88A–Toluene Solvent, and the Extracted Complex Zr–PC88A
3.2. Stripping of Zirconium from Loaded PC88A/Toluene
3.3. Separation of Impurities from the Zr(IV) Matrix by Solvent Extraction with 50% PC88A/Toluene
3.4. Determination of Many Impurities in High-Purity ZrO2 by ICP-MS after Separation of the Matrix
3.5. Characterization of ZrO2 Product after Solvent Extraction by PC88A/Toluene
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ASTM International. Standard Specification for Nuclear-Grade Zirconium Oxide Pellets; C1066-97; ASTM International: West Conshohocken, PA, USA, 2005; Available online: https://www.astm.org/Standards/nuclear-technology-standards.html (accessed on 17 October 2018).
- Gonzalez, C.A.; Watters, R.L. Certificate of Analysis Standard Reference Material® 360b Zirconium (Sn-Fe-Cr). National Institute of Standards & Technology, Alloy (Gaithersburg, MD 20899 R). 2013. Available online: https://www.sigmaaldrich.com/catalog/product/sial/nist360b?lang=zh®ion=CN (accessed on 17 October 2018).
- Certificate of Analysis of Zirconium (IV) Chloride Anhydrous for Synthesis (8089130250, Batch S5090513). 2008. Available online: https://www.sigmaaldrich.com/catalog/product/mm/808913?lang=zh®ion=CN (accessed on 17 October 2018).
- Certificate of Analysis of Zirconium Standard Solution Traceable to SRM from NIST ZrOCl2 in HCl 2 mol/L, 1000 mg/L Zr CertiPUR® (1702340100, Batch HC940706). 2009. Available online: https://www.sigmaaldrich.com/catalog/product/mm/170204?lang=zh®ion=CN (accessed on 17 October 2018).
- Shi, Z.C. Determination of trace rare earth impurities in high-purity zirconium dioxide by inductively coupled plasma mass spectrometry after separation by solvent extraction. Metall. Anal. 2006, 26, 7–10. [Google Scholar]
- Zhang, X.; Jiang, Y.; Yi, Y.; Tong, Y.; Liu, J.; Su, Y.; Li, X.; Lin, P. Determination of multi-impurities in superfine zirconium and yttrium oxide by ICP-MS. J. Anal. Sci. 2005, 1, 250–257. [Google Scholar]
- Panday, V.K.; Becker, J.S.; Dietze, H.J. Trace impurities in zircaloys by inductively coupled plasma-mass spectrometry after removal of the matrix by liquid-liquid extraction. At. Spectros. 1995, 16, 97–101. [Google Scholar]
- Nakane, K. Determination of trace impurities in high-purity zirconium oxide by high-resolution inductively coupled plasma mass spectrometry. Bunseki Kagaku 2004, 53, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Shenkay, L.; Fuchung, C. Determination of trace elements in zirconium base alloy by inductively coupled plasma mass spectrometry. Spectrochim. ACTA B 1990, 45, 527–535. [Google Scholar]
- Nhuong, C.M.; Bac, N.Q. Determination of rare earth impurities in high-purity ZrOCl2 by ICP-MS after separation of the matrix Zr by solvent extraction with D2EHPA/Toluene/HNO3. J. Anal. Sci. 2017, 55, 278–283. [Google Scholar]
- Nhuong, C.M.; Lan, N.T.H.; Son, N.D.; Truong, M.X. Investigation of direct determination of many impurities in high-purity ZrCl4 material and after separation of the matrix Zr using solvent extraction using 2-ethyl hexyl phosphonic acid mono 2-ethyl hexyl ester (PC88A) by ICP-MS. Int. J. Adv. Res. 2017, 5, 1401–1409. [Google Scholar] [CrossRef]
- Nhuong, C.M.; Lan, N.T.H.; Truong, M.X. Determination of impurities in high-purity ZrCl4 material by ICP-MS after separation of the matrix using D2EHPA and ZrO2 nanostructure product. J. Appl. Chem. 2018, 7, 587–598. [Google Scholar]
- Nhuong, C.M. Separation of Zirconium from impurities in HNO3 by solvent extraction with TBP, D2EHPA, PC88A for determination of them by ICP-MS. J. Chem. 2015, 53, 340–345. [Google Scholar]
- Nhuong, C.M. Determination of some many Impurities in High-purity ZrO2 by ICP-MS after Separation of the Zr Matrix by solvent extraction with TBP/toluene/HNO3 and purity ZrO2 Nanostructure Product. J. Chem. 2018, 56, 21–28. [Google Scholar]
- El Shafie, A.S.; Daher, A.M.; Ahmed, I.S.; Sheta, M.E.; Moustafa, M.M. Extraction and separation of nano-sized zirconia from nitrate medium using Cyanex 921. Int. J. Adv. Res. 2014, 2, 2956–2970. [Google Scholar]
- Agrawal, Y.K.; Sudhakar, S. Extraction, separation and preconcentration of zirconium. Sep. Purif. Technol. 2002, 27, 111–119. [Google Scholar] [CrossRef]
- Biswas, R.K.; Hayat, M.A. Solvent extraction of zirconium (IV) from chloride media by D2EHPA in kerosene. Hydrometallurgy 2002, 63, 149–158. [Google Scholar] [CrossRef]
- Noronha, L.E.; Kamble, G.S.; Kolekar, S.S.; Anuse, M.A. Solvent extraction separation of zirconium (IV) with 2-octylamino pyridine from succinate media-analysis of real samples. Indian J. Chem. Technol. 2013, 20, 252–258. [Google Scholar]
- Rajmane, M.M.; Sargar, B.M.; Mahamuni, S.V.; Anuse, M.A. Solvent extraction separation of zirconium (IV) from succinate media with N-n-octylaniline. J. Serb. Chem. Soc. 2006, 71, 223–234. [Google Scholar] [CrossRef]
- Reddy, B.R.; Kumar, J.R.; Reddy, A.V.; Priya, D.N. Solvent extraction of zirconium (IV) from acidic chloride solutions using 2-ethylhexyl phosphonic acid mono-2-ethyl hexyl ester (PC-88A). Hydrometallurgy 2004, 72, 303–307. [Google Scholar] [CrossRef]
- Reddy, B.R.; Rajesh, K.B.; Reddy, J.V. Liquid–liquid extraction of tetravalent zirconium from acidic chloride solutions using Cyanex 272. Anal. Sci. 2004, 20, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.R.; Rajesh, K.J.; Varada, R.A. Solvent extraction of zirconium (IV) from acid chloride solutions using LIX 84-IC. Hydrometallurgy 2004, 74, 173–177. [Google Scholar] [CrossRef]
- Blazheva, I.V.; Fedorov, Y.S.; Zilberman, B.Y.; Mashirov, L.G. Extraction of zirconium with tributyl phosphate from nitric acid solutions. Radiochemistry 2008, 50, 221–224. [Google Scholar] [CrossRef]
- Ling, Y.W.; Man, S.L. A review on the aqueous chemistry of Zr (IV) and Hf (IV) and their separation by solvent extraction. J. Ind. Eng. Chem. 2016, 39, 1–9. [Google Scholar]
- Ling, Y.W.; Hwa, Y.L.; Man, S.L. Solvent extraction of zirconium and hafnium from hydrochloric acid solutions using acidic organophosphorus extractants and their mixtures with TOPO. Mater. Trans. 2013, 54, 1460–1466. [Google Scholar]
- Zhigao, X.; Lijun, W.; Ming, W.; Yuanlai, X.; Ruan, C.; Panhong, L.; Jun, Z. Separation of zirconiumand hafnium by solvent extraction using mixture of DIBK and P204. Hydrometallurgy 2016, 165, 275–281. [Google Scholar]
- She, C.; Zhifeng, Z.; Shengting, K.; Yanling, L.; Xiaowen, H.; Wuping, L. Separation of zirconium from hafnium in sulfate medium using solvent extraction with a new reagent BEAP. Hydrometallurgy 2017, 169, 607–611. [Google Scholar]
- Thuan, L.B.; Chien, N.X.; Nhuong, C.M. Investigation direct determination of impurities by ICP-MS after separation of the matrix Zr using solvent extraction with 2-ethylhexylphosphonic acid mono 2-ethylhexyl ester. J. Anal. Sci. 2014, 19, 79–85. [Google Scholar]
- Schoonen, M.A.; Schoonen, J.M.T. Removal of crystal violet from aqueous solutions using coal. J. Colloid. Interface Sci. 2014, 422, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ayad, M.M.; El-Nasr, A.A. Adsorption of cationic dye (methylene blue) from water using polyaniline nanotubes base. J. Phys. Chem. C 2010, 114, 14377–14383. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Abdou, A.E.; Sobhy, M.E. Engineered nano-zirconium oxide-crosslinked-nanolayer of carboxymethyl cellulose for speciation and adsorptive removal of Cr(III) and Cr(VI). Powder Technol. 2017, 321, 444–453. [Google Scholar] [CrossRef]
- Bhosale, R.R.; Kumar, A.; AlMomani, F.; Ghosh, U.; Banu, A.; Alahtem, A.; Naser, N.; Mardini, N.; Alhams, D.; Alkhatib, A.; et al. Sol-gel synthesis of CoFe2O4/ZrO2 nanoparticles: Effect of addition of proton scavenger and gel aging time. J. Appl. Chem. 2016, 5, 384–392. [Google Scholar]
- Chi, N.V. Investigation of the effect of immersion time and pH on the properties of nanosize zirconium oxide coating on CT3 steel. J. Chem. 2017, 55, 8–11. [Google Scholar]
- Chi, N.V. Fabrication of zirconium oxide/silane pretreatment film on steel surfaces for organic coatings. J. Chem. 2017, 55, 12–16. [Google Scholar]
No. | Extraction Solutions | Stripping Efficiency (%) | No. | Extraction Solutions | Stripping Efficiency (%) |
---|---|---|---|---|---|
1 | 1 M HCl | 25.5 | 11 | 3 M HNO3 | 4.7 |
2 | 2 M HCl | 30.0 | 12 | 4 M HNO3 | 6.4 |
3 | 3 M HCl | 31.5 | 13 | 1 M HCl + 1% H2O2 | 31.0 |
4 | 4 M HCl | 32.8 | 14 | 2 M HCl + 1% H2O2 | 42.5 |
5 | 0.1 M H2SO4 | 96.5 | 15 | 1 M HCl + 2% H2O2 | 41.0 |
6 | 0.3 M H2SO4 | 97.0 | 16 | 2 M HCl + 2% H2O2 | 52.0 |
7 | 0.5 M H2SO4 | 98.0 | 17 | 2 M HNO3 + 1% H2O2 | 6.5 |
8 | 1.0 M H2SO4 | 99.5 | 18 | 4 M HNO3 + 1% H2O2 | 17.5 |
9 | 1 M HNO3 | 3.1 | 19 | 2 M HNO3 + 2% H2O2 | 6.2 |
10 | 2 M HNO3 | 4.4 | 20 | 4 M HNO3 + 2% H2O2 | 18.0 |
Elements | Li, B, Na, K, Rb, Mg, Ca, Sr, Ba, Al, Ga, Tl, Sc, Cd, Ag, Bi, Zn, Pb, Cu, Co, Ni, Mn, V, As, Se, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er | Tm, Yb, Lu | Y | Ti, Fe | Hf | Zr |
---|---|---|---|---|---|---|
Aqueous phase, % | ≈100 | 95.5 | 97.6 | 71.7 | 34.2 | 26 |
Organic phase, % | Not detected | 4.5 | 2.4 | 28.3 | 65.8 | 74 |
No. | Ims | Mass | Levels () (µg/g) | RSD, % | Known Value (a) | Added (µg/g) | Total (µg/g) | Rev (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | As | 75 | 0.021 ± 0.002 | 1.2 | 0.021 | 0.021 | 0.007 | 1.0 | 1.040 | 96.4 |
2 | Cd | 111 | 1.085 ± 0.065 | 0.8 | 0.014 | 1.081 | −0.001 | 2.5 | 4.592 | 95.4 |
3 | Pb | 208 | 0.020 ± 0.000 | 0.2 | 0.004 | 0.020 | −0.045 | 1.0 | 1.038 | 95.5 |
4 | Cu | 63 | 0.006 ± 0.001 | 1.5 | 0.026 | 0.006 | 0.002 | 1.0 | 1.011 | 94.7 |
5 | Cr | 53 | 0.030 ± 0.003 | 1.5 | 0.026 | 0.031 | −0.017 | 1.0 | 1.059 | 94.7 |
6 | Ni | 60 | 0.005 ± 0.000 | 0.6 | 0.010 | 0.005 | 0.003 | 1.0 | 1.009 | 94.7 |
7 | Hg | 202 | - | 6.9 | 0.172 | - | - | 1.0 | 1.001 | 88.6 |
8 | Mn | 55 | 0.022 ± 0.002 | 1.1 | 0.019 | 0.022 | −0.002 | 1.0 | 1.041 | 96.3 |
9 | Zn | 66 | 0.071 ± 0.007 | 1.3 | 0.023 | 0.071 | 0.025 | 1.0 | 1.136 | 95.3 |
10 | Co | 59 | 0.000 ± 0.000 | 0.9 | 0.016 | 0.000 | −0.001 | 1.0 | 1.001 | 94.0 |
11 | Fe | 57 | 0.386 ± 0.052 | 1.8 | 0.031 | 0.404 | −0.555 | 1.0 | 1.812 | 98.5 |
12 | Be | 9 | 0.001 ± 0.002 | 6.2 | 0.107 | 0.001 | −0.000 | 1.0 | 1.001 | 94.4 |
13 | Li | 7 | 0.000 ± 0.000 | 1.2 | 0.021 | 0.000 | 0.000 | 1.0 | 1.001 | 94.0 |
14 | Mo | 100 | 0.001 ± 0.000 | 5.0 | 0.081 | 0.001 | −0.002 | 1.0 | 1.001 | 93.8 |
15 | Ag | 107 | 5.393 ± 0.442 | 1.1 | 0.019 | 5.412 | −0.995 | 5.0 | 21.119 | 98.8 |
16 | Sb | 121 | 0.002 ± 0.000 | 0.4 | 0.007 | 0.002 | 0.002 | 1.0 | 1.003 | 93.3 |
17 | Se | 82 | 0.002 ± 0.001 | 7.9 | 0.137 | 0.002 | 0.000 | 1.0 | 1.004 | 92.9 |
18 | Sr | 88 | 0.016 ± 0.001 | 0.5 | 0.009 | 0.016 | 0.021 | 1.0 | 1.031 | 95.0 |
19 | Ti | 49 | 1.290 ± 0.307 | 3.2 | 0.055 | 1.292 | −0.045 | 2.5 | 5.180 | 99.0 |
20 | Tl | 205 | 0.000 ± 0.000 | 4.8 | 0.083 | 0.000 | −0.001 | 1.0 | 1.001 | 90.0 |
21 | V | 51 | 0.028 ± 0.002 | 1.1 | 0.019 | 0.028 | −0.009 | 1.0 | 1.056 | 96.1 |
22 | Ba | 137 | 0.056 ± 0.001 | 0.3 | 0.005 | 0.056 | 0.101 | 1.0 | 1.108 | 95.8 |
23 | Mg | 24 | 0.192 ± 0.010 | 0.7 | 0.012 | 0.194 | −0.207 | 1.0 | 1.372 | 97.2 |
24 | Ca | 43 | 3.221 ± 0.336 | 1.4 | 0.024 | 3.275 | −2.240 | 5.0 | 11.549 | 98.1 |
25 | Sn | 118 | 0.004 ± 0.000 | 1.1 | 0.019 | 0.004 | −0.007 | 1.0 | 1.008 | 95.0 |
26 | REEs | 5.766 ± 1.031 | 2.4 | 0.042 | 5.802 | −0.863 | 5.0 | 10.281 | 95.5 |
Previous Works | This Study | ||||
---|---|---|---|---|---|
[5] | [7] | [8] | [9] | ||
Similarity | The impurity determination procedure applied in this study is similar to that of previous works [5,7,8,9] where Zr matrix is separated before determination by ICP-MS | ||||
Extraction Agent | 1-phenyl-3-methyl-4-benzoyl-5-pyrazone (PMBP) | Bis-2-(ethylhexyl) ortho phosphoric acid (D2EPHA) | Direct determination by HR-ICP-MS | Direct determination some elements of high content | 2-ethyl hexyl phosphonic acid mono-2-ethyl hexyl ester (PC88A) |
Diluent | toluene | toluene | toluene | ||
Extraction Solutions | 2 M HNO3 | HNO3 pH = 2 | 3 M HNO3 | ||
Scrubbing Solutions | 6 M HNO3 | 4 M HNO3 | |||
Stripping Solutions | 1 M H2SO4 | ||||
Impurities, Rev (%) | 15 REEs impurities (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu); RSD < 14%; Rev = 89–110%; LOD = 1.8–5.7 µg/g | 16 impurities (Ni, Cu, Zn, Ag, Cd, Pb, Tl, U, Ce, Dy, Er, Eu, Gd, Nd, Sm, Yb) | 17 impurities (Na, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Ni, Sr, Cs, La, Ce, Hf, Pb, Bi); LOD = 0.01–9 µg/g | 5 impurities (Ti, Cr, Mn, Fe, Cu); RSD < 5% | 40 impurities (see Table 3); RSD ≤ 6.9%; Rev = 88.57–98.8% |
Material/Method | High-purity ZrO2/ICP-MS | Zircaloys/isotope dilution-ICP-MS | Three high-purity ZrO2 samples/HR-ICP-MS with the internal—standard (In), standard addition methods | Zircalloy-2/ICP-MS with the internal-standard (Rh), standard addition and calibration methods | ZrO2 (from Institute for Technology of Radioactive and Rare Elements-ITRRE, Vietnam)/ICP-MS with the internal—standard (In), standard addition and calibration methods |
[15] | This Study | |
---|---|---|
Extraction agent | Cyanex 921 | 2-ethyl hexyl phosphonic acid mono-2-ethyl hexyl ester (PC88A) |
Diluent | kerosene/decanol | toluene |
Extraction solutions | HNO3 | 3 M HNO3 |
Scrubbing solutions | 4 M HNO3 | |
Stripping solutions, efficiency (%) | 1 M H2SO4—41.7%; 4 M H2SO4—72.1% | 1 M H2SO4—99.5% |
Material | Egyptian Rosetta zircon | ZrO2 (ITRRE) |
ZrO2 purification | 15–20 nm | 21.32 nm |
Optimum temperature | 550 °C | 600 °C |
Purity of ZrO2/method | 105 ppm HfO2, 99 ppm SiO2, 76 ppm Al2O3, 48 ppm TiO2, 880 ppm Fe2O3, 23 ppm MgO, 23 ppm CaO and 87 ppm P2O5/ICP (Inductively Coupled Plasma) | ≈100% ZrO2 (including 66.76% Zr + 33.24% O) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, M.N.; Nguyen, L.T.H.; Mai, X.T.; Thuan, D.V.; Bach, L.G.; Nguyen, D.C.; Nguyen, D.C. Nano ZrO2 Synthesis by Extraction of Zr(IV) from ZrO(NO3)2 by PC88A, and Determination of Extraction Impurities by ICP-MS. Metals 2018, 8, 851. https://doi.org/10.3390/met8100851
Chu MN, Nguyen LTH, Mai XT, Thuan DV, Bach LG, Nguyen DC, Nguyen DC. Nano ZrO2 Synthesis by Extraction of Zr(IV) from ZrO(NO3)2 by PC88A, and Determination of Extraction Impurities by ICP-MS. Metals. 2018; 8(10):851. https://doi.org/10.3390/met8100851
Chicago/Turabian StyleChu, Manh Nhuong, Lan T. H. Nguyen, Xuan Truong Mai, Doan Van Thuan, Long Giang Bach, Duy Chinh Nguyen, and Duc Cuong Nguyen. 2018. "Nano ZrO2 Synthesis by Extraction of Zr(IV) from ZrO(NO3)2 by PC88A, and Determination of Extraction Impurities by ICP-MS" Metals 8, no. 10: 851. https://doi.org/10.3390/met8100851
APA StyleChu, M. N., Nguyen, L. T. H., Mai, X. T., Thuan, D. V., Bach, L. G., Nguyen, D. C., & Nguyen, D. C. (2018). Nano ZrO2 Synthesis by Extraction of Zr(IV) from ZrO(NO3)2 by PC88A, and Determination of Extraction Impurities by ICP-MS. Metals, 8(10), 851. https://doi.org/10.3390/met8100851